CN110191954A - 用于治疗涉及rdh12的病症和疾病的方法和组合物 - Google Patents

用于治疗涉及rdh12的病症和疾病的方法和组合物 Download PDF

Info

Publication number
CN110191954A
CN110191954A CN201780054628.1A CN201780054628A CN110191954A CN 110191954 A CN110191954 A CN 110191954A CN 201780054628 A CN201780054628 A CN 201780054628A CN 110191954 A CN110191954 A CN 110191954A
Authority
CN
China
Prior art keywords
rdh12
sequence
aav
nucleic acid
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780054628.1A
Other languages
English (en)
Inventor
J.班尼特
J.孙
V.瓦西雷迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Pennsylvania Penn
Original Assignee
University of Pennsylvania Penn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Pennsylvania Penn filed Critical University of Pennsylvania Penn
Publication of CN110191954A publication Critical patent/CN110191954A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • A61K48/0058Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • A61K38/443Oxidoreductases (1) acting on CH-OH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0091Purification or manufacturing processes for gene therapy compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01105Retinol dehydrogenase (1.1.1.105)

Abstract

提供了密码子优化的RDH12的核酸序列,以及含有所述密码子优化的功能性RDH12的序列的重组病毒载体诸如AAV、表达盒、前病毒质粒或其它质粒。提供了表达密码子优化的功能性RDH12的重组载体。含有这些密码子优化序列的组合物可用于治疗、延缓或停止由RDH12的缺失、缺乏或不适当表达引起的某些致盲疾病的方法中。提供了用于校正非功能性的缺陷型或不充分表达的天然RDH12的其它组合物和方法。

Description

用于治疗涉及RDH12的病症和疾病的方法和组合物
以引用的方式并入以电子形式提交的材料
申请人将以电子形式与此一起提交的序列表材料以引用的方式并入本文。该文件被标记为“UPN-16-7699PCT_ST25.txt”,大小为9kB,并且日期为2017年7月5日。
发明背景
位于感光细胞和RPE中的类视黄醇脱氢酶/还原酶催化视觉循环中重要的氧化还原反应。RDH12视黄醇脱氢酶12(全反式/9-顺式/11-顺式)(14q23.3-q24.1)(MIM号608830)编码在视网膜中表达的双特异性酶,其作用于反式和顺式类视黄醇底物二者。参见,例如,Thompson,DA等,2005年11月,Human Mol.Genet.,14(24):3865-3875。人RDH12中的许多突变与某些形式的严重儿童期发病的常染色体隐性视网膜营养不良(arRD)相关联。例如,该基因的缺陷是利伯先天性黑蒙(Leber congenital amaurosis)13型和视网膜色素变性53的原因。
利伯先天性黑蒙(LCA)是一种严重的视网膜营养不良,影响全世界约1/80,000的人。所述病症是常染色体隐性的,并且在出生时或出生后的头几个月内,携带者呈现出异常光感受器发育。异常导致严重的视力损害和失明。RDH12相关联的LCA是稀有形式的LCA中的一种。只有约2.7%的LCA病例是由RDH12突变引起的。
视网膜色素变性(RP)53是属于色素性视网膜病群的另一种视网膜营养不良。视网膜色素变性的特征在于在眼底检查中可见的视网膜色素沉积和视杆细胞的初级丧失,随后是视锥细胞的次级丧失。患者通常有夜视失明和中周视野丧失。随着他们病状的进展,他们失去了远周视野,并且最终也失去了中间视野。RDH12也与这种致盲疾病相关联。
目前这些致盲疾病的治疗主要是支持性的,涉及将患者转诊给用于视力受损儿童的方案,矫正屈光不正并且在可能时使用弱视辅助器,以及接受职业性/教育性疗法。受影响的患者定期接受眼科评价,并通过适当的疗法在具有残余视力的患者中检查是否存在弱视、青光眼或白内障。正在评价基因增强疗法对于某些形式的利伯先天性黑蒙(LCA)的治疗。参见,例如,美国专利号8,147,823。
本领域持续需要用于成功治疗LCA13、RP53和其它眼部疾病的新型且有效的工具和方法。
发明内容
可用于治疗眼部病症的治疗组合物和方法涉及被优化以编码功能性RDH12蛋白的新型cDNA序列,以及将所述优化的序列递送至患有眼部疾病的受试者。在一个实施方案中,此类新型序列包括能够包装在病毒载体中的质粒序列。在其它实施方案中,提供新型AAV前病毒质粒和/或重组AAV以携带优化的序列。如本文所讨论的,这些载体已经在体外和体内都表现了生物学活性。
一方面,提供了编码功能性哺乳动物、优选人的RDH12的密码子优化的cDNA序列。
另一方面,表达盒包含密码子优化的核酸序列,其编码RDH12的一个或多个功能性拷贝。在一个实施方案中,表达盒还包含编码RDH12的一个或多个功能性拷贝的密码子优化的核酸序列,所述核酸序列可操作地连接并且在指导其在宿主细胞中的表达的位于5’和3’AAV ITR序列之间的调节序列的控制下。
其它方面,提供了一种载体,其含有一种或多种本文所述的表达盒,并且提供含有载体或表达盒的宿主细胞。
另一方面,前病毒质粒包含编码AAV衣壳的序列、AAV反向末端重复序列和表达盒,所述表达盒包含编码天然的或突变的或密码子优化的RDH12的密码子优化的核酸序列以及指导所编码的蛋白质在宿主细胞中表达的表达控制序列。在某些实施方案中,质粒组件是模块化的。
在另一个实施方案中,重组腺相关病毒(AAV)包含AAV衣壳蛋白和在调节序列的控制下的编码功能性RDH12蛋白或其片段的核酸序列,所述调节序列在受试者的感光细胞中表达RDH12。在一个实施方案中,rAAV包含AAV8衣壳或其变体,或者AAV7衣壳或其变体,或者AAV2衣壳或其变体,或者AAV5衣壳或其变体。
在另一个实施方案中,rAAV包含AAV反向末端重复序列和表达盒,所述表达盒包含编码功能性RDH12的密码子优化的核酸序列以及指导所编码的蛋白质在宿主细胞中表达的表达控制序列。
又一方面,药物组合物包含药学上可接受的载剂、稀释剂、赋形剂和/或佐剂,和编码功能性RDH12的优化的核酸序列,以及质粒、载体或病毒载体,诸如本文具体描述的rAAV。在一个实施方案中,优化的核酸序列处于调节序列的控制下,所述调节序列在受试者的感光细胞中表达功能性RDH12。在一个实施方案中,组合物含有编码功能性RDH12的序列的多个拷贝。在另一个实施方案中,组合物包含药学上可接受的载剂。
另一方面,提供了表达由密码子优化的RDH12cDNA编码的功能性RDH12蛋白的细胞。在一个实施方案中,这种细胞是诱导性多能干细胞(iPSC),其通过基因编辑系统(诸如Crispr/Cas9系统)以及相关系统和组分进行处理,以靶向和校正细胞现有RDH12序列中的突变或插入用于在该细胞中新型表达的RDH12密码子优化的序列。
另一方面,在哺乳动物受试者中治疗RDH12介导的病症的方法包括向有需要的受试者施用本文所述的密码子优化的RDH12cDNA或者如本文所述的载体、病毒或药物组合物。
另一方面,用于在哺乳动物受试者中治疗失明、延缓或停止失明的进展或者恢复至少部分视力的方法包括向受试者施用或递送编码功能性RDH12蛋白或其片段的优化的核酸序列或其片段。在一个实施方案中,所述方法使用本文所述的组合物中的任一种。
另一方面,用于在哺乳动物受试者中治疗失明、延缓或停止失明的进展或者恢复至少部分视力的方法包括施用重组腺相关病毒(AAV)和药学上可接受的载剂,所述重组腺相关病毒包含AAV衣壳蛋白和在调节序列的控制下的编码功能性RDH12蛋白或其片段的核酸序列,所述调节序列在受试者的感光细胞中表达RDH12。在一个实施方案中,所述方法使用本文所述的组合物中的任一种。
再一方面,治疗由非功能性或功能不正常的RDH12的表达或者RDH12的量不足或缺乏引起的眼部病症的方法包括向有缺乏的受试者施用载体,所述载体包含在合适启动子控制下的天然或密码子优化的RDH12基因。
再一方面,治疗RDH12缺乏或RDH12突变相关病症的方法包括采用基因编辑系统(诸如Crispr/Cas9系统)以及相关系统和组分来靶向和校正RDH12中的突变。在一个实施方案中,所述校正涉及体内优化RDH12编码序列。
在另一个实施方案中,提供了在有需要的受试者中治疗或预防由RDH12的缺陷、缺乏或突变引起的LCA或RP的方法。所述方法包括(a)鉴定患有RDH12相关联的LCA或RP的受试者或有发展RDH12相关联的LCA或RP的风险的受试者;(b)执行基因型分析并鉴定RDH12基因中的突变;(c)执行非侵入性视网膜成像和功能研究,并鉴定疗法所靶向的保留光感受器区域;(d)向受试者施用有效浓度的组合物,所述组合物包含携带在启动子序列的控制下的编码功能性RDH12的核酸序列的载体(例如重组病毒)和药学上可接受的载剂,所述启动子序列在所述感光细胞中表达所述序列的产物,其中所述病症被预防、阻止或改善。
这些组合物和方法的再其它方面和优点在以下的其优选实施方案的详细描述中进一步描述。
附图说明
图1A-1B是示出约78%的序列相似性的密码子优化的RDH12(SEQ ID NO:1;上部序列)与天然RDH12(SEQ ID NO:3;下部序列)的比对。在该比对中,评分为787位(872),同一性为744/949(78%);空位为0/949(0%);并且这两条链是正链。
图2A-2F是示出RDH12质粒的表达的6个图:左上图(图2A)和右上图(图2B)示出未转染的对照;左中图(图2C)和右中图(图2D)示出RDH12Myc转染的细胞;左下图显示RDH12Myc转染的细胞(图2E);右下图(图2F)是来自右中图(图2D)的两个细胞的放大。
图2G是示出RDH12Myc转染的COS-7细胞、对照COS_7细胞、RDH12Myc转染的CHO细胞和对照Cho细胞以及两种分子量标记物的凝胶。
图3是示出AAV2-RDH12Myc在RDH12iPs细胞中的表达的凝胶。标记细胞并示出MW标记物。
图4是示出使用AAV8-RDH12-myc和AAV7m8RDH12-myc的RDH12.myc注射的对比未注射的RDH12KO小鼠的视网膜中的A波漂白前和漂白后比率的图。对用一只眼睛中注射了我们的测试载体的RDH12-/-小鼠执行视网膜电图(ERG)。使用对侧未注射的眼睛作为对照以比较外源RDh12对光诱导的视网膜损伤的保护作用。在光损伤之前和之后进行ERG以比较所述作用。在光损伤之后,未注射的眼睛表现出A波振幅减小,而注射的眼睛在光损伤之后保持相对稳定。
图5A示出了RDH12.myc(AAV8-RDH12-Myc)注射的对比未注射的RDH12KO小鼠的视网膜中的A波漂白前和漂白后比率的图。
图5B示出了RDH12.myc(AAV7m8-RDH12-Myc)注射的对比未注射的RDH12KO小鼠的视网膜中的A波漂白前和漂白后比率的图。
图6A-6D示出了单个动物136的实验结果,其中左眼(图6A和6C)未被注射。右眼(图6B和6D)注射有AAV7m8-RDH12-Myc。执行ERG基线,之后是光损伤,之后是第二次ERG。将动物饲养10天并执行第三次ERG。处死小鼠并收集眼睛固定并切片,并且用DAPI(图6A和6B)或用视紫红质和DAPI(图6C和6D)染色。
图7A至7C示出与光损伤之后未注射的视网膜相比,AAV7m8-RDH12-Myc注射的视网膜中的视网膜结构得以保留。图7A示出了左侧未注射的眼睛。图7B示出了左眼的较高放大率图像,示出了薄的ONL。图7C是注射有AAV7m8-RDH12-Myc的右眼。
图8A示出了具有未注射的左眼的动物的视网膜结构,其示出了薄的视网膜。图8B示出了注射有AAV8-RDH12-Myc的动物的右眼。
图9A和9B示出了具有更高放大率图像的单个动物147的视网膜结构。图9A示出了未注射的左眼。图9B示出了注射有AAV8-RDH12-Myc的右眼。
图10A是一种表达盒pAAV.CBAe.h-天然-RDH12的示意图,所述表达盒在AAV 5'ITR和3'ITR之间含有在调节序列的控制下的编码功能性RDH12的天然核酸序列,所述调节序列包括指导RDH12在所选择的细胞中的表达的CMV.CβA启动子(CBAe)。
图10B是一种表达盒pAAV.CBAe.h-天然-RDH12.myc的示意图,所述表达盒在AAV5'ITR和3'ITR之间含有在调节序列的控制下的连接到myc标签的编码功能性RDH12的天然核酸序列,所述调节序列包括指导RDH12在所选择的细胞中的表达的CMV.CβA启动子。
图10C是一种表达盒pAAV.CBAe.h-密码子优化-RDH12的示意图,所述表达盒在AAV5'ITR和3'ITR之间含有在调节序列的控制下的连接到myc标签的编码功能性RDH12的密码子优化的核酸序列(SEQ ID NO:3),所述调节序列包括指导RDH12在所选择的细胞中的表达的CMV.CβA启动子。
具体实施方式
本文所述的方法和组合物可用于治疗眼部病症。此类眼部病症是RDH12介导的病症或疾病,例如由编码人视网膜脱氢酶12(RDH12)的基因的突变、缺陷或缺乏引起的或涉及RDH12的基因的突变、缺陷或缺乏的病症。在一个实施方案中,这些组合物和方法可用于向哺乳动物受试者递送编码功能性人视网膜脱氢酶基因(hRDH12)的密码子优化的cDNA,用于治疗眼部病症。在某些实施方案中,RDH12介导的病症是致盲疾病,诸如LCA或LCA13或者RP或RP53。在其它实施方案中,所述方法和组合物可用于在体内编辑受试者的缺陷基因或用于使用基因编辑系统(诸如CRISPR/Cas系统)产生表达编码功能性RDH12的密码子优化的cDNA序列的合适细胞系。本文所述的组合物和方法涉及用于递送编码功能性RDH12的序列的一种或多种不同型式的表达盒、载体、重组病毒和其它组合物。此类组合物涉及多种和/或不同型式的RDH12在同一表达盒、载体或病毒中的密码子优化和组装。这些特征不仅增加了正在表达的功能性RDH12蛋白的功效,而且还可以允许较低剂量的递送功能性蛋白的治疗试剂以增加安全性。预期与使用编码RDH12的天然或内源序列可产生的水平相比,在盒或病毒中递送的编码RDH12的核酸序列的优化使功能性RDH12蛋白在体内的产生水平最大化。
本文使用的技术和科学术语具有与本发明所属领域的普通技术人员通常理解的并且参考公开的文本的含义相同的含义,其为本领域技术人员提供了对本申请中使用的许多术语的一般指导。为了清楚地描述本文的组分和组合物,提供了本说明书中包含的定义,并且不意图限制要求保护的发明。
应注意,术语“一个(a)”或“一种(an)”是指一个/种或多个/种。例如,“表达盒”应理解为代表一个或多个此类盒。因此,术语“一个”(或“一种”)、“一个/种或多个/种”和“至少一个/种”在本文中可互换使用。
除非另外指明,否则如本文所用,术语“约”意指与给定参考值加或减10%。
词语“包括(comprise)”、“包含(comprise)”和“包含(comprising)”应该是包含在内而不是排他性地解释,即包括其它未指定的组分或处理步骤。单词“由...组成(consist)”、“由......组成(consisting)”及其变体应该排他性地解释,而不是包含在内,即排除未具体叙述的组分或步骤。
“RDH12”是视黄醇脱氢酶12(全反式/9-顺式/11-顺式)蛋白质,优选其人直向同源物。该蛋白质也称为RP53、LCA13和SDR7C2。如本文所用,术语“RDH12”是指全长蛋白质本身或其功能片段或变体,如下文进一步定义。在一个实施方案中,RDH12蛋白序列来源于组合物旨在治疗的相同哺乳动物。在一个实施方案中,RDH12来源于人。在另一个实施方案中,RDH12来源于犬科动物。
当应用于蛋白质时,术语“片段”或“功能性片段”是指保留全长蛋白质的功能的任何片段,尽管不一定处于相同的表达水平或活性水平。
“功能性蛋白质”意指在没有眼部病症或疾病的受试者中证明正常起作用的蛋白质(例如RDH12)的生物活性的任何氨基酸序列。这种功能性蛋白质可携带其编码DNA序列的突变或修饰或其氨基酸序列内的突变或修饰,所述突变不会引起眼部疾病或病症。在另一个实施方案中,这种功能性蛋白质可包括突变或使蛋白质比“天然”或内源序列更好地发挥其功能。在一个实施方案中,这种功能性RDH12蛋白可以被认为是正常的或正常起作用的蛋白质。
在一个实施方案中,天然人RDH12具有标记为SEQ ID NO:2的以下序列(其是核酸序列SEQ ID NO:1编码的蛋白质,在下面的B部分中报道):
MLVTLGLLTSFFSFLYMVAPSIRKFFAGGVCRTNVQLPGKVVVITGANTGIGKETARELASRGARVYIACRDVLKGESAASEIRVDTKNSQVLVRKLDLSDTKSIRAFAEGFLAEEKQLHILINNAGVMMCPYSKTADGFETHLGVNHLGHFLLTYLLLERLKVSAPARVVNVSSVAHHIGKIPFHDLQSEKRYSRGFAYCHSKLANVLFTRELAKRLQGTGVTTYAVHPGVVRSELVRHSSLLCLLWRLFSPFVKTAREGAQTSLHCALAEGLEPLSGKYFSDCKRTWVSPRARNNKTAERLWNVSCELLGIRWE。
在另一个实施方案中,RDH12蛋白序列是与天然RDH12蛋白(诸如SEQ ID NO:1)共有至少70%、至少75%、至少78%或至少80%的同一性的变体。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少85%的同一性。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少90%的同一性。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少91%的同一性。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少92%的同一性。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少93%的同一性。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少94%的同一性。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少95%的同一性。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少96%的同一性。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少97%的同一性。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少98%的同一性。在另一个实施方案中,RDH12蛋白序列与天然RDH12蛋白共有至少99%的同一性。
在氨基酸序列的上下文中,术语“同一性百分比(%)”、“序列同一性”、“序列同一性百分比”或“相同百分比”是指在对应地比对时两个序列中相同的残基。可以容易地确定蛋白质、多肽、约70个氨基酸至约300个氨基酸或其肽片段或对应的核酸序列编码序列的全长上的氨基酸序列的同一性百分比。合适的氨基酸片段长度可以是至少约8个氨基酸,并且可以是至多约150个氨基酸。总体上,当提及两个不同序列之间的“同一性”、“同源性”或“相似性”时,参考“比对”序列确定“同一性”、“同源性”或“相似性”。“比对”序列或“比对”是指多个核酸序列或蛋白质(氨基酸)序列,与参考序列相比,通常含有缺失或者额外的碱基或氨基酸的校正。使用多种公开或可商购获得的多序列比对程序中的任一种执行比对。对于氨基酸序列,可利用序列比对程序,例如“Clustal X”、“MAP”、“PIMA”、“MSA”、“BLOCKMAKER”、“MEME”和“Match-Box”程序。总体上,这些程序中的任何程序都在默认设置下使用,但是本领域技术人员可以根据需要改变这些设置。可替代地,本领域的技术人员可以利用另一种方法,所述方法至少提供由参考方法提供的同一性或比对的水平。参见例如,J.D.Thomson等,Nucl.Acids.Res.,“A comprehensive comparison of multiplesequence alignments”,27(13):2682-2690(1999)。
“优化的”或“密码子优化的”RDH12蛋白意指由通过密码子改变而与天然或天然存在的序列(诸如SEQ ID NO:1的序列)不同的DNA序列编码的RDH12蛋白序列,所述密码子改变造成蛋白质中的沉默、保守或非保守氨基酸改变或者氨基酸插入或缺失。这些改变可以增加蛋白质产量和/或增强蛋白质确认和稳定性。如本文所述的优化的RDH12蛋白是由密码子优化的DNA序列编码的功能性RDH12蛋白。
优化的RDH12蛋白的一个实施方案是标记为SEQ ID NO:4的翻译的功能性RDH12蛋白序列(其是核酸序列SEQ ID NO:3编码的蛋白质,在下面的B部分中报道):
AAATMLVTLGLLTSFFSFLYMVAPSIRKFFAGGVCRTNVQLPGKVVVITGANTGIGKETARELASRGARVYIACRDVLKGESAASEIRVDTKNSQVLVRKLDLSDTKSIRAFAEGFLAEEKQLHILINNAGVMMCPYSKTADGFETHLGVNHLGHFLLTYLLLERLKVSAPARVVNVSSVAHHIGKIPFHDLQSEKRYSRGFAYCHSKLANVLFTRELAKRLQGTGVTTYAVHPGVVRSELVRHSSLLCLLWRLFSPFVKTAREGAQTSLHCALAEGLEPLSGKYFSDCKRTWVSPRARNNKTAERLWNVSCELLGIRWE。
如上所述,导致保守氨基酸改变的同义密码子改变或密码子改变或者插入或缺失可增加蛋白质产量和/或增强蛋白质确认和稳定性。与使用内源或天然序列生成的水平相比,此种优化可用于开发使实验蛋白质的产量水平最大化的治疗试剂。
编码正常的或正常功能性RDH12蛋白的核酸序列可来源于天然表达RDH12蛋白或其同源物的任何哺乳动物。在一个实施方案中,在NCBI数据库登录号NC_000014.9报道了编码人RDH12的天然核酸序列。
在一个实施方案中,天然人RDH12DNA序列标记为SEQ ID NO:1:
ATGCTGGTCACCTTGGGACTGCTCACCTCCTTCTTCTCGTTCCTGTATATGGTAGCTCCATCCATCAGGAAGTTCTTTGCTGGTGGAGTGTGTAGAACAAATGTGCAGCTTCCTGGCAAGGTAGTGGTGATCACTGGCGCCAACACGGGCATTGGCAAGGAGACGGCCAGAGAGCTCGCTAGCCGAGGAGCCCGAGTCTATATTGCCTGCAGAGATGTACTGAAGGGGGAGTCTGCTGCCAGTGAAATCCGAGTGGATACAAAGAACTCCCAGGTGCTGGTGCGGAAATTGGACCTATCCGACACCAAATCTATCCGAGCCTTTGCTGAGGGCTTTCTGGCAGAGGAAAAGCAGCTCCATATTCTGATCAACAATGCGGGAGTAATGATGTGTCCATATTCCAAGACAGCTGATGGCTTTGAAACCCACCTGGGAGTCAACCACCTGGGCCACTTCCTCCTCACCTACCTGCTCCTGGAGCGGCTAAAGGTGTCTGCCCCTGCACGGGTGGTTAATGTGTCCTCGGTGGCTCACCACATTGGCAAGATTCCCTTCCACGACCTCCAGAGCGAGAAGCGCTACAGCAGGGGTTTTGCCTATTGCCACAGCAAGCTGGCCAATGTGCTTTTTACTCGTGAGCTGGCCAAGAGGCTCCAAGGCACCGGGGTCACCACCTACGCAGTGCACCCAGGCGTCGTCCGCTCTGAGCTGGTCCGGCACTCCTCCCTGCTCTGCCTGCTCTGGCGGCTCTTCTCCCCCTTTGTCAAGACGGCACGGGAGGGGGCGCAGACCAGCCTGCACTGCGCCCTGGCTGAGGGCCTGGAGCCCCTGAGTGGCAAGTACTTCAGTGACTGCAAGAGGACCTGGGTGTCTCCAAGGGCCCGAAATAACAAAACAGCTGAGCGCCTATGGAATGTCAGCTGTGAGCTTCTAGGAATCCGGTGGGAGT
在其它实施方案中,对RDH12编码序列进行某些修饰以增强在靶细胞中的表达。此类修饰包括密码子优化(参见例如,美国专利号7,561,972;7,561,973;和7,888,112,以引用的方式并入本文)以及翻译起始位点周围的序列向共有Kozak序列(gccRccATGR)的转换。参见,以引用的方式并入本文的Kozak等,Nucleic Acids Res.15(20):8125–8148。密码子优化的核酸序列通过同义密码子改变而与天然或天然存在的序列(诸如SEQ ID NO:1序列)不同,所述同义密码子改变增加蛋白质产量、表达和/或增强蛋白质确认和稳定性。
密码子优化的编码区可以通过各种不同的方法来设计。这种优化可以使用可在线获得的方法、公开的方法或提供密码子优化服务的公司来执行。一种密码子优化方法描述于例如国际专利申请公布号WO 2015/012924中,其以引用的方式并入本文。简而言之,用同义密码子序列修饰编码产物的核酸序列。适当地,修饰产物的开放阅读框(ORF)的整个长度。然而,在一些实施方案中,可以仅改变ORF的片段。通过使用这些方法中的一种,可以将频率应用于任何给定的多肽序列,并产生编码多肽的密码子优化的编码区的核酸片段。与可使用内源或天然序列生成的水平相比,此种优化可用于开发使实验蛋白质的产量水平最大化的基因疗法试剂。在一个实施方案中,此类密码子优化的序列不仅可增加所得的治疗试剂组合物的功效,而且允许使用较低剂量的试剂,从而提高治疗安全性。
许多选择可用于执行密码子的实际改变或用于合成如本文所述设计的密码子优化的编码区。可以使用本领域普通技术人员熟知的标准和常规分子生物学操作执行此类修饰或合成。在一种方法中,通过标准方法合成一系列长度各自为80至90个核苷酸且跨越所需序列的长度的互补寡核苷酸对。合成这些寡核苷酸对,使得它们在退火后形成含有粘性末端的80至90个碱基对的双链片段,例如,合成所述对中的每个寡核苷酸以超出与所述对中的其它寡核苷酸互补的区域延伸3、4、5、6、7、8、9、10或更多个碱基。设计每对寡核苷酸的单链末端以与另一对寡核苷酸的单链末端一起退火。使寡核苷酸对退火,然后使这些双链片段中的大约五至六个通过粘性单链末端一起退火,然后将它们连接在一起并克隆到标准细菌克隆载体中,例如,可从Invitrogen Corporation,Carlsbad,Calif.获得的载体。然后通过标准方法对构建体进行测序。制备这些构建体中的若干种,其由连接在一起的80至90个碱基对片段的5至6个片段(即约500个碱基对的片段)组成,使得整个所需序列在一系列质粒构建体中表示。然后用适当的限制酶切割这些质粒的插入物并将其连接在一起以形成最终的构建体。然后将最终的构建体克隆到标准细菌克隆载体中,并测序。其它方法对于技术人员来说是显而易见的。此外,基因合成在商业上很容易获得。
密码子优化的RDH12DNA序列的一个实施方案是标记为SEQ ID NO:3的RDH12DNA序列。
GCGGCCGCCACCATGTTGGTCACCCTCGGACTCCTTACCTCATTTTTCTCCTTCCTGTACATGGTCGCCCCGAGCATTAGAAAGTTCTTCGCCGGCGGAGTGTGTAGGACTAACGTGCAGTTGCCCGGGAAGGTCGTGGTGATTACTGGCGCCAACACTGGTATCGGAAAGGAAACTGCGCGGGAACTGGCGTCCAGAGGTGCCCGCGTGTACATTGCATGCCGCGACGTGCTGAAGGGAGAATCCGCCGCGTCCGAGATCCGGGTGGACACCAAAAATAGCCAGGTGCTCGTGCGGAAGCTGGATCTGTCCGACACCAAGTCAATCAGGGCCTTTGCCGAGGGGTTCCTGGCTGAAGAGAAGCAGCTCCACATTCTGATCAACAACGCCGGGGTCATGATGTGCCCCTACTCAAAGACCGCAGACGGCTTCGAAACCCACCTGGGCGTGAACCATCTGGGACACTTCCTGCTGACCTATCTGCTGCTGGAGCGACTGAAAGTGTCGGCTCCTGCTCGGGTCGTGAACGTGTCCAGCGTGGCCCATCACATCGGAAAGATCCCATTCCACGATCTCCAATCCGAGAAGCGGTACAGCAGGGGCTTCGCGTACTGTCACTCGAAGTTGGCCAACGTGCTCTTTACCCGCGAACTGGCCAAGCGGCTGCAGGGCACTGGCGTGACCACTTACGCCGTGCACCCTGGTGTCGTGCGGTCCGAGCTGGTCCGCCATTCCTCTCTTCTGTGCCTCCTGTGGAGACTCTTCTCCCCGTTCGTCAAGACCGCAAGGGAAGGAGCCCAAACGAGCCTTCACTGTGCCCTGGCGGAAGGACTGGAGCCGCTTAGCGGAAAGTACTTCTCGGACTGCAAGCGCACCTGGGTGTCGCCTAGAGCTCGGAACAACAAGACTGCCGAACGCCTCTGGAATGTGTCCTGCGAGCTGCTGGGAATCAGATGGGAGTGATGATCATGAGATCT
当与编码人RDH12的天然核酸序列比对时,密码子优化的RDH12编码序列的同一性百分比可以是至少50%、或至少60%、或至少70%、或至少80%或至少90%,包括任何这些范围中的任一个之间的任何整数。在一个实施方案中,密码子优化的RDH12与天然序列的同一性百分比为至少51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%。
在核酸序列的上下文中,术语“同一性百分比(%)”、“序列同一性”、“序列同一性百分比”或“百分比同一”是指在对应地比对时两个序列中相同的碱基。通过将在最佳条件下比对的两个序列与待比较的序列比较来确定同一性百分比。序列同一性比较的长度可以是RDH12编码序列的全长,或至少约100至150个核苷酸的片段,或根据需要。然而,也可能需要较小片段之间的同一性,所述较小片段例如至少约九个核苷酸,通常至少约20至24个核苷酸、至少约28至32个核苷酸、至少约36个或更多个核苷酸。多序列比对程序也可用于核酸序列。此类程序的实例包括“Clustal W”、“CAP序列组装”、“BLAST”、“MAP”和“MEME”,它们可通过因特网上的Web服务器访问。此类程序的其它来源是本领域技术人员已知的。可替代地,也使用VectorNTI实用程序。还存在本领域已知的可用于测量核苷酸序列同一性的许多方法,其包括上述程序中包含的那些。作为另一个实例,多核苷酸序列可使用GCG 6.1版中的程序FastaTM来比较。还可使用通常可用的序列分析软件,更具体地,公共数据库提供的BLAST或分析工具。
在SEQ ID NO:3的实施方案中,本发明人通过在嵌入NotI位点中的5'末端添加完整的Kozak共有序列并通过在3'末端添加BclI和BamHI位点(用于克隆的限制性位点)来修饰天然人RDH12的cDNA。将TGA终止密码子嵌入BclI位点中以促进最佳表位标记。这个实施方案还避免了使用某些内部限制酶,诸如BglII、Bsu36I、NheI、NotI、SalI和XhoI。将具有Kozak-CACC序列的NotI限制性位点插入SEQ ID NO:3的核苷酸1-12处。将BglII限制性位点插入SEQ ID NO:3的最后六个核苷酸处。
具体地,图1A-1B示出了SEQ ID NO:3(密码子优化的RDH12 DNA序列)与SEQ IDNO:1(天然RDH12编码序列)的序列比对。密码子优化的RDH12的开放阅读框架与天然序列的22%的核苷酸不同(即78%同源性),尽管所得到的编码蛋白质是相同的。
如本文所用,本文所用的术语“受试者”意指哺乳动物,其包括人、兽医动物或农场动物、家畜或宠物以及正常用于临床研究的动物。在一个实施方案中,这些方法和组合物的受试者为人。再其它合适的受试者包括但不限于鼠、大鼠、犬科动物、猫科动物、猪科动物、牛科动物、绵羊以及其它。如本文所用,术语“受试者”可与“患者”互换使用。受试者包括需要这些治疗或预防方法的任何哺乳动物,尤其包括人。受试者可以是雄性或雌性。在一个实施方案中,受试者患有利伯先天性黑蒙(LCA)或视网膜色素变性或有发展这些病症的风险。在另一个实施方案中,受试者患有LCA或RP或者与功能性RDH12的突变、缺乏或不充分表达相关联的其它眼部病症或有发展这些病症的风险。在另一个实施方案中,受试者已表现出LCA或RP的临床体征。LCA或RP的临床体征包括但不限于眼球震颤、周边视力下降、中央(阅读)视力下降、夜视力下降、色觉丧失、视敏度下降、光感受器功能下降、色素变化和失明。在另一个实施方案中,受试者已被诊断患有LCA或RP。在又一实施方案中,受试者尚未表现出LCA或RP的临床体征。
在又一实施方案中,受试者具有约或至少5%至10%的光感受器损伤和/或丧失。在另一个实施方案中,受试者具有至少20%的光感受器损伤和/或丧失。在另一个实施方案中,受试者具有至少30%的光感受器损伤和/或丧失。在另一个实施方案中,受试者具有至少40%、至少50%、至少60%的光感受器损伤/丧失。在另一个实施方案中,受试者具有至少70%、至少80%或至少90%的光感受器损伤和/或丧失。在另一个实施方案中,受试者具有约或至少5%至10%或更多的视杆和/或视锥功能损伤和/或丧失。在另一个实施方案中,受试者具有至少20%的视杆和/或视锥功能损伤和/或丧失。在另一个实施方案中,受试者具有至少30%的视杆和/或视锥功能损伤和/或丧失。在另一个实施方案中,受试者具有至少40%的视杆和/或视锥功能损伤和/或丧失。在另一个实施方案中,受试者具有至少50%的视杆和/或视锥功能损伤和/或丧失。在另一个实施方案中,受试者具有至少60%、至少70%或至少80%的视杆和/或视锥功能损伤和/或丧失。在另一个实施方案中,受试者具有90%的视杆和/或视锥功能损伤和/或丧失。
如本文所用,术语“病症”或“遗传病症”或“RDH12介导的病症”在整个说明书中用于指与天然(例如,野生型)RDH12蛋白的氨基酸序列中的插入、改变或缺失相关联的任何疾病、病症或病状,所述插入、改变或缺失使得RDH12蛋白在受试者的眼部细胞中部分或全部无功能。所述病症或遗传疾病还可涉及一些其它缺陷,所述缺陷使RDH12蛋白部分或全部无功能或者在受试者的眼部细胞中部分或全部表达。除非另外指明,否则此类病状包括遗传性和/或非遗传性的遗传病状以及在婴儿期或儿童期可能不会出现身体症状的疾病和病状。
如本文所用,术语“眼部细胞”是指眼睛中的或与眼睛功能相关联的任何细胞。所述术语可以指感光细胞中的任何一种或多种,包括视杆细胞、视锥细胞和光敏神经节细胞、视网膜色素上皮(RPE)细胞、穆勒细胞、双极细胞、水平细胞、无长突细胞。在一个实施方案中,眼部细胞为感光细胞。在另一个实施方案中,眼部细胞为视杆和视锥细胞。在又一实施方案中,眼部细胞为视锥细胞。
在本发明的某些实施方案中,受试者患有“眼部病症”,本发明的组分、组合物和方法被设计用于治疗所述眼部病症。如本文所用,“眼部病症”包括视杆-视锥营养不良和视网膜疾病,其包括但不限于斯特格氏病(常染色体显性的或常染色体隐性的)、视网膜色素变性、年龄相关性黄斑变性、视杆-视锥营养不良、利伯先天性黑蒙、尤希尔氏综合征(Usher'ssyndrome)、巴比二氏综合征(Bardet-Biedl Syndrome)、贝斯特氏症、巴-科综合征(Bassen-Kornzweig syndrome)、视网膜劈裂、未治疗视网膜脱离、模式营养不良(patterndystrophy)、全色盲、无脉络膜、眼白化病、增强S视锥综合征、糖尿病视网膜病变、早产儿视网膜病变、镰状细胞视网膜病变、refsun综合征、先天性静止性夜盲症、青光眼、回旋形萎缩或视网膜静脉阻塞。在另一个实施方案中,所述受试者患有青光眼、利伯遗传性视神经病变、溶酶体贮积症或过氧化物酶体病症,或者有发展青光眼、利伯遗传性视神经病变、溶酶体贮积症或过氧化物酶体病症的风险。此类眼部疾病的临床体征包括但不限于周边视力下降、中央(阅读)视力下降、夜视力下降、色觉丧失、视敏度下降、光感受器功能下降、色素变化和最终失明。
在本发明的某些实施方案中,借助于载体或病毒载体将RDH12核酸序列递送至需要治疗的眼部细胞,所述载体中许多是本领域已知且可获得的。为了递送至眼部细胞,治疗载体理想地是无毒的、非免疫原性的、易于产生并且有效地保护DNA并将DNA递送至靶细胞中。如本文所用,“载体”是可向其中插入外源或异源或工程化的核酸序列或转基因的核酸分子,然后可以将所述核酸序列或转基因引入适当的宿主细胞中。载体优选具有一个或多个复制起点以及可以插入重组DNA的一个或多个位点。载体通常具有方便的手段,通过所述手段可以从没有载体的细胞中选择具有载体的细胞,例如它们编码药物抗性基因。常见的载体包括质粒、病毒基因组和(主要在酵母和细菌中的)“人工染色体”。
用于描述核酸序列或蛋白质的术语“外源”意指核酸或蛋白质不天然存在于其在染色体、重组质粒、载体或宿主细胞中出现的位置。外源核酸序列还指来源于并插入相同宿主细胞或受试者中的序列,但所述序列以非天然状态例如不同拷贝数或在不同调节元件的控制下存在。
用于描述核酸序列或蛋白质的术语“异源”意指核酸或蛋白质来源于与所述核酸或蛋白质在其中表达的宿主细胞或受试者不同的生物体或相同生物体的不同物种。当相对于质粒、表达盒或载体中的蛋白质或核酸使用时,术语“异源”表示蛋白质或核酸与另一种序列或子序列一起存在,所述序列或子序列与所讨论的蛋白质或核酸在自然界中为发现彼此之间相同的关系。
术语“分离的”意指材料从其原始环境(例如,如果它是天然存在的,则为天然环境)中移出。例如,存在于活动物中的天然存在的多核苷酸或多肽是未分离的,但与天然系统中的一些或全部共存物质分离的相同的多核苷酸或多肽是分离的,即使随后重新引入天然系统。此类多核苷酸可以是载体的一部分并且/或者此类多核苷酸或多肽可以是组合物的一部分,并且它们仍然是分离的,因为此种载体或组合物不是其自然环境的一部分。
“工程化的”意指编码本文所述的RDH12和RDH12蛋白的核酸序列被组装并置于任何合适的遗传元件中,例如裸DNA、噬菌体、转座子、粘粒、附加体等,所述遗传元件将其上携带的RDH12序列转移至宿主细胞,例如用于产生非病毒递送系统(例如,基于RNA的系统、裸DNA等)或用于在包装宿主细胞中产生病毒载体和/或用于递送至受试者中的宿主细胞。在一个实施方案中,遗传元件是质粒。用于制备此类工程化的构建体的方法是核酸操作领域的技术人员已知的,并且包括遗传工程化、重组工程化和合成技术。参见例如,Green和Sambrook,Molecular Cloning:A Laboratory Manual,Cold Spring HarborPress,ColdSpring Harbor,NY(2012)。
“病毒载体”被定义为含有编码功能性RDH12的外源或异源核酸序列的复制缺陷型、合成型或重组型病毒颗粒。在一个实施方案中,可以将如本文所述的表达盒工程化到质粒上,所述质粒用于药物递送或产生病毒载体。合适的病毒载体优选是复制缺陷型的,并选自靶向眼部细胞的载体。在一个实施方案中,将含有转基因的表达盒包装在病毒衣壳或包膜中。包装在病毒衣壳或包膜内的任何病毒基因组序列都是复制缺陷型的;即,它们不能产生子代病毒体,但保留了感染靶细胞的能力。在一个实施方案中,病毒载体的基因组不包括编码复制所需酶的基因(基因组可以被工程化成“无病毒基因的(gutless)”-仅含有侧接扩增和包装人工基因组所需的信号的目标转基因),但这些基因可以在产生期间被供应。因此,认为其用于基因疗法是安全的,因为除了存在复制所需的病毒酶之外,不会发生由子代病毒体引起的复制和感染。
病毒载体可包括适用于基因疗法的任何病毒,其包括但不限于腺病毒;疱疹病毒;慢病毒;逆转录病毒;细小病毒等。然而,为了便于理解,腺相关病毒在本文中称为示例性病毒载体。因此,在一个实施方案中,治疗组合物或试剂包含腺相关病毒载体,其包含与表达控制序列可操作地连接的RDH12转基因。如本文所用,术语“转基因”意指外源或工程化的编码蛋白质的核酸序列,其在启动子或表达控制序列的控制下位于本说明书所述的表达盒(具有或不具有侧接的rAAV ITR)、重组质粒或前病毒质粒、载体或宿主细胞中。在某些实施方案中,转基因是密码子优化的RDH12编码序列SEQ ID NO:3。在某些实施方案中,转基因是天然存在的或天然的RDH12编码序列SEQ ID NO:1。在其它实施方案中,在各种组合中的密码子优化的和天然的RDH12编码序列都可以充当转基因。
如本文所用,术语“可操作地连接”或“可操作地缔合”是指与编码RDH12的核酸序列连续的表达控制序列和/或反式地或远距离地起作用以控制其转录和表达的表达控制序列。
如本文所用,术语“宿主细胞”可以指包装细胞系,其中重组AAV由前病毒质粒产生。或者,术语“宿主细胞”可以指需要在其中表达转基因的任何靶细胞。因此,“宿主细胞”是指含有通过任何手段引入细胞中的外源或异源DNA的原核或真核细胞,所述手段例如电穿孔、磷酸钙沉淀、显微注射、转化、病毒感染、转染、脂质体递送、膜融合技术、高速DNA包被的微丸、病毒感染和原生质体融合。在本文的某些实施方案中,术语“宿主细胞”是指用于本文所述的组合物的体外评估的各种哺乳动物物种的眼部细胞培养物。在本文的其它实施方案中,术语“宿主细胞”是指用于产生和包装病毒载体或重组病毒的细胞。再在其它实施方案中,术语“宿主细胞”旨在参考在体内治疗眼部疾病的受试者的眼部细胞。在又一实施方案中,宿主细胞可以指诱导型多能干细胞(iPSC),其是通过被迫表达对维持胚胎干细胞的限定特性很重要的基因和因子而已被遗传重编程为胚胎干细胞样状态的成年细胞。此类细胞可以被操作并用作评估本文所述的载体功能的模型或工具。
根据本领域技术人员熟悉的标准命名规范,“质粒”或质粒载体总体上在本文中用小写字母p表示,其之前和/或之后是大写字母和/或数字。本文所公开的起始质粒可商购获得,可在不受限制的基础上公开获得,或者可通过熟知的、公布的程序的常规应用由可用的质粒构建。可以根据本发明使用的许多质粒以及其它克隆和表达载体是本领域技术人员熟知且容易获得的。而且,技术人员可以容易地构建适用于本发明的任何数量的其它质粒。本发明的此类质粒以及其它载体的特性、构建和使用对于本领域技术人员来说是显而易见的。
如本文所用,术语“转录控制序列”或“表达控制序列”是指核酸序列,诸如起始子序列、增强子序列和启动子序列,所述核酸序列诱导、阻遏或以其它方式控制它们可操作地连接的编码蛋白质的核酸序列的转录。
在又一个实施方案中,提供了重组腺相关病毒(AAV)载体,用于递送本文所述的RDH12构建体和优化序列。如本文所用,术语“AAV”是指数十种天然存在的和可获得的腺相关病毒,以及人工AAV。腺相关病毒(AAV)病毒载体是具有AAV蛋白质衣壳的AAV DNA酶抗性颗粒,所述衣壳中包装有用于递送至靶细胞的核酸序列。AAV衣壳由60个衣壳(cap)蛋白亚基VP1、VP2和VP3构成,它们以大约1:1:10至1:1:20的比例排列成二十面体对称,这取决于所选择的AAV。可以选择AAV作为如上所鉴定的AAV病毒载体衣壳的来源。参见例如,美国公布专利申请号2007-0036760-A1;美国公布专利申请号2009-0197338-A1;EP 1310571。还参见WO 2003/042397(AAV7和其它猿猴AAV)、美国专利7790449和美国专利7282199(AAV8)、WO2005/033321和US 7,906,111(AAV9)以及WO 2006/110689和WO 2003/042397(rh.10)。这些文献还描述了可以选择用于产生AAV的其它AAV,并且以引用的方式并入。
在从人或非人灵长类动物(NHP)中分离或工程化的并且充分表征的AAV中,人AAV2是作为基因转移载体开发的第一种AAV;它已广泛用于不同靶组织和动物模型中的有效基因转移实验。除非另外指明,否则本文所述的AAV衣壳、ITR和其它所选择的AAV组分可以容易地从任何AAV中选择,所述AAV包括但不限于通常鉴定为AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV8bp、AAV7M8和AAVAnc80的AAV,任何已知或提及的AAV的变体,或尚未发现的AAV或者其变体或混合物。参见例如,WO 2005/033321,其以引用的方式并入本文。
在另一个实施方案中,AAV衣壳是AAV8bp衣壳,其优先靶向双极细胞。参见WO2014/024282,其以引用的方式并入本文。在另一个实施方案中,AAV衣壳是AAV7m8衣壳,其已表现出优先递送至外视网膜。参见Dalkara等,In Vivo–Directed Evolution of a NewAdeno-Associated Virus for Therapeutic Outer Retinal Gene Delivery from theVitreous,Sci Transl Med 5,189ra76(2013),其以引用的方式并入本文。在一个实施方案中,AAV衣壳为AAV8衣壳。在另一个实施方案中,AAV衣壳为AAV9衣壳。在另一个实施方案中,AAV衣壳为AAV5衣壳。
在一些实施方案中,用于病毒载体的AAV衣壳可以通过前述AAV衣壳中的一种或其编码核酸的诱变(即通过插入、缺失或取代)产生。在一些实施方案中,AAV衣壳是嵌合的,包含来自两种或三种或四种或更多种前述AAV衣壳蛋白的结构域。在一些实施方案中,AAV衣壳是来自两种或三种不同AAV或重组AAV的Vp1、Vp2和Vp3单体的嵌合体。在一些实施方案中,rAAV组合物包含多于一种的前述衣壳。在一个实施方案中,期望利用AAV衣壳,其表现出对所需的靶细胞(例如光感受器、RPE或其它眼部细胞)的趋向性。在一个实施方案中,AAV衣壳是酪氨酸衣壳突变体,其中某些表面暴露的酪氨酸残基被苯丙氨酸(F)取代。
此类AAV变体描述于例如Mowat等,2014年1月,Tyrosine capsid-mutant AAVvectors for gene delivery to the canine retina from a subretinal orintravitreal approach,Gene Therapy 21,96-105中,其以引用的方式并入本文。在一个实施方案中,衣壳是具有Y733F突变的AAV8衣壳。在另一个实施方案中,衣壳是具有Y447F、Y733F和T494V突变的AAV8衣壳(也称为“AAV8(C&G+T494V)”和“rep2-cap8(Y447F+733F+T494V)”),如Kay等,2013年4月,Targeting Photoreceptors via Intravitreal DeliveryUsing Novel,Capsid-Mutated AAV Vectors,PLoS One.2013;8(4):e62097所述,其以引用的方式并入本文。
如本文所用,与AAV有关,术语“变体”意指来源于已知AAV序列的任何AAV序列,其包括与氨基酸或核酸序列共有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少97%、至少99%或更高的序列同一性的那些序列。在另一个实施方案中,AAV衣壳包括变体,其可包括与任何描述的或已知的AAV衣壳序列高达约10%的变异。即AAV衣壳与本文提供和/或本领域已知的AAV衣壳共有约90%同一性至约99.9%同一性、约95%至约99%同一性或约97%至约98%同一性。在一个实施方案中,AAV衣壳与AAV衣壳共有至少95%同一性。当确定AAV衣壳的同一性百分比时,可以对任何变异蛋白质(例如vp1、vp2或vp3)进行比较。在一个实施方案中,AAV衣壳与AAV8vp3共有至少95%同一性。在另一个实施方案中,使用自身互补的AAV。
可以使用本领域技术人员可获得的技术从AAV中容易地分离或工程化ITR或其它AAV组分。此类AAV可以从学术、商业或公共来源(例如,美国典型培养物保藏中心(AmericanType Culture Collection),Manassas,VA)分离、工程化或获得。可替代地,AAV序列可以通过合成或其它合适的手段通过参考公开的序列进行工程化,所述序列诸如文献或数据库(例如像GenBank、PubMed等)中可获得的序列。AAV病毒可以通过常规分子生物学技术进行工程化,从而可以优化这些颗粒,用于细胞特异性递送核酸序列,用于最小化免疫原性,用于调谐稳定性和颗粒寿命,用于有效降解,用于准确递送至细胞核等。
如本文所用,“人工AAV”意指但不限于具有非天然存在的衣壳蛋白的AAV。这种人工衣壳可以通过任何合适的技术使用所选择的AAV序列(例如vp1衣壳蛋白的片段)与异源序列组合产生,所述异源序列可以从不同的所选择的AAV、相同AAV的非连续部分、从非AAV病毒来源或从非病毒来源获得。人工AAV可以是但不限于假型AAV、嵌合AAV衣壳、重组AAV衣壳或“人源化”AAV衣壳。其中一种AAV的衣壳被异源衣壳蛋白替换的假型载体可用于本发明。在一个实施方案中,AAV2/5和AAV2/8是示例性假型载体。
为了将表达盒或rAAV基因组或产生质粒或前病毒质粒包装到病毒体中,ITR是与转基因相同的构建体中顺式所需的唯一的AAV组分。在一个实施方案中,复制(rep)和/或衣壳(cap)的编码序列从AAV基因组中去除,并以反式或通过包装细胞系以产生AAV载体来供应。例如,如上所述,假型AAV可含有来自与AAV衣壳的来源不同的来源的ITR。在一个实施方案中,AAV2/5和AAV2/8是示例性假型载体。另外地或可替代地,可以利用嵌合AAV衣壳。还可以选择再其它的AAV组分。此类AAV序列的来源在本文中描述,并且还可以从学术、商业或公共来源(例如,美国典型培养物保藏中心,Manassas,VA)分离或工程化获得。可替代地,AAV序列可以通过合成或其它合适的手段通过参考公开的序列获得,所述序列诸如文献或数据库(例如像等)中可获得的序列。
“自身互补AAV”是指具有表达盒的质粒或载体,所述表达盒中已经设计了由重组AAV核酸序列携带的编码区以形成分子内双链DNA模板。在感染后,不是等待第二链的细胞介导的合成,而是scAAV的两个互补半部将缔合以形成一个准备立即复制和转录的双链DNA(dsDNA)单元。参见例如,D M McCarty等,“Self-complementary recombinant adeno-associated virus(scAAV)vectors promote efficient transduction independentlyofDNA synthesis”,Gene Therapy,(2001年8月),第8卷,第16号,第1248-1254页。自身互补AAV还描述于例如美国专利号6,596,535;7,125,717和7,456,683中,其各自以引用的方式整体并入本文。
在一个实施方案中,AAV是自身互补的AAV2/8。参见例如,Buie等,2010年1月,Self-complementaryAAVVirus(scAAV)Safe and Long-term Gene Transfer in theTrabecular Meshwork ofLiving Rats and Monkeys,Invest Ophthalmol Vis Sci.,51(1):236–248,以及Ryals等,2011年4月,Quantifying transduction efficiencies ofunmodified and tyrosine capsid mutant AAV vectors in vitro using two ocularcell lines,Mol Vis.;17:1090-102,其以引用的方式并入本文。在一个实施方案中,AAV是具有至少Y733F突变的自身互补的AAV2/8。参见,Ku等,Dec.2011,Gene therapy usingself-complementary Y733F capsid mutant AAV2/8restores vision in a model ofearly onset Leber congenital amaurosis,Hum Mol Genet.,20(23):4569–4581,其以引用的方式并入本文。在另一个实施方案中,AAV是具有至少Y447F+733F+T494V突变的自身互补的AAV2/8。参见,本文中引用的Kay等,2013。
在一个实施方案中,可用于本文所述组合物和方法的载体至少含有编码所选择的AAV衣壳(例如AAV8衣壳)或其片段的序列。在另一个实施方案中,有用的载体至少含有编码所选择的AAV rep蛋白(例如AAV5rep蛋白)或其片段的序列。任选地,此类载体可含有AAVcap和rep蛋白二者。在提供AAV rep和cap二者的载体中,AAV rep和AAV cap序列都可以具有一个来源,例如全部AAV5来源或全部AAV7来源等。
可替代地,可使用载体,其中rep序列来自与提供cap序列的AAV不同的AAV。在一个实施方案中,rep和cap序列由分开的来源(例如,分开的载体或者宿主细胞和载体)表达。在另一个实施方案中,这些rep序列在框内融合至不同AAV的cap序列以形成嵌合AAV载体,诸如美国专利号7,282,199中描述的AAV2/8,所述专利以引用的方式并入本文。
本文描述的某些组合物是分离的或者合成地或重组地工程化的核酸序列,其提供编码功能性RDH12的新型密码子优化的序列。在一个实施方案中,将编码本文所述的hRDH12构建体的优化的核酸序列工程化为任何合适的遗传元件,例如裸DNA、噬菌体、转座子、粘粒、RNA分子(例如mRNA)、附加体等,所述遗传元件将其上携带的RDH12序列转移至宿主细胞,例如用于产生携带DNA或RNA的纳米颗粒、用于在包装宿主细胞中产生病毒载体和/或用于递送至受试者中的宿主细胞。在一个实施方案中,遗传元件是质粒。
所选择的遗传元件可通过任何合适的方法递送,所述方法包括转染、电穿孔、脂质体递送、膜融合技术、高速DNA包被的微丸、病毒感染和原生质体融合。用于制备此类构建体的方法是核酸操作领域的技术人员已知的,并且包括遗传工程化、重组工程化和合成技术。参见例如,Green和Sambrook,Molecular Cloning:A Laboratory Manual,Cold SpringHarborPress,Cold Spring Harbor,NY(2012)。
提供了多种表达盒,其使用SEQ ID NO.3用于表达多种或不同型式的hRDH12蛋白。如本文所用,“表达盒”是指包含优化的RDH12蛋白的编码序列、启动子并且因此可包含其它调节序列的核酸分子,所述盒可被工程化为遗传元件或质粒,并且/或者包装到病毒载体的衣壳(例如病毒颗粒)中。在一个实施方案中,表达盒包含编码RDH12的密码子优化的核酸序列。在一个实施方案中,所述盒提供与表达控制序列可操作地缔合的密码子优化的RDH12,所述表达控制序列指导编码RDH12的密码子优化的核酸序列在宿主细胞中的表达。
在另一个实施方案中,表达盒包含编码RDH12的密码子优化的核酸序列。在一个实施方案中,所述盒提供与表达控制序列可操作地缔合的密码子优化的RDH12,所述表达控制序列指导编码RDH12的密码子优化的核酸序列在宿主细胞中的表达。
在再一实施方案中,表达盒包含编码功能性优化的RDH12的密码子优化的核酸序列。在这种表达盒的一个实施方案中,编码RDH12的序列与第一表达控制序列可操作地缔合,所述第一表达控制序列指导编码RDH12的天然存在的核酸序列在宿主细胞中的表达。如上文关于含有RDH12的表达盒所述,在表达多个拷贝或多个不同型式的功能性RDH12的实施方案中,密码子优化的序列可位于序列的另一个版本的5'或3'。鉴于本说明书和现有技术的教导,本领域技术人员可以容易地设计用于表达RDH12的多个拷贝的构建体。
如本文所述,表达盒可在其5'末端侧接5'AAV反向末端重复序列(ITR),并在其3'末端侧接3'AAV ITR。因此,该rAAV ITR侧接的表达盒含有将表达盒包装入AAV病毒颗粒中所需的最小序列,即AAV 5'和3'ITR。AAV ITR可从任何AAV的ITR序列获得,诸如本文所述。这些ITR可以与所得的重组AAV中采用的衣壳具有相同的AAV来源,或者具有不同的AAV来源(以产生AAV假型)。在一个实施方案中,为了方便并且加速监管审批,使用来自AAV2的ITR序列或其缺失型式(ΔITR)。然而,可选择来自其它AAV来源的ITR。然后可以按照WO2012/158757的教导将每个rAAV基因组引入前病毒质粒中。前病毒质粒在表达AAV cap和/或rep蛋白的宿主细胞中进行培养。在宿主细胞中,每个rAAV基因组被挽救并包装到衣壳蛋白或包膜蛋白中以形成感染性病毒颗粒。
在又一实施方案中,提供包含本文所述的表达盒中的任一种的载体。如上所述,此类载体可以是多种来源的质粒,并且在某些实施方案中可用于产生如本文进一步描述的重组复制缺陷型病毒。
在另一个实施方案中,载体是前病毒质粒,其包含AAV衣壳和重组AAV-ITR侧接的表达盒,其中所述盒包含编码RDH12或RDH12的多个(即至少两个)拷贝的密码子优化的核酸序列以及指导编码蛋白在宿主细胞中表达的表达控制序列。
一种类型的前病毒质粒包含模块化重组表达盒,其允许盒的组分部分被去除并用其它组分重复替换,而不破坏质粒中的限制性位点。这种前病毒质粒是含有5'AAV ITR序列的质粒,ITR上游侧接限制性位点1并且下游侧接限制性位点2;所选择的启动子上游侧接限制性位点2并且下游侧接限制性位点3。模块化rAAV的另一个组分是多接头序列,其至少包含限制性位点3、限制性位点4和限制性位点5,其含有编码RDH12的密码子优化的核酸序列或编码RDH12的序列的两个或更多个拷贝,至少一种此类序列是编码RDH12的密码子优化的核酸序列。RDH12编码序列位于限制性位点3、4和5中的任何两个之间,并且与启动子可操作地连接并且在启动子的调节控制下。可替代地,如上所述,将第二编码序列与表达盒的第二表达控制序列一起插入多接头序列中。
模块化rAAV盒的另外的组分包括上游侧接限制性位点4或5和下游侧接限制性位点6的聚腺苷酸化序列;和上游侧接限制性位点6和下游侧接限制性位点7的3'AAV ITR序列。前病毒质粒还含有在细菌细胞中复制所必需的元件和抗性基因。上述限制性位点1至7中的每一个在前病毒质粒中仅出现一次,并且被不能裂解质粒中的另一个限制性位点的不同酶裂解,从而允许从质粒中独立地和重复地去除、替换或取代整个rAAV模块盒或仅侧接那些限制性位点的元件。此类质粒详述于以引用的方式并入的国际专利申请公布号WO2012/158757中。
通过培养宿主细胞产生合适的重组腺相关病毒(AAV),所述宿主细胞含有编码如本文定义的腺相关病毒(AAV)血清型衣壳蛋白或其片段的核酸序列;功能性rep基因;至少由AAV反向末端重复序列(ITR)和NPHP5核酸序列构成的小基因;和足够的允许将小基因包装到AAV衣壳蛋白中的辅助功能部。需要在宿主细胞中培养以将AAV小基因包装在AAV衣壳中的组分可以反式提供给宿主细胞。可替代地,所需的组分(例如,小基因、rep序列、cap序列和/或辅助功能部)中的任何一个或多个可以由稳定的宿主细胞提供,已使用本领域技术人员已知的方法将所述宿主细胞工程化为含有所需组分中的一个或多个。
最合适的是,这种稳定的宿主细胞将含有在诱导型启动子控制下的一种或多种所需组分。然而,一种或多种所需组分可在组成型启动子的控制下。本文在下文适用于转基因(即RDH12)的调节元件的讨论中提供了合适的诱导型和组成型启动子的实例。在再一替代方案中,所选择的稳定宿主细胞可以含有在组成型启动子控制下的一种或多种所选择的组分和在一种或多种诱导型启动子控制下的一种或多种其它所选择的组分。例如,可以产生稳定的宿主细胞,所述宿主细胞来源于293细胞(其在组成型启动子的控制下含有E1辅助功能部),但所述宿主细胞含有在诱导型启动子控制下的rep和/或cap蛋白。本领域技术人员可以产生再其它稳定的宿主细胞。
产生本发明的rAAV所需的小基因、rep序列、cap序列和辅助功能部可以任何遗传元件的形式递送至包装宿主细胞,所述遗传元件转移其上携带的序列。所选择的遗传元件可以通过任何合适的方法递送,包括本文所述的那些方法。用于构建本发明的任何实施方案的方法是核酸操作领域的技术人员已知的,并且包括遗传工程化、重组工程化和合成技术。参见例如,Sambrook等,Molecular Cloning:A Laboratory Manual,Cold SpringHarborPress,Cold Spring Harbor,NY。类似地,产生rAAV病毒体的方法是熟知的,并且选择合适的方法不是对本发明的限制。参见例如,K.Fisher等,1993J.Virol.,70:520-532以及美国专利5,478,745等等。这些出版物以引用的方式并入本文。
如上所述,小基因至少由RDH12核酸序列(转基因)及其调节序列以及5'和3'AAV反向末端重复序列(ITR)构成。在一个理想的实施方案中,使用AAV血清型2的ITR。然而,可选择来自其它合适的血清型的ITR。正是这种小基因被包装入衣壳蛋白中并被递送至所选择的宿主细胞。
调节序列包括常规的控制元件,所述控制元件以允许其在转染有载体或感染有由本发明产生的病毒的细胞中转录、翻译和/或表达的方式可操作地连接到RDH12基因。如本文所用,“可操作地连接的”序列包括与目标基因连续的表达控制序列以及反式地或远距离地起作用以控制目标基因的表达控制序列两者。
表达控制序列包括:适当的转录起始序列、终止序列、启动子序列和增强子序列;有效RNA加工信号,诸如剪接信号和聚腺苷酸化(polyA)信号;使细胞质mRNA稳定的序列;增强翻译效率的序列(即,Kozak共有序列);增强蛋白质稳定性的序列;以及当需要时增强所编码的产物的分泌的序列。多种表达控制序列(包括启动子)是本领域中已知的并且可被利用。
可用于本发明的构建体的调节序列还可含有内含子,其理想地位于启动子/增强子序列与基因之间。一种理想的内含子序列来源于SV-40,并且是100bp的小内含子剪接供体/剪接受体,称为SD-SA。另一种合适的序列包括土拨鼠肝炎病毒转录后元件。(参见例如,L.Wang和I.Verma,1999Proc.Natl.Acad.Sci.,USA,96:3906-3910)。PolyA信号可来源于许多合适的物种,其包括但不限于SV-40、人和牛科动物。
可用于本发明的方法的rAAV的另一种调节组分是内部核糖体进入位点(IRES)。IRES序列或其它合适的系统可用于由单个基因转录物产生多于一种的多肽。IRES(或其它合适的序列)被用于产生含有多于一种的多肽链的蛋白质,或者由同一细胞或在同一细胞内表达两种不同的蛋白质。示例性IRES是脊髓灰质炎病毒内部核糖体进入序列,其支持光感受器、RPE和神经节细胞中的转基因表达。优选地,IRES在rAAV载体中位于转基因的3'端。
用于rAAV的启动子的选择可以在大量组成型或诱导型启动子中进行,所述启动子可以在所需的眼部细胞中表达所选择的转基因。在另一个实施方案中,所述启动子是细胞特异性的。术语“细胞特异性”是指为重组载体选择的特定启动子可指导所选择的转基因在特定眼部细胞类型中的表达。在一个实施方案中,启动子对于转基因在感光细胞中的表达是特异性的。在另一个实施方案中,启动子对于视杆和视锥中的表达是特异性的。在另一个实施方案中,启动子对于视杆中的表达是特异性的。在另一个实施方案中,启动子对于视锥中的表达是特异性的。在另一个实施方案中,启动子对于转基因在RPE细胞中的表达是特异性的。在另一个实施方案中,转基因在上述眼部细胞中的任一种中表达。
启动子可来源于任何物种。示例性启动子可以是人G蛋白偶联受体蛋白激酶1(GRK1)启动子(Genbank登录号AY327580)。在另一个实施方案中,启动子是GRK1启动子的292nt的片段(位置1793-2087)(参见,Beltran等,Gene Therapy 2010 17:1162-74,其以引用的方式并入本文)。在另一个优选的实施方案中,启动子是人光感受器间类视黄醇结合蛋白近侧(IRBP)启动子。在一个实施方案中,启动子是hIRBP启动子的235nt的片段。
在另一个实施方案中,启动子是待表达基因的天然启动子。在一个实施方案中,启动子是RDH12近侧启动子。可用于本发明的其它启动子包括但不限于RPGR近侧启动子(Shu等,IOVS,2102年5月)、杆视蛋白启动子、红绿视蛋白启动子、蓝视蛋白启动子、cGMP-β-磷酸二酯酶启动子、小鼠视蛋白启动子(上文引用的Beltran等2010)、视紫红质启动子(Mussolino等,Gene Ther,2011年7月,18(7):637-45)、视锥转导蛋白的α-亚基(Morrissey等,BMC Dev,Biol,2011年1月,11:3)、β磷酸二酯酶(PDE)启动子、视网膜色素变性(RP1)启动子(Nicord等,J.Gene Med,2007年12月,9(12):1015-23)、NXNL2/NXNL1启动子(Lambard等,PLoS One,2010年10月,5(10):e13025)、RPE65启动子、视网膜变性慢/外周蛋白2(Rds/perph2)启动子(Cai等,Exp Eye Res.2010年8月;91(2):186-94)和VMD2启动子(Kachi等,Human Gene Therapy,2009(20:31-9))。这些文献中的每个均以引用的方式并入本文。在另一个实施方案中,启动子选自人EF1α启动子、视紫红质启动子、视紫红质激酶、光感受器间结合蛋白(IRBP)、锥视蛋白启动子(红绿色、蓝色)、含有红绿色视锥基因座控制区的视锥视蛋白上游序列、视锥转导和转录因子启动子(神经视网膜亮氨酸拉链(Nrl)和光感受器特异性核受体Nr2e3、bZIP)。
在一个实施方案中,由于AAV载体的尺寸限制,启动子具有小于1000bp的小尺寸。在另一个实施方案中,启动子小于400bp。本领域技术人员可以选择其它启动子。
在另一实施方案中,启动子是遍在型或组成型启动子。合适的启动子的实例是具有巨细胞病毒(CMV)增强子元件的杂合鸡β-肌动蛋白(CBA)启动子。在另一个实施方案中,启动子是CB7启动子。其它合适的启动子包括人β-肌动蛋白启动子、人延伸因子-1α启动子、巨细胞病毒(CMV)启动子、猿猴病毒40启动子和单纯疱疹病毒胸苷激酶启动子。参见例如,Damdindorj等,(2014年8月A Comparative Analysis of Constitutive PromotersLocated in Adeno-Associated Viral Vectors.PLoS ONE 9(8):e106472。再其它合适的启动子包括病毒启动子、组成型启动子、可调节启动子[参见例如,WO 2011/126808和WO2013/04943]。可替代地,可以在本文所述的表达盒、rAAV基因组、载体、质粒和病毒中利用对生理诱因有响应的启动子。在一个实施方案中,由于AAV载体的尺寸限制,启动子具有小于1000bp的小尺寸。在另一个实施方案中,启动子小于400bp。本领域技术人员可以选择其它启动子。
可用于本发明的组成型启动子的实例包括但不限于逆转录病毒劳氏肉瘤病毒(RSV)LTR启动子(任选地具有RSV增强子)、巨细胞病毒(CMV)启动子(任选地具有CMV增强子)、SV40启动子、二氢叶酸还原酶启动子、鸡β-肌动蛋白(CBA)启动子、磷酸甘油激酶(PGK)启动子、EF1启动子(Invitrogen)和与CBA启动子偶联的立即早期CMV增强子(上文引用的Beltran等,Gene Therapy 2010)。
诱导型启动子允许调节基因表达,并且可以通过外源供应的化合物、环境因素(诸如温度)或指定生理状态(例如急性期、细胞的特定分化状态或仅在复制细胞中)的存在进行调节。诱导型启动子和诱导型系统可从多种商业来源获得,其包括但不限于Invitrogen、Clontech和Ariad。已经描述了许多其它系统,并且本领域技术人员可以容易地选择这些系统。通过外源供应的化合物调节的诱导型启动子的实例包括锌诱导的绵羊金属硫蛋白(MT)启动子、地塞米松(Dex)诱导的小鼠乳腺肿瘤病毒(MMTV)启动子、T7聚合酶启动子系统、蜕皮素昆虫启动子、四环素可阻遏系统、四环素诱导系统、RU486诱导系统和雷帕霉素诱导系统。可用于本上下文的其它类型的诱导型启动子是由指定生理状态调节的启动子,所述指定生理状态例如温度、急性期、细胞的特定分化状态或仅在复制细胞中。可以使用任何类型的诱导型启动子,其被严格调节并且对特定靶眼部细胞类型是特异性的。
在其它实施方案中,本文所述的盒、载体、质粒和病毒构建体含有其它适当转录起始序列、终止序列、增强子序列、有效RNA加工信号(诸如剪接信号和聚腺苷酸化(polyA)信号)、TATA序列、使细胞质mRNA稳定的序列、增强翻译效率的序列(即,Kozak共有序列)、内含子、增强蛋白质稳定性的序列以及当需要时增强所编码的产物的分泌的序列。表达盒或载体可不含有或含有本文所述的任何元件中的一种或多种。合适的polyA序列的实例包括例如,SV40、牛生长激素(bGH)和TKpolyA。合适的增强子的实例包括例如,CMV增强子、RSV增强子、甲胎蛋白增强子、TTR最小启动子/增强子、LSP(TH-结合球蛋白启动子/α1-微球蛋白/bikunin增强子)等等。
可用于本发明的其它增强子序列包括IRBP增强子(上文引用的Nicord 2007)、立即早期巨细胞病毒增强子、来源于免疫球蛋白基因或SV40增强子的增强子、小鼠近侧启动子中鉴定的顺式作用元件等。
这些和其它常见载体和调节元件的选择是常规的,并且许多此类序列是可用的。参见例如,Sambrook等以及其中例如在第3.18-3.26页和第16.17-16.27页引用的参考文献,以及Ausubel等,Current Protocols in MolecularBiology,John Wiley&Sons,NewYork,1989。当然,并非所有载体和表达控制序列都能同样良好地起作用来表达本发明的所有转基因。然而,本领域技术人员可以在这些和其它表达控制序列中进行选择而不脱离本发明的范围。
用于产生和分离适用于递送至受试者的AAV病毒载体的方法是本领域已知的。参见例如,美国专利7790449;美国专利7282199;WO 2003/042397;WO 2005/033321;WO 2006/110689;和US 7588772 B2]。在一个系统中,用编码侧接ITR的转基因的构建体和编码rep和cap的构建体瞬时转染产生细胞系。在第二系统中,用编码侧接ITR的转基因的构建体瞬时转染稳定供应rep和cap的包装细胞系。在这些系统中的每一个中,AAV病毒体响应于辅助腺病毒或疱疹病毒的感染而产生,从而需要将rAAV与污染病毒分离。最近,已开发出不需要用辅助病毒感染以恢复AAV的系统-所需的辅助功能部(即腺病毒E1、E2a、VA和E4或疱疹病毒UL5、UL8、UL52和UL29以及疱疹病毒聚合酶)也由系统反式供应。在这些较新的系统中,辅助功能部可以通过用编码所需辅助功能部的构建体瞬时转染细胞来供应,或者可以工程化细胞以稳定地含有编码辅助功能部的基因,所述基因的表达可以在转录或转录后水平进行控制。
在又一系统中,侧接ITR和rep/cap基因的转基因通过基于杆状病毒的载体的感染引入昆虫细胞中。关于这些生产系统的综述,总体上参见例如,Zhang等,2009,"Adenovirus-adeno-associated virus hybrid for large-scale recombinant adeno-associated virus production,"Human Gene Therapy 20:922-929,其各自的内容以引用的方式整体并入本文。制备和使用这些和其它AAV生产系统的方法也在以下美国专利中描述,所述专利各自的内容以引用的方式整体并入本文:5,139,941;5,741,683;6,057,152;6,204,059;6,268,213;6,491,907;6,660,514;6,951,753;7,094,604;7,172,893;7,201,898;7,229,823;和7,439,065。总体上参见例如,Grieger和Samulski,2005,"Adeno-associated virus as a gene therapy vector:Vector development,production andclinical applications,"Adv.Biochem.Engin/Biotechnol.99:119-145;Buning等,2008,"Recent developments in adeno-associated virus vector technology,"J.GeneMed.10:717-733;以及下文引用的参考文献,其各自的内容以引用的方式整体并入本文。
用于构建本发明的任何实施方案的方法是核酸操作领域的技术人员已知的,并且包括遗传工程化、重组工程化和合成技术。参见例如,Green和Sambrook等,MolecularCloning:A Laboratory Manual,Cold Spring Harbor Press,Cold Spring Harbor,NY(2012)。类似地,产生rAAV病毒体的方法是熟知的,并且选择合适的方法不是对本发明的限制。参见例如,K.Fisher等,(1993)J.Virol.,70:520-532和美国专利号5,478,745。
在其它实施方案中,本文所述的盒、载体、质粒和病毒构建体含有其它适当转录起始序列、终止序列、增强子序列、有效RNA加工信号(诸如剪接信号和聚腺苷酸化(polyA)信号)、TATA序列、使细胞质mRNA稳定的序列、增强翻译效率的序列(即,Kozak共有序列)、内含子、增强蛋白质稳定性的序列以及当需要时增强所编码的产物的分泌的序列。表达盒或载体可不含有或含有本文所述的任何元件中的一种或多种。合适的polyA序列的实例包括例如,SV40、牛生长激素(bGH)和TKpolyA。合适的增强子的实例包括例如,CMV增强子、RSV增强子、甲胎蛋白增强子、TTR最小启动子/增强子、LSP(TH-结合球蛋白启动子/α1-微球蛋白/bikunin增强子)等等。
因此,在一个实施方案中,新型AAV前病毒质粒携带编码正常或功能性RDH12蛋白的天然或优化的视网膜脱氢酶12(RDH12)的cDNA,此类质粒能够被包装在AAV载体中。这些载体已经在体外和体内都表现了生物学活性。
在一个实施方案中,产生重组rAAV的方法包括获得含有如上所述的rAAV基因组的质粒,以及在足够的病毒序列的存在下培养携带质粒的包装细胞,以允许将AAV病毒基因组包装到感染性AAV包膜或衣壳中。上文描述了rAAV载体产生的具体方法,并且可以用于产生rAAV载体,其可以递送在上文和以下实施例中描述的表达盒和基因组中的一种或多种密码子优化的RDH12或RDH12。
再一方面,采用基因编辑方法来校正眼中的突变或不理想的RDH12基因序列。一种理想的基因编辑方法采用“CRISPR/Cas9”系统。CRISPR/Cas是一种被描述为具有校正与遗传突变或指定表型相关联的疾病的潜力的技术。规律成簇的间隔短回文重复序列(CRISPR)和CRISPR相关联的蛋白(Cas9)系统具有两个不同的组分:(1)指导RNA和(2)核酸内切酶,在这种情况下是CRISPR相关联的(Cas)核酸酶为Cas9。指导RNA是内源细菌crRNA(CRISPRRNA)和tracrRNA(反式激活crRNA)组合成的单个嵌合的指导RNA(gRNA)转录物。gRNA将crRNA的靶向特异性与tracrRNA的支架特性组合成单个转录物。当gRNA和Cas9在细胞中表达时,基因组靶序列可以被修饰或永久破坏。该系统已用于哺乳动物系统的基因组工程,参见例如,Cong,L.,等2013.Science 339:819-823;Mali,P.,等2013Science 339:823-826;Ran,F.A.,等2013.Nat.Protoc.8:2281-2308;以及Shalem,O.,等2014Science 343:84-87。CRISPR II型系统是目前基因组工程中最常用的RNA引导的核酸内切酶技术。腺相关病毒已被描述为涉及CRISPR-Cas系统的基因疗法中可用的载体。参见例如,Yin等,2014Biotechnology,32:551-3和2015Nature Biotechnology,33:102-6。
在再一实施方案中,可以在所选择的细胞上采用这些基因编辑技术以插入RDH12编码序列(天然的或密码子优化的)。此类细胞可包括HEPG2细胞或诱导型多能干细胞(iPSC),然后所述细胞可以用作模型以检查载体、重组病毒以及本文的其它组合物和试剂的功能。
又其它方面,这些核酸序列、载体、前病毒质粒、表达盒、rAAV-ITR侧接的表达盒、病毒载体(包括rAAV病毒载体)可用于药物组合物中,所述药物组合物还包含药学上可接受的载剂。此类药物组合物用于通过此类重组工程化的AAV或人工AAV的递送在眼细胞中表达优化的RDH12或多个拷贝的RDH12。
为了制备含有核酸序列、载体、rAAV基因组和rAAV病毒载体的这些眼科药物组合物,优选通过常规方法评估所述序列或载体或病毒载体的污染,然后将其配制成适用于向眼睛施用的药物组合物。一般来说,眼科药物制剂是基本上不含外来颗粒的无菌制剂,其适当地配混并包装用于滴注到眼睛中。在一个实施方案中,所述制剂适用于视网膜下注射。此种制剂涉及使用药学上和/或生理上可接受的媒介物或载剂,特别是适用于向眼睛施用的媒介物或载剂。合适的药物载剂包括磷酸盐缓冲盐水溶液,水,乳液(诸如油/水乳液或微乳液),悬浮液,各种类型的润湿剂,在脂质体、类脂质体(niosome)、盘状体(discome)或者甚至软膏或凝胶中的无菌溶液(诸如缓冲盐水或其它缓冲液,例如HEPES),以将pH维持在适当的生理水平。
任选地,包括其它药用剂,诸如药剂、稳定剂、缓冲剂、佐剂、稀释剂或表面活性剂等。为了注射,载剂通常是液体。示例性生理上可接受的载剂包括无菌的无热原的水以及无菌的无热原的磷酸盐缓冲盐水。多种此类已知的载剂在美国专利公布号7,629,322中提供,其以引用的方式并入本文。在一个实施方案中,载剂为等渗氯化钠溶液。在另一个实施方案中,载剂为平衡盐溶液。在一个实施方案中,载剂包括吐温。如果要长期储存病毒,可以将病毒在甘油或吐温20的存在下冷冻。
在一个实施方案中,设计制剂的内容物以将pH范围保持在4.75至7.40。局部产品还需要调整接近自然眼泪的张力。总体上,0.5%至2%的盐水张力范围是良好耐受的。合适的表面活性剂还包括,例如,合成的表面活性剂,诸如棕榈酸可夫色尔(Exosurf),一种DPPC与十六烷醇和泰洛沙泊(作为铺展剂添加)的混合物;嘌吗可坦(Pumactant),一种DPPC和PG的混合物;KL-4,其由DPPC、棕榈酰-油酰基磷脂酰甘油和棕榈酸构成,与模拟SP-B的结构特征的21个氨基酸的合成肽组合;Venticute,一种DPPC、PG、棕榈酸和重组SP-C的组合;或动物来源的表面活性剂,诸如贝拉克坦(Beractant)(Alveofact或Survanta)、卡尔法坦(Calfactant)(Infasurf)或泼拉坦阿法(Poractant alfa)(Curosurf)。另一种可用的表面活性剂是Surfaxin(FDA批准的合成肽)。再一种可用的表面活性剂是普朗尼克(Pluronic)F68。
在一个示例性具体实施方案中,合适的制剂含有180mM NaCl、10mM pH 7.3的磷酸钠缓冲液(NaPi),以及0.0001%-0.01%的普朗尼克F68(PF68)表面活性剂。缓冲液的盐水组分的确切组成范围为160mM至180mM NaCl。任选地,使用不同的pH缓冲液(可能是HEPE、碳酸氢钠或TRIS)代替具体描述的缓冲液。再可替代地,含有0.9%的NaCl的缓冲液也是可用的。
任选地,除了rAAV和/或变体和一种或多种载剂之外,本发明的组合物可含有其它常规药物成分,诸如防腐剂或化学稳定剂。合适的示例性防腐剂包括氯丁醇、山梨酸钾、山梨酸、二氧化硫、没食子酸丙酯、对羟基苯甲酸酯、乙基香草醛、甘油、苯酚和对氯苯酚。合适的化学稳定剂包括明胶和白蛋白。
含有复制缺陷型rAAV病毒的药物组合物可以与生理上可接受的载剂一起配制,用于基因转移和基因疗法应用。在AAV病毒载体的情况下,基因组拷贝("GC")、载体基因组或病毒颗粒的定量可用作制剂或悬浮液中所含剂量的量度。可以使用本领域已知的任何方法来确定本发明的复制缺陷型病毒组合物的基因组拷贝(GC)数。用于执行AAV GC数量滴定的一种方法如下:首先用DNA酶处理纯化的AAV载体样品,以从生产过程中消除未衣壳化的AAV基因组DNA或污染的质粒DNA。然后对DNA酶抗性颗粒进行热处理以从衣壳中释放基因组。然后使用靶向病毒基因组的指定区域(通常是poly A信号)的引物/探针组通过实时PCR来定量所释放的基因组。在另一种方法中,理想地测量携带编码优化的RDH12转基因的核酸序列的重组腺相关病毒的有效剂量,如S.K.McLaughlin等,1988J.Virol.,62:1963中所述。在另一种方法中,使用液滴数字PCR(ddPCR)来确定滴度。参见Lock,如在例如M.Lock等,Hu GeneTherapy Methods,2014年4月;25(2):115-25.doi:10.1089/hgtb.2013.131.Epub 2014年2月14日中所述,其以引用的方式并入本文。
如在所述方法中所用,“施用”意指将组合物递送至以眼部疾病为特征的所选择的靶细胞。在一个实施方案中,所述方法涉及通过视网膜下注射将组合物递送至感光细胞或其它眼部细胞。在另一个实施方案中,采用玻璃体内注射到眼部细胞。在再一方法中,可以采用通过睑静脉注射到眼部细胞。本公开给出的领域的技术人员可以选择再其它的施用方法。“施用”或“施用途径”是在有或没有药物载剂或赋形剂的情况下向受试者递送本文所述的组合物。如果需要,可以组合施用途径。在一些实施方案中,周期性地重复所述施用。本文所述的药物组合物被设计用于通过任何合适的途径或不同途径的组合递送至有需要的受试者。直接递送至眼睛(任选地通过眼部递送、视网膜内注射、玻璃体内、局部)或通过全身途径递送,例如动脉内、眼内、静脉内、肌肉内、皮下、皮内和其它胃肠外施用途径。本文所述的核酸分子和/或载体可以以单一组合物或多种组合物进行递送。任选地,可递送两种或更多种不同的AAV或多种病毒[参见例如,WO20 2011/126808和WO 2013/049493]。在另一个实施方案中,多种病毒可以单独或与蛋白质组合含有不同的复制缺陷型病毒(例如,AAV和腺病毒)。
如本文所用,术语“治疗(treatment)”或“治疗(treating)”的定义涵盖出于改善眼部疾病的一种或多种症状目的,向受试者施用一种或多种本文所述的化合物或组合物。因此,“治疗”可以包括以下中的一种或多种:在给定受试者中减少眼病的发作或进展、预防疾病、降低疾病症状的严重性或延缓其进展(包括失明的进展)、消除疾病症状、延迟疾病发作或者监测疾病进展或疗法功效。
如本文所用,术语“剂量”可以指在治疗过程中递送至受试者的总剂量,或者以单个单位(或多个单位或分开剂量)施用递送的量。药物病毒组合物可以配制成剂量单位以含有一定量的携带编码如本文所述的RDH12的核酸序列的复制缺陷型病毒。剂量可以以核酸序列的基因组拷贝(GC)表达。剂量也可以用病毒颗粒表示。在一个实施方案中,合适的剂量在约1.0x 106GC的病毒颗粒至约1.0x 1015GC的范围内,包括所述范围内的所有整数或分数量。在一个实施方案中,组合物被配制成含有或者施用剂量的量为,每次给药至少1x106、2x106、3x106、4x106、5x106、6x106、7x106、8x106或9x106GC,包括所述范围内的所有整数或分数量。在一个实施方案中,组合物被配制成含有或者施用剂量的量为,每次给药至少1x107、2x107、3x107、4x107、5x107、6x107、7x107、8x107或9x107GC,包括所述范围内的所有整数或分数量。在一个实施方案中,组合物被配制成含有每次给药至少1x108、2x108、3x108、4x108、5x108、6x108、7x108、8x108或9x108GC,包括所述范围内的所有整数或分数量。在一个实施方案中,组合物被配制成含有每次给药至少1x109、2x109、3x109、4x109、5x109、6x109、7x109、8x109或9x109GC,包括所述范围内的所有整数或分数量。在另一个实施方案中,组合物被配制成含有每次给药至少1x1010、2x1010、3x1010、4x1010、5x1010、6x1010、7x1010、8x1010或9x1010GC,包括所述范围内的所有整数或分数量。在另一个实施方案中,组合物被配制成含有每次给药至少1x1011、2x1011、3x1011、4x1011、5x1011、6x1011、7x1011、8x1011或9x1011GC,包括所述范围内的所有整数或分数量。在另一个实施方案中,组合物被配制成含有每次给药至少1x1012、2x1012、3x1012、4x1012、5x1012、6x1012、7x1012、8x1012或9x1012GC,包括所述范围内的所有整数或分数量。在另一个实施方案中,组合物被配制成含有每次给药至少1x1013、2x1013、3x1013、4x1013、5x1013、6x1013、7x1013、8x1013或9x1013GC,包括所述范围内的所有整数或分数量。在另一个实施方案中,组合物被配制成含有每次给药至少1x1014、2x1014、3x1014、4x1014、5x1014、6x1014、7x1014、8x1014或9x1014GC,包括所述范围内的所有整数或分数量。在另一个实施方案中,组合物被配制成含有每次给药至少1x1015、2x1015、3x1015、4x1015、5x1015、6x1015、7x1015、8x1015或9x1015GC,包括所述范围内的所有整数或分数量。在一个实施方案中,对于人应用,剂量可以在每次给药1x106至约1x1013GC的范围内,包括所述范围内的所有整数或分数量。在一个实施方案中,对于人应用,剂量可以在每次给药1x1010至约1x1012GC的范围内,包括所述范围内的所有整数或分数量。再其它给药和剂量可由主治医师确定。
这些上述给药可以在各种体积的载剂、赋形剂或缓冲液制剂中施用,范围为约25至约1000微升,包括所述范围内的所有数字,这取决于待治疗区域的尺寸、使用的病毒滴度、施用途径和所述方法的所需效果。在一个实施方案中,载剂、赋形剂或缓冲液的体积为至少约25μl。在一个实施方案中,体积为约50μl。在另一个实施方案中,体积为约75μl。在另一个实施方案中,体积为约100μl。在另一个实施方案中,体积为约125μl。在另一个实施方案中,体积为约150μl。在另一个实施方案中,体积为约175μl。在又一实施方案中,体积为约200μL。在另一个实施方案中,体积为约225μl。在又一实施方案中,体积为约250μl。在又一实施方案中,体积为约275μl。在又一实施方案中,体积为约300μL。在又一实施方案中,体积为约325μL。在另一个实施方案中,体积为约350μl。在另一个实施方案中,体积为约375μl。在另一个实施方案中,体积为约400μl。在另一个实施方案中,体积为约450μl。在另一个实施方案中,体积为约500μl。在另一个实施方案中,体积为约550μl。在另一个实施方案中,体积为约600μl。在另一个实施方案中,体积为约650μl。在另一个实施方案中,体积为约700μl。在另一个实施方案中,体积在约700与1000μl之间。
在一个实施方案中,对于小动物受试者,诸如小鼠,病毒构建体可以约1μl至约3μl的体积中至少1x106至约1x1011GC的浓度进行递送。对于具有与人眼大小相同的眼睛的较大兽医受试者,上述较大的人剂量和体积(例如每次给药1x106至约1x1015GC)是可用的。参见例如,Diehl等,J.Applied Toxicology,21:15-23(2001),讨论了向各种兽医动物施用物质的良好实践。本文献以引用的方式并入本文。
理想的是,利用病毒或其它递送媒介物的最低有效浓度以便降低不良效果的风险,所述不良效果诸如毒性、视网膜发育不良和脱落。在一个实施方案中,如果密码子优化的序列比人中天然存在的序列更有效,则预期上述较低剂量将是可用的。考虑到正在治疗的受试者(优选人)的身体状态、受试者的年龄、特定的眼部病症(例如,RDH12介导的病症)以及病症(如果是进行性的)已发展的程度,主治医师可以选择这些范围内的再其它剂量。
本文所述的又一方面是通过施用密码子优化的RDH12DNA、载体、病毒或含有其的其它药物组合物来治疗RDH12介导的病症或眼部病症的各种方法。在另一个实施方案中,提供了预防、治疗由于上述眼部疾病和与其相关联的视网膜变化引起的视力丧失、阻止由于上述眼部疾病和与其相关联的视网膜变化引起的视力丧失进展或改善由于上述眼部疾病和与其相关联的视网膜变化引起的视力丧失的方法。还设计了再其它方法用于恢复患有眼部病症的受试者的部分或全视力或视敏度。与LCA或RP相关联的视力丧失是指以下的任何减少:周边视力、中央(阅读)视力、夜视力、日视力、色觉丧失、对比敏感度丧失或视敏度下降。可以使用所述方法治疗的其它视力问题包括畏光和眼球震颤。
总体上,所述方法包括向有需要的哺乳动物受试者施用有效量的组合物,所述组合物包含携带在调节序列的控制下的编码正常或功能性RDH12蛋白或其片段的核酸序列的重组腺相关病毒(AAV)和药学上可接受的载剂,所述调节序列在受试者的眼部细胞中表达基因产物。
在一个实施方案中,这种方法被设计用于在具有上述眼部疾病(诸如LCA或RP)中的一种或多种的哺乳动物受试者中治疗、延缓失明或停止失明的进展。优选悬浮在生理上相容的载剂、稀释剂、赋形剂和/或佐剂中的携带RDH12优化的编码序列或另一种功能性RDH12序列的rAAV,可以施用于所需的受试者,其包括但不限于猫、狗或其它非人哺乳动物受试者。该方法包括向有需要的受试者施用以下中的任一种:核酸序列、含有它们的表达盒、rAAV基因组、质粒、载体或rAAV载体或组合物。在一个实施方案中,组合物在视网膜下递送。在另一个实施方案中,组合物在玻璃体内递送。在再一实施方案中,组合物使用适用于治疗眼部疾病的施用途径的组合来递送,并且还可以涉及通过眼睑静脉或其它静脉内或常规施用途径的施用。
对于在这些方法中的使用,每个剂量的体积和病毒滴度是单独确定的,如本文进一步所述的,并且可以与在相同或对侧眼中执行的其它治疗相同或不同。在另一个实施方案中,进行单次的更大体积的治疗以便治疗整个眼睛。剂量、施用和方案可由主治医师考虑本说明书的教导来确定。
在一个实施方案中,组合物以单一剂量来施用,所述单一剂量选自上文在单个受影响的眼中列出的那些剂量。在另一个实施方案中,组合物以单一剂量同时或顺序施用,所述单一剂量选自上文在两个受影响的眼中列出的那些剂量。顺序施用可能意味着从一只眼到另一只眼的施用时间间隙是数分钟、数小时、数天、数周或数月的间隔。在另一个实施方案中,所述方法涉及将组合物以两种或更多种剂量(例如,分开剂量)施用至眼睛。
在再其它实施方案中,本文所述的组合物可以单一组合物或多种组合物进行递送。任选地,可递送两种或更多种不同的AAV或多种病毒[参见例如,WO 2011/126808和WO2013/049493]。在另一个实施方案中,多种病毒可含有不同的复制缺陷型病毒(例如,AAV和腺病毒)。
在本发明的某些实施方案中,理想的是执行非侵入性视网膜成像和功能研究以鉴定疗法所靶向的视杆和视锥光感受器的区域。在这些实施方案中,采用临床诊断测试来确定一个或多个视网膜下注射的一个或多个精确位置。这些测试可包括视网膜电图(ERG),视野检查,视网膜各层的地形作图以及借助共聚焦扫描激光检眼镜检查(cSLO)和光学相干断层扫描(OCT)测量其层厚度,通过自适应光学仪(AO)进行的视锥密度的地形作图、功能性眼科检查等,这取决于正在治疗受试者的物种、他们的身体和健康状况以及剂量。鉴于成像和功能研究,在本发明的一些实施方案中,在同一只眼睛中执行一次或多次注射以便靶向受影响的眼睛的不同区域。每次注射的体积和病毒滴度是单独确定的,如下文进一步所述的,并且可以与在相同或对侧眼中执行的其它注射相同或不同。在另一个实施方案中,进行单次的更大体积的注射以便治疗整个眼睛。在一个实施方案中,选择rAAV组合物的体积和浓度,使得仅损伤的视杆和视锥受体的区域受到影响。在另一个实施方案中,rAAV组合物的体积和/或浓度是更大的量,以便达到眼睛的更大的部分,包括未损伤的光感受器。
在本文所述方法的一个实施方案中,一次性眼内递送组合物(诸如本文所述的组合物,例如优化的RDH12盒的AAV递送)可用于在数百万患有此类眼部病症或多系统疾病的个体中预防视力丧失和失明,而不考虑基因型或环境暴露。
因此,在一个实施方案中,在疾病发作之前施用组合物。在另一个实施方案中,在视力损害或丧失开始之前施用组合物。在另一个实施方案中,在视力损害或丧失开始之后施用组合物。在又一实施方案中,与未患病的眼睛相比,当少于90%的视杆和/或视锥或光感受器起作用或保持时,施用组合物。
在另一个实施方案中,所述方法包括执行另外的研究(例如功能和成像研究)以确定治疗的功效。对于动物检查,此类测试包括通过查看视杆和视锥光感受器功能的视网膜电图(ERG)进行的视网膜和视功能评价、视动性眼球震颤、瞳孔测量、水迷宫测试、明暗偏好组织学(视网膜厚度、外核层中的核排、记录转基因表达的免疫荧光、视锥光感受器计数、用花生凝集素进行的视网膜切片染色-其鉴定视锥光感受器鞘)。其它合适的功效测试是前房液的取样以记录RDH12转基因蛋白的存在。
特别是对于人受试者,在施用本说明书中所述的组合物的剂量之后,使用检查视杆和视锥光感受器功能的视网膜电图(ERG)、瞳孔测量视敏度、对比敏感度色觉测试、视野测试(Humphrey视野/Goldmann视野)、视野移动性测试(越障训练)和阅读速度测试来测试受试者的治疗功效。受试者在用本文所述的药物组合物治疗之后暴露的其它可用的治疗后功效测试是功能性磁共振成像(fMRI)、全视野光敏感测试、视网膜结构研究(包括光学相干断层扫描)、眼底照相、眼底自发荧光、自适应光学扫描和/或激光检眼镜检查。这些和其它功效测试描述于以引用的方式并入的美国专利号8,147,823;共同未决的国际专利申请公布WO 2014/011210或WO 2014/124282中。
在又一实施方案中,上述方法中的任一种与另一种或次级疗法组合执行。在再其它实施方案中,治疗这些眼部疾病的方法涉及用本文详述的组合物与另一种疗法(诸如抗生素治疗、疼痛的姑息治疗等)组合来治疗受试者。另外的疗法可以是任何现在已知的或尚未知的疗法,其有助于预防、阻止或改善这些突变或缺陷或与其相关联的任何作用。可以在施用上述组合物之前、同时或之后施用次级疗法。在一个实施方案中,次级疗法涉及维持视网膜细胞健康的非特异性方法,诸如施用神经营养因子、抗氧化剂、抗凋亡剂。通过注射蛋白质、重组DNA、重组病毒载体、干细胞、胎儿组织或遗传修饰的细胞来实现所述非特异性方法。后者可包括被包封的经遗传修饰的细胞。
在另一个实施方案中,本发明提供了在受试者中预防或阻止光感受器功能丧失或增加光感受器功能的方法。可以使用上文和下文的实施例中描述的功能研究(例如本领域常规的ERG或视野检查)来评估光感受器功能。如本文所用,“光感受器功能丧失”意指与正常的未患病的眼睛或在较早时间点的同一眼睛相比,光感受器功能的降低。如本文所用,“增加光感受器功能”意指与患病的眼睛(具有相同的眼部疾病)、在较早时间点的同一眼睛、同一眼睛的未治疗部分或同一患者的对侧眼睛相比,改进光感受器的功能或增加功能性光感受器的数量或百分比。
另一方面,本发明提供一种在受试者中改进光感受器结构的方法。如本文所用,“改进光感受器结构”是指(在被治疗的视网膜区域中)以下中的一种或多种:在整个视网膜上、在中央视网膜中或周边的外核层(ONL)厚度的增加或减少或者阻止ONL增厚或变薄的进展;在整个视网膜上、在中央视网膜中或周边的外丛状层(OPL)厚度的增加或减少或者阻止OPL增厚或变薄的进展;视杆和视锥内节段(IS)缩短减少;外节段(OS)缩短和丧失的减少;双极细胞树突回缩减少或双极细胞树突长度或数量增加;以及视蛋白错误定位的逆转。
另一方面,本发明提供了一种在具有发展所述疾病的风险的受试者中预防RDH12相关联的LCA的方法。具有发展该眼部病症的风险的受试者包括具有LCA家族史的那些受试者和在RDH12基因中具有一个或多个确认的突变的那些受试者。
对于所述方法中的每一种,所述治疗可用于预防视网膜损伤的发生或用于挽救患有轻度或晚期疾病的眼睛。如本文所用,术语“挽救”意指预防疾病进展至完全失明,预防向未受损的感光细胞的损伤扩散或改善受损感光细胞的损伤。因此,在一个实施方案中,在疾病发作之前施用组合物。在另一个实施方案中,在视蛋白错误定位开始之后施用组合物。在另一个实施方案中,在光感受器丧失开始之前施用组合物。在另一个实施方案中,在光感受器丧失开始之后施用组合物。在又一实施方案中,与未患病的眼睛相比,当少于90%的光感受器起作用或保持时,施用组合物。在另一个实施方案中,当少于80%的光感受器起作用或保持时,施用组合物。在另一个实施方案中,当少于70%的光感受器起作用或保持时,施用组合物。在另一个实施方案中,当少于60%的光感受器起作用或保持时,施用组合物。在另一个实施方案中,当少于50%的光感受器起作用或保持时,施用组合物。在另一个实施方案中,当少于40%的光感受器起作用或保持时,施用组合物。在另一个实施方案中,当少于30%的光感受器起作用或保持时,施用组合物。在另一个实施方案中,当少于20%的光感受器起作用或保持时,施用组合物。在另一个实施方案中,当少于10%的光感受器起作用或保持时,施用组合物。在一个实施方案中,组合物仅施用于眼睛的一个或多个区域,例如具有保留的光感受器的那些区域。在另一个实施方案中,将组合物施用于整个眼睛。
在另一个实施方案中,提供了在有需要的受试者中治疗或预防RDH12相关联的LCA或RP的方法。所述方法包括鉴定患有RDH12相关联的LCA或RP的受试者或有发展这些病症的风险的受试者;执行基因型分析并鉴定RHD12基因中的至少一种突变;执行非侵入性视网膜成像和功能研究并鉴定疗法所靶向的保留光感受器区域;以及向受试者施用有效浓度的组合物,由此预防、阻止或改善RDH12相关联的LCA或RP。所述组合物包括携带在启动子序列的控制下的编码正常光感受器细胞特异性基因的核酸序列的重组病毒和药学上可接受的载剂,所述启动子序列在感光细胞中表达基因产物。基因型分析是本领域常规的,并且可包括使用PCR来鉴定RDH12基因的核酸序列中的一个或多个突变。参见例如,Meindl等,Nat Gen,1996年5月,13:35,Vervoort,R.等,2000.Nat Genet 25(4):462-466(以上引用);以及Vervoort,R.和Wright,A.F.2002.Human Mutation 19:486-500,其各自以引用的方式并入本文。
以下实施例公开了用于治疗本文指定的眼部疾病的核酸序列、表达盒、rAAV基因组和病毒载体的具体实施方案。这些具体实施方案说明了本发明的各个方面。这些实施例应被解释为涵盖由于本文提供的教导而变得明显的任何和所有变型。
以下实施例在RDH12敲除(RDH12-/-)小鼠和HEK293细胞中建立了基因增强疗法的概念证明。密码子优化的cDNA在HEK293细胞中的表达表现出比野生型基因高20%。具有修饰的前病毒质粒骨架基本上如WO2012/158,757中所述,但具有不同的填充序列(来源于噬菌体λ)。RDH12编码序列经过密码子优化,允许更有效地表达。此外,我们在质粒设计中包括天然的和密码子优化的hRDH12序列二者,并且在体外和体内都已表现出功效结果。
前病毒质粒产生概念证明数据、安全性和临床前毒性数据,并最终为RDH12患者进行人临床试验。本文所述的发明涉及编码功能性RDH12蛋白的视网膜脱氢酶12(RDH12)的新型优化的cDNA。在一个实施方案中,设计密码子优化的cDNA用于治疗LCA13。通过遗传工程优化转基因盒,并且因为密码子中的不同核苷酸序列可以编码相同的氨基酸,人们可以改变核苷酸序列,但仍然产生相同的蛋白质产物。换句话说,人们可以利用多个“同义”密码子来产生相同的蛋白质产物。
在来源于RDH12患者的诱导型多能干细胞(iPC)中也进行了另外的实验。这些数据有力地表明包装在AAV载体中的前病毒质粒作为治疗RDH12诱导的眼部病状的方法的临床相关性和有用性。此外,诸如HEK293和iPS细胞的体外模型可用于测试载体的效力。
实施例1:密码子优化的RDH12序列
通过修饰天然人RDH12序列以在嵌入NotI位点中的5'末端添加完整的Kozak共有序列并通过在3'末端添加BclI和BamHI位点(用于克隆的限制性位点)来产生编码功能性RDH12的密码子优化的核酸序列SEQ ID NO:3。将TGA终止密码子嵌入BclI位点中以促进最佳表位标记。本实施方案还避免使用上文鉴定的某些限制酶。
密码子优化的SEQ ID NO:3的开放阅读框(ORF)与天然序列的差异为22%,即它与天然hRDH12仅共有78%的同一性,如图1A-1B所示。
实施例2-表达RDH12的AAV的构建
我们产生了腺相关病毒前病毒顺式质粒,其含有基于p618骨架的具有和不具有myc标签的人天然RDH12 cDNA(对于p618中采用的序列,参见美国专利号9,249,425,其以引用的方式并入本文)。在这些前病毒质粒中,hRDH12 cDNA由组成型CMV.CβA启动子(CBAe)驱动,即pAAV.CMVe.天然-hRDH12和AAV.CBAe.h-天然RDH12.myc。
如US 9,249,425中所述,前病毒质粒还含有5'AAV ITR序列,所述ITR上游侧接限制性位点1并且下游侧接限制性位点2;(b)启动子,其上游侧接限制性位点2并且下游侧接限制性位点3;(c)多接头序列,其包含限制性位点3、限制性位点4和限制性位点5。在本文所述的实施方案中,包含编码RDH12的密码子优化的核酸序列的转基因位于限制性位点3、4和5中的任意两个之间,而无需对其进行修饰,其中所述转基因可操作地连接至启动子并且在启动子的调节控制下;(d)多聚腺苷酸化序列,其上游侧接限制性位点4或5并且下游侧接限制性位点6;以及(e)3'AAV ITR序列,其上游侧接限制性位点6并且下游侧接限制性位点7。每个限制性位点1至7仅在质粒中出现一次,并且被不能裂解质粒中的另一个限制性位点的不同酶裂解。限制性位点1至7被定位以允许从质粒中独立和重复地去除、替换或取代元件(a)、(b)、(c)、(d)和(e)中的一个或多个或整个AAV基因组(a)至(e)。这种前病毒质粒还包含质粒骨架和抗性基因,所述质粒骨架包含在细菌细胞中复制所必需的元件。在另一个实施方案中,质粒骨架包含以下中的一种或多种:(a)5'和3'转录终止子/绝缘子序列,其从模块化重组AAV基因组中的转录中分离骨架中的转录;或(b)非编码填充序列,其增加骨架长度并防止非功能性AAV基因组的反向包装。这些转基因盒与AAV载体的载货能力相容。通过限制性作图和DNA测序分析验证构建体。
分别参见例如,图10A-10C的AAV.CBAe.h-天然-RDH12、AAV.CBAe.h-天然RDH12-Myc和AAV.CBAe.h-密码子优化-RDH12的示意图。
为了证实前病毒构建体中编码的野生型(天然)人RDH12蛋白的表达,用pAAV-CMVe-天然-hRDH12.myc转染COS-7细胞。使用对myc标签有特异性的抗体对转染的细胞进行免疫荧光分析和蛋白质印迹分析。
然后将细胞染色并用电镜检查以示出成功的转染和基因转移的功效。用pAAV.CMVe.天然-hRDH12.myc转染的细胞的免疫荧光分析仅证明了RDH12蛋白在转染细胞中的表达。图2A-2F示出了6个图,其表明RDH12在细胞中的表达。图2A-2B示出未转染的对照;图2C-2D示出RDH12Myc转染的细胞;图2E示出RDH12Myc转染的细胞;图2F是来自图2D的两个细胞的放大。
蛋白质印迹分析进一步证实了预期大小的人RDH12蛋白在转染细胞中的表达,并且在对照未转染细胞中未观察到条带。图2G是示出RDH12Myc转染的COS-7细胞、对照COS-7细胞、RDH12Myc转染的CHO细胞和对照CHO细胞以及两种分子量标记物的凝胶。(图2G)。
然后使用三重转染方法将pAAV.CMVe.天然-hRDH12和pAAV.CMVe.天然-hRDH12.myc前病毒质粒用于产生重组AAV血清型载体(AAV2、AAV8和AAV7m8),从而产生AAV8-RDH12、AAV2-RDH12和AAV7m8-RDH12,所述三重转染方法涉及通过三种质粒转染半汇合的HEK293细胞:编码目标基因的AAV顺式质粒、含有AAVrep和cap基因的AAV反式质粒以及腺病毒辅助质粒。
简而言之,通过在足够的病毒序列存在下培养携带质粒的包装细胞以允许将AAV基因组包装在感染性AAV包膜或衣壳中,将AAV8-RDH12-myc或AAV7m8-RDH12-myc表达盒单独包装在所选择的AAV衣壳中。在一个实施方案中,用于产生rAAV的方法涉及用腺病毒E1、E2a和E4ORF6DNA包装在稳定的表达rep和cap的哺乳动物宿主包装细胞系(诸如国际专利申请公布号WO 99/15685中所述的B-50)中。使用碘克沙醇梯度纯化或梯度离心将含有DNA的病毒颗粒与空颗粒分离。接着进行肝素琼脂糖凝胶(herparin-sepharose)琼脂糖柱层析。使用感染中心测定法确定载体滴度。通过针对已建立的参考批次的银染色确定载体基因组。通过蛋白质凝胶的透明度再次检查载体的纯度。制备病毒制剂并将其组合至所需的总体积。
产生此类rAAV颗粒的再其它方法涉及使用昆虫细胞包装细胞系,诸如下文引用的Smith等,参考文献11中所述的。
将rAAV病毒颗粒悬浮在合适的赋形剂中,诸如含有0.0001%-0.01%的普朗尼克F68(PF68)的180mM NaCl、10mM NaPi,pH 7.3。盐水组分的组成范围为160mM至180mM NaCl。其它缓冲液可用于此类组合物,所述缓冲液包括HEPE、碳酸氢钠、TRIS或0.9%NaCl溶液。
将若干种rAAV制剂合并至所需的总体积。在一个实施方案中,总体积是300微升缓冲液体积中的1x 1011GC的剂量。在另一个实施方案中,总体积是300微升缓冲液体积中的1x108GC的剂量。在再一实施方案中,总体积是300微升缓冲液体积中的1x 106至1x1013GC的剂量。预期分别通过连续稀释细胞病变效应或感染中心测定法测定的污染辅助腺病毒和天然AAV比载体AAV低少于一个或多个数量级。
实施例3-作为模型系统的iPSC
患者特异性诱导型多能干细胞(iPSC)的最新进展提供了合适的体外模型系统来研究疾病发病机理。为了开发体外模型以研究RDH12的功能,由人RDH12患者产生iPS细胞并进行表征。为了证实AAV2.CMV.CβA-天然-hRDH12的感染会导致外源RDH12的产生,我们用AAV2CMV.CβA-天然-hRDH12以1×103、1×104、1×105或2×105、3×105个载体基因组(vg)/细胞转导等份的iPS细胞。四十八小时后,收集细胞裂解物并使用对myc标签有特异性的抗体通过蛋白质印迹进行分析。在转导的细胞裂解物中观察到明显的人RDH12的剂量依赖性产生。参见图4中的结果。
在另一个体外实验中,然后将重组病毒AAV2-RDH12-Myc以1X103GC/细胞、1X104GC/细胞、1X105GC/细胞、2X105GC/细胞和3X105GC/细胞的指示的转染复数转染到iPS细胞中。还示出了阳性对照。表达确认如图3所示。
实施例4-RDH12KO动物的光损伤
具有BALB/c背景的Rdh12-/-小鼠从俄克拉荷马大学的Anne Kasus-Jacobi博士处获得。当在正常的循环光下饲养时,这些动物不表现出人视网膜变性表型,但在暴露于强光下之后会发生变性。
为了评价基因增强疗法在RDH12-/-小鼠中的功效,用实验性rAAV(AAV8.CMV.CβA-天然-hRDH12或AAV7m8.CMV.CβA-天然-hRDH12)单侧预处理小鼠,并确定RDH12的递送是否保护这些患病的视网膜免受光诱导的变性。1-2个月龄的动物在视网膜下单侧注射AAV8.CMV.CβA-天然-hRDH12或玻璃体内单侧注射AAV7m8.CMV.CβA-天然-hRDH12。通过注射1011-1013个病毒颗粒或1011-1013个病毒颗粒/ml缓冲液将每种rAAV注射到RDH12KO小鼠的右眼中,而左眼未感染。注射后3-4周,将动物暴露于强光(10,000勒克斯)下4小时。
在光损伤之前和之后24小时通过视网膜功能研究(视网膜电图,(ERG))来评价光在这些动物视网膜中的影响。暴露在光线下的视网膜应该表现出光损伤的证据。此时的动物经受光损伤的10天恢复期。然后我们通过ERG测量视网膜功能和视网膜组织切片中感光细胞死亡的程度。处死小鼠并收集眼睛进行冷冻切片。冷冻切片的组织用抗myc抗体染色。myc是非特异性的。将细胞核用DAPI染色。
图5A和5B示出了用AAV8或AAV7m8.CMV.CβA-天然-hRDH12(AAV-RDH12)注射的RDH12-/-小鼠和未治疗的眼睛的视网膜中的a波振幅差异。视网膜电图(ERG)揭示了在光暴露之后AAV-RDH12处理的视网膜中的a波的部分功能挽救,其代表视杆光感受器功能。图5A示出了RDH12.myc(AAV8-RDH12-Myc)注射的对比未注射的RDH12KO小鼠的视网膜中的A波比率的图(漂白前和漂白后)。图5B示出了RDH12.myc(AAV7m8-RDH12-Myc)注射的对比未注射的RDH12KO小鼠的视网膜中的A波漂白前和漂白后比率的图。
评估载体处理的RDH12-/-眼睛的组织学挽救程度,其伴随光损伤之后光感受器功能的保留(参见图6-9)。
图6A-6D示出了单个动物136的实验结果,其中左眼(图6A和6C)未被注射。右眼(图6B和6D)注射有AAV7m8-RDH12-Myc。执行ERG基线,之后是光损伤,之后是第二次ERG。将动物饲养10天并执行第三次ERG。处死小鼠并收集眼睛固定并切片,并且用DAPI(图6A和6B)或用视紫红质和DAPI(图6C和6D)染色。
图7A至7C示出与光损伤之后未注射的视网膜相比,AAV7m8-RDH12-Myc注射的视网膜中的视网膜结构得以保留。图7A示出了左侧未注射的眼睛。图7B示出了左眼的较高放大率图像,示出了薄的ONL。图7C是注射有AAV7m8-RDH12-Myc的右眼。
图8A示出了具有未注射的左眼的动物的视网膜结构,其示出了薄的视网膜。图8B示出了注射有AAV8-RDH12-Myc的动物的右眼。
图9A和9B示出了具有更高放大率图像的单个动物147的视网膜结构。图9A示出了未注射的左眼。图9B示出了注射有AAV8-RDH12-Myc的右眼。
在低放大率下,显然大多数处理的RDH12-/-视网膜保持相对正常的ONL,而在同一小鼠的未处理的眼睛中,ONL在视网膜中央区域几乎不含有感光细胞体。较高放大率的图像示出典型的处理的视网膜基本上保留了外核厚度和外节段。相反,在同一小鼠的未治疗的眼睛中,仅保留一至三排ONL核,且在中央视网膜中具有残留的外节段。
执行相同的测试以证实RDH12基因内密码子使用的优化导致转基因表达水平增加和视网膜变性的更好的挽救。预期密码子优化可减少有效重建RDH12所需的病毒剂量。
实施例5-在人受试者中的功效
在通过视网膜下注射施用在合适的缓冲载剂中的悬浮液中的1010-1012个GC或病毒颗粒之后,rAAV颗粒也用于转导人受试者视网膜的细胞。通过视网膜和视觉功能来评估密码子优化的hRDH12在转导细胞或视网膜中的表达。
这些功能在人中使用以下技术中的一种或多种来检查:查看视杆和视锥光感受器功能的视网膜电图(ERG)、瞳孔测量视敏度、对比敏感度色觉测试、视野测试(Humphrey视野/Goldmann视野)、视野移动性测试(越障训练)、阅读速度测试。其它可用的测试包括功能性磁共振成像(fMRI)、全视野光敏感测试、视网膜结构研究(包括光学相干断层扫描)、眼底照相、眼底自发荧光、自适应光学和扫描激光检眼镜检查。
表1(序列表独立文本)
为数字标识符<223>下包含独立文本的序列提供以下信息。
每个专利、专利申请,包括2016年7月8日提交的原申请US 62/359,777以及出版物,包括整个说明书中引用的网站,都以引用的方式并入本文。类似地,本文引用并且出现在所附序列表中的SEQ ID NO以引用的方式并入本文。虽然已经参考特定实施方案描述了本发明,但是应该理解,可以在不脱离本发明的精神的情况下进行修改。此类修改旨在处于所附权利要求书的范围内。

Claims (23)

1.一种密码子优化的核酸序列SEQ ID NO:3,其编码人RDH12。
2.一种表达盒,其包含编码人RDH12的所述密码子优化的核酸序列SEQ ID NO:3。
3.如权利要求2所述的表达盒,其中所述密码子优化的序列与表达控制序列可操作地缔合,所述表达控制序列指导编码功能性RDH12的所述密码子优化的核酸序列在宿主细胞中的表达。
4.一种重组AAV表达盒,其包含侧接表达盒的AAV反向末端重复序列,所述表达盒包含编码功能性RDH12的密码子优化的核酸序列以及指导所述编码的蛋白质在宿主细胞中表达的表达控制序列。
5.如权利要求4所述的rAAV表达盒,其是AAV8-RDH12-Myc或AAV7m8-RDH12-Myc。
6.一种载体或质粒,其包含如权利要求2至5中任一项所述的表达盒。
7.一种前病毒质粒,其包含AAV衣壳和表达盒,所述表达盒包含AAV反向末端重复序列和编码功能性RDH12的密码子优化的核酸序列以及指导所述编码的蛋白质在宿主细胞中表达的表达控制序列。
8.一种重组腺相关病毒(AAV)载体,其包含AAV衣壳蛋白和在调节序列的控制下的天然存在的或密码子优化的编码功能性RDH12或其功能性片段的核酸序列,所述调节序列在受试者的感光细胞中表达所述RDH12。
9.根据权利要求8所述的rAAV,其中所述rAAV包含AAV8衣壳或其变体、AAV7衣壳或其变体、AAV5衣壳或其变体或者AAV2衣壳或其变体。
10.根据权利要求8所述的rAAV,其中所述RDH12蛋白具有SEQ ID NO:4的序列。
11.根据权利要求8所述的rAAV,其中所述RDH12蛋白由SEQ ID NO:3中所示的所述核酸序列或其变体编码。
12.根据权利要求8所述的rAAV,其中所述rAAV是自身互补的AAV。
13.一种宿主细胞,其包含如权利要求2至12中任一项所述的组合物中的任一种。
14.一种组合物,其包含可用于治疗眼部疾病的核酸分子,所述核酸分子包含在调节序列的控制下的编码功能性RDH12的序列,所述调节序列指导所述核酸分子在眼部细胞中的表达;和适用于递送至受试者的所述眼部细胞的载剂或赋形剂。
15.一种组合物,其包含适用于递送至眼睛的药学上可接受的载剂和病毒载体,所述病毒载体包含AAV衣壳蛋白和在调节序列的控制下的天然存在的或密码子优化的编码功能性RDH12或其功能性片段的核酸序列,所述调节序列在受试者的感光细胞中表达所述RDH12。
16.一种在哺乳动物受试者中治疗RDH12介导的病症的方法,所述方法包括向有需要的受试者施用如权利要求14所述的组合物。
17.一种用于在哺乳动物受试者中治疗眼部疾病或致盲疾病、延缓或停止眼部疾病或致盲疾病的进展或者恢复所述受试者的至少部分视力的方法,所述方法包括向有需要的受试者施用如权利要求14所述的组合物。
18.如权利要求17所述的方法,其中所述组合物视网膜下或玻璃体内施用。
19.如权利要求17所述的方法,其中所述疾病由编码RDH12的基因的缺乏或突变引起。
20.一种在受试者中预防与LCA13或RP53相关联的视力丧失、阻止与LCA13或RP53相关联的视力丧失的进展或改善与LCA13或RP53相关联的视力丧失的方法,所述方法包括向所述受试者施用有效浓度的组合物,所述组合物包含携带在调节序列的控制下的天然存在的或密码子优化的编码功能性RDH12蛋白或其片段的核酸序列的重组腺相关病毒(AAV)和药学上可接受的载剂,所述调节序列在所述受试者的感光细胞中表达所述RDH12。
21.根据权利要求20所述的方法,其中所述组合物在疾病发作之前或在光感受器丧失开始之后进行施用。
22.根据权利要求20所述的方法,其中所述组合物的施用在同一眼睛和/或对侧眼睛中重复至少一次。
23.一种在有需要的受试者中治疗或预防LCA13或RP53的方法,其包括:
(a)鉴定患有LCA或RP或有发展LCA或RP的风险的受试者;
(b)执行基因型分析并鉴定所述RDH12基因中的突变;
(c)执行非侵入性视网膜成像和功能研究,并鉴定疗法所靶向的保留光感受器区域;
(d)向所述受试者施用有效浓度的组合物,所述组合物包含携带在启动子序列的控制下的编码功能性RDH12的核酸序列的重组病毒和药学上可接受的载剂,所述启动子序列在所述感光细胞中表达所述基因的产物。
CN201780054628.1A 2016-07-08 2017-07-07 用于治疗涉及rdh12的病症和疾病的方法和组合物 Pending CN110191954A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662359777P 2016-07-08 2016-07-08
US62/359777 2016-07-08
PCT/US2017/041122 WO2018009814A1 (en) 2016-07-08 2017-07-07 Methods and compositions for treatment of disorders and diseases involving rdh12

Publications (1)

Publication Number Publication Date
CN110191954A true CN110191954A (zh) 2019-08-30

Family

ID=60901399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780054628.1A Pending CN110191954A (zh) 2016-07-08 2017-07-07 用于治疗涉及rdh12的病症和疾病的方法和组合物

Country Status (11)

Country Link
US (4) US11197936B2 (zh)
EP (1) EP3481958A4 (zh)
JP (2) JP7101656B2 (zh)
KR (2) KR102526506B1 (zh)
CN (1) CN110191954A (zh)
AU (2) AU2017292010B2 (zh)
BR (1) BR112019000171A2 (zh)
CA (1) CA3029646A1 (zh)
IL (2) IL264070B2 (zh)
RU (1) RU2764920C2 (zh)
WO (1) WO2018009814A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2764920C2 (ru) * 2016-07-08 2022-01-24 Зе Трастис Оф Зе Юниверсити Оф Пенсильвания Способы и композиции для лечения нарушений и заболеваний, связанных с rdh12
JP2021502978A (ja) 2017-11-15 2021-02-04 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン 網膜ジストロフィーを治療するrdh12コード領域を含むウイルスