CN110193328B - 一种氧空位型光驱动微球马达 - Google Patents

一种氧空位型光驱动微球马达 Download PDF

Info

Publication number
CN110193328B
CN110193328B CN201910436612.8A CN201910436612A CN110193328B CN 110193328 B CN110193328 B CN 110193328B CN 201910436612 A CN201910436612 A CN 201910436612A CN 110193328 B CN110193328 B CN 110193328B
Authority
CN
China
Prior art keywords
motor
microsphere
oxygen vacancy
micro
vacancy type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910436612.8A
Other languages
English (en)
Other versions
CN110193328A (zh
Inventor
董任峰
蔡跃鹏
王庆龙
王佳佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201910436612.8A priority Critical patent/CN110193328B/zh
Publication of CN110193328A publication Critical patent/CN110193328A/zh
Application granted granted Critical
Publication of CN110193328B publication Critical patent/CN110193328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于微纳马达材料的技术领域,本发明的目的在于提供一种氧空位型光驱动微球马达,设计的氧空位型Cu2O微球马达可以在纯水中保持高速运动。其为氧空位型的微球马达,运动受光照控制;本发明还提供了一种氧空位型光驱动微球马达的制备方法,将铜源溶液与NaOH和葡萄糖混合反应,制得氧空位型Cu2O微球马达。本发明的微球马达能够吸收200‑800 nm的光波,在多光谱下实现高效驱动,适用性强;以纯水作为马达的燃料液,安全无害;且制备方法简单易行,原材料价格低廉,成本低,适于大规模的生产制备,微球马达在环境净化和生物医疗领域具有广阔的应用前景。

Description

一种氧空位型光驱动微球马达
技术领域
本发明属于微纳马达材料的技术领域,具体涉及一种氧空位型光驱动微球马达。
背景技术
微纳马达是指尺寸在纳米或者微米级别的可以将外界各种能量(光、声、磁、电、化学能等)转化为机械能的可运动的微型器件。得益于微纳马达独特的运动特性,微纳马达已经在环境检测与治理,靶向医疗,药物运输,DNA识别等领域展现出巨大的应用前景。目前,微纳马达通过驱动方式可以分为,光驱动型,电场驱动型,磁场驱动型,热场驱动型,化学驱动型,超声驱动型,其中,光催化型微纳马达由于其出色的光催化性能和运动远程可控的特性已经显示出在实际应用中的巨大潜力。
但是,不可否认的是目前仍然存在着许多问题与挑战制约着光催化型微纳马达的进一步发展。第一,目前光催化驱动的微纳马达的成本较高,制备过程复杂,不适用于大规模的生产制备。第二,光催化剂在光催化驱动型微纳马达的设计中发挥着关键作用,目前大多数光催化型微纳马达其有效吸收的光谱范围不够广,无法覆盖所有可见光和紫外光范围。因此,设计制备出具有宽的光吸收范围的性能更加优异的光催化剂,提高光催化效率始终是增强光催化型微纳马达推进力的关键所在。第三,在实际应用中,安全有效的能量输入是重要的考虑因素,能量输入包括两个部分:光和燃料。对于光,可见光显然是光催化驱动型微纳马达的理想光源,然而目前大多数可见光驱动微纳马达以有毒的H2O2为燃料,难以实际应用。燃料液是光催化驱动型微纳马达实现运动的另一个关键因素。
目前,光催化型微纳马达的燃料主要是H2O和H2O2,虽然H2O是理想的燃料,但是,水燃料驱动的微纳马达的速度太慢无法满足实际需要;H2O2燃料可以为马达提供很强的推进力,但它的毒性限制了马达的应用范围。
发明内容
针对以上问题,本发明的目的在于提供一种氧空位型光驱动微球马达,设计的氧空位型Cu2O微球马达可以在纯水中保持高速运动。
本发明的技术内容如下:
一种氧空位型光驱动微球马达,其为氧空位型Cu2O微球马达,可命名为Cu2+1O微球马达,形状为球形;
该微球马达的运动受光照控制;
该微球马达的驱动燃料包括纯水;
该微球马达吸收光波的范围为200-800 nm。
本发明还提供了一种氧空位型光驱动微球马达的制备方法,将铜源溶液与NaOH和葡萄糖混合反应,制得Cu2+1O微球马达。
所述铜源溶液为将铜源物质与水、乙醇混合,所述铜源物质包括乙酸铜。
具体操作为先将铜源溶液加热,之后再加入NaOH和葡萄糖,充分搅拌使之反应,得到红黑色沉淀物,将红黑色沉淀物洗涤干燥,即得到Cu2+1O微球马达。
本发明还提供了所述氧空位型光驱动微球马达在环境净化和生物医疗领域的应用。
本发明的有益效果如下:
本发明的氧空位型光驱动微球马达,具有较高的光催化活性,其运动时能保持较高速的运动速度,速度高达18.10 μm/s;本发明的微球马达能够吸收200-800 nm的光波,在多光谱下实现高效驱动,适用性强;以纯水作为马达的燃料液,安全无害;且制备方法简单易行,原材料价格低廉,成本低,适于大规模的生产制备,微球马达在环境净化和生物医疗领域具有广阔的应用前景。
说明书附图
图1为Cu2+1O微球马达的扫描电镜图像;
图2为Cu2+1O微球马达的X射线衍射图;
图3为Cu2+1O微球马达的电子顺磁共振图;
图4为Cu2+1O微球马达的谱图紫外-可见漫反射光谱图;
图5为Cu2+1O微球马达在纯水中的运动机理图;
图6为Cu2+1O微球马达在紫外光下的运动速度以及运动轨迹图;
图7为Cu2+1O微球马达在蓝光下的运动速度以及运动轨迹图;
图8为Cu2+1O微球马达在绿光下的运动速度以及运动轨迹图;
图9为Cu2+1O微球马达在红光下的运动速度以及运动轨迹图。
具体实施方式
以下通过具体的实施案例以及附图说明对本发明作进一步详细的描述,应理解这些实施例仅用于说明本发明而不用于限制本发明的保护范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。
若无特殊说明,本发明的所有原料和试剂均为常规市场的原料、试剂。
实施例1
一种氧空位型光驱动微球马达的制备方法:
将0.2 g乙酸铜加入到含有8 mL水的圆底烧瓶中,然后加入8 mL乙醇,进行油浴锅加热,当温度达到75℃时,加入0.40 g NaOH和0.25 g 葡萄糖,并在低搅拌速度下进行反应30分钟,得到红黑色的沉淀物;
将红黑色沉淀物用去离子水洗涤5次,并在60℃下真空干燥,即获得最终产物Cu2+ 1O微球马达。
将实施例制备的Cu2+1O微球马达分别通过SEM,XRD,EPR,UV-vis DRS等测试进行表征。
如图1所示,显示了氧空位Cu2+1O微球马达的扫描电镜(SEM,比例尺为2 μm)图像,Cu2+1O微球马达的形状是球形,尺寸在1 μm左右,球形的形态能够使得光源在某个特定角度照射马达时,都能够构造出相应的Janus结构,并且在马达的被光照一侧发生氧化还原反应以产生浓度梯度,从而使得马达能够进行有效的自驱动运动。
如图2的X射线衍射(XRD)图所示,本实施例制备的Cu2+1O微球马达与氧空位Cu2+1O的标准卡片完全匹配,这证明该材料成功引入了氧空位。氧空位结构的存在是提高微球马达光催化活性的关键因素。运用电子顺磁共振测试对材料存在的缺陷-氧空位进行进一步确认,如图3所示,Cu2+1O微球马达显示出明显的特征峰,其g值为2.002,g值表明其表面存在未成对电子,即自由电子。
如图4所示,将Cu2+1O微球马达进行谱图紫外-可见漫反射光谱(UV-vis DRS)表征,其表明了Cu2+1O微球马达可以吸收不同波长(220-800 nm)的光,且当光的波长大于550 nm时,光吸收减弱并最终保持相对较高的水平。
综上,通过SEM,XRD,SPR,UV-vis DRS对本实施例所制备的材料进行表征,结果证明了本实施例所制得的材料是Cu2+1O微球马达,并且对光(220-800 nm)具有很强的吸收能力。
如图5所示,对于Cu2+1O微球马达在纯水中的运动机理,当光从一侧照射在马达上时,马达产生被光照面和避光面,从而通过光的照射构成Janus结构。当暴露于光照下的Cu2+1O微球马达被激发时,电子由稳态转变为激发态,因此产生电子-空穴对,并且与水发生氧化还原反应,在这个过程中,氧空位的存在可以很好地限制电子-空穴复合,因此Cu2+1O微球马达可以保持高光催化活性,在高光催化活性Cu2+1O微球马达的分解下,水被分解产生大量快速扩散的O2和H2,并且被光照一侧的小分子物质浓度远高于避光面。
因此,通过利用Cu2+1O微球马达材料中有限的光穿透深度,我们能够在Cu2+1O微球颗粒上构建不对称的表面化学反应,光催化产物的浓度梯度导致马达发生自驱动运动。
在光照下,Cu2+1O微球马达与H2O的氧化还原反应产生H2和O2,光照面的产物浓度远大于避光面,从而产生渗透压梯度,马达实现扩散泳运动。
对于Cu2O,由于光催化反应发生在光催化剂的表面,而Cu2O的能带间隙窄,光生电子-空穴对容易重新结合,最终导致Cu2O的光催化活性降低。因此,减少电子-空穴复合对提高Cu2O的光催化效率至关重要。氧空位是一种晶体缺陷,它可以结合光生电子并防止电子-空穴复合,从而提高材料的光催化活性。在本发明的设计中,在Cu2O中引入氧空位,氧空位相当于正电荷中心,它可以束缚电子,与邻近的Cu+共有。当被光激发时,束缚电子可以转移到导带,从而具有电子导电性。因此,通过在材料中引入氧空位的策略,可以减少电子-空穴复合,从而大大提高了材料的光催化效率,马达运动速度得到大幅提升,并且氧空位型Cu2O微球马达(Cu2+1O微球马达)可以吸收200-800 nm的光波,在多光谱下实现高效驱动,适用性强。
图6至图9展示了不同光照强度下Cu2+1O微球马达在纯水中运动的速度,光照强度与马达的速度呈正相关的关系,随着光照强度的增加,Cu2+1O微球马达速度也会增加。
如图6至图9所示,在1.6 mW/cm2紫外光、891 Lux蓝光、3991 Lux绿光、919 Lux红光下,马达在纯水中的运动速度分别为8.66 μm/s、10.03 μm/s、8.87 μm/s、8.79 μm/s。当光强增加至28.9 mw/cm2(紫外光)、14270 Lux(蓝光)、65370 Lux(绿光)、14243 Lux(红光)时,马达在纯水中的运动速度分别达到15.22 μm/s、18.10 μm/s、16.00 μm/s、16.10 μm/s,进一步验证了马达的运动速度与光照强度的关系;同时从图6至图9的各个运动轨迹图(各马达运动轨迹所对应的时间为3秒,比例尺为10 μm)可以看出,随着光强的增大,马达的运动轨迹的长度不断增加,也就意味着马达运动速度不断增加。
综上可得,本实施例制备的Cu2+1O微球马达可以在纯水中保持高速运动,相关论文(Dong R , Hu Y , Wu Y , et al. Visible-Light-Driven BiOI-Based JanusMicromotor in Pure Water[J]. Journal of the American Chemical Society, 2017,139(5):1722-1725.)提供了一种Janus微球马达BiOI/Au,其以纯水为燃料液,在可见光下实现运动,但是运动速度仅有1.6μm/s,本实施例制备的Cu2+1O微球马达在纯水中的运动速度相比Janus微球马达BiOI/Au快9倍,本发明的Cu2+1O微球马达及其制备方法为未来设计性能更加有益的光驱动微纳马达提供了非常好的借鉴作用。

Claims (1)

1.一种氧空位型光驱动微球马达在环境净化和生物医疗领域的应用,其特征在于,所述微球马达在光照强度为蓝光891 Lux或14270 Lux时应用于环境净化和生物医疗领域;
所述微球马达的制备为:将0.2 g乙酸铜加入到含有8 mL水的圆底烧瓶中,然后加入8mL乙醇,进行油浴锅加热,当温度达到75℃时,加入0.40 g NaOH和0.25 g 葡萄糖,并在低搅拌速度下进行反应30分钟,得到红黑色的沉淀物;
将红黑色沉淀物用去离子水洗涤5次,并在60℃下真空干燥,即获得最终产物Cu2+1O微球马达;
所述微球马达的运动受光照控制;
所述微球马达的驱动燃料为纯水;
所述微球马达吸收光波的范围为200-800 nm。
CN201910436612.8A 2019-05-23 2019-05-23 一种氧空位型光驱动微球马达 Active CN110193328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910436612.8A CN110193328B (zh) 2019-05-23 2019-05-23 一种氧空位型光驱动微球马达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910436612.8A CN110193328B (zh) 2019-05-23 2019-05-23 一种氧空位型光驱动微球马达

Publications (2)

Publication Number Publication Date
CN110193328A CN110193328A (zh) 2019-09-03
CN110193328B true CN110193328B (zh) 2022-04-15

Family

ID=67752984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910436612.8A Active CN110193328B (zh) 2019-05-23 2019-05-23 一种氧空位型光驱动微球马达

Country Status (1)

Country Link
CN (1) CN110193328B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111607387B (zh) * 2020-01-03 2023-07-25 华南师范大学 一种基于碳点的光催化微球马达及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448943A (zh) * 2018-05-03 2018-08-24 华南师范大学 光引发自电泳驱动型Janus微纳马达及其制备方法和性能控制方法
CN108772028A (zh) * 2018-08-28 2018-11-09 华南师范大学 一种以葡萄糖为燃料且可见光驱动的Cu2O@N-CNTs复合物微球马达及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10035139B2 (en) * 2015-06-29 2018-07-31 Korea Advanced Institute Of Science And Technology Method for improving solar energy conversion efficiency using metal oxide photocatalysts having energy band of core-shell for ultraviolet ray and visible light absorption and photocatalysts thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448943A (zh) * 2018-05-03 2018-08-24 华南师范大学 光引发自电泳驱动型Janus微纳马达及其制备方法和性能控制方法
CN108772028A (zh) * 2018-08-28 2018-11-09 华南师范大学 一种以葡萄糖为燃料且可见光驱动的Cu2O@N-CNTs复合物微球马达及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Glucose-Fueled Micromotors with Highly Efficient Visible-Light Photocatalytic Propulsion;Qinglong Wang et.al;《Applied Materials & Interfaces》;20190123;第11卷;6201-6207 *
Shape-controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction;Zailei Zhang et.al;《Catalysis Science & Technology》;20120227;第2卷;1207–1212 *

Also Published As

Publication number Publication date
CN110193328A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
Bhati et al. Sunlight-induced photocatalytic degradation of pollutant dye by highly fluorescent red-emitting Mg-N-embedded carbon dots
Reddy et al. Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles
Wang et al. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation
Liang et al. Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater
CN107298477B (zh) 一种催化过硫酸盐降解废水中有机污染物的方法
Zhu et al. Fabrication of AgBr/Ag2CrO4 composites for enhanced visible-light photocatalytic activity
Zhao et al. Fluorescence enhancement of lignin-based carbon quantum dots by concentration-dependent and electron-donating substituent synergy and their cell imaging applications
CN100490967C (zh) 一种硅酸铋粉体光催化剂的制备方法
CN106975507A (zh) 一种Ag/g‑C3N4复合光催化剂及其制备方法
US10981139B2 (en) Semiconductor quantum dot and method of carrying out chemical reaction or photoluminescence reaction by using the same
CN104475140A (zh) 一种银改性氮化碳复合光催化材料及其制备方法
CN105688899B (zh) 一种三元复合光催化剂的制备方法和用途
Abideen et al. One‐step hydrothermal synthesis of ZnO microtubes with an efficient photocatalytic activity
Farhan et al. Synthesis and characterization of TiO2/Au nanocomposite using UV-Irradiation method and its photocatalytic activity to degradation of methylene blue
CN106001608A (zh) 一种利用水溶性淀粉制备银纳米颗粒的方法
CN110193328B (zh) 一种氧空位型光驱动微球马达
Cui et al. A Review of Advances in Graphene Quantum Dots: From Preparation and Modification Methods to Application
CN114272373B (zh) 一种近红外光控Au@Cu/H-CeO2@BSA-Cy5纳米马达及其制备方法和应用
Wang et al. Photothermal-assisted photocatalytic degradation of tetracycline in simulated natural water by BiVO4/CuBi2O4 Z-scheme heterojunction: Mechanisms insight, degradation pathways and toxicity assessment
Zhu et al. Efficient degradation of antibiotics by Bi0–Bi4Ti3O12/Ag2CO3 with the surface plasmon resonance effect under visible light irradiation
Poornaprakash et al. Hydrogen evolution properties: Cr doping and V co-doping effect of ZnS nanoparticles
CN107159312B (zh) 铁卟啉/钨酸铋复合光催化材料及其制备方法
CN107158380A (zh) 一种低温常压水热复合晶型纳米Au@ TiO2制备方法
Rajalakshmi et al. Photocatalytic effect of β-cyclodextrin on semiconductors for the removal of Acid Violet dye under UV light irradiation
CN105749945A (zh) 一种Fe(Ш)/Bi2O2CO3光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant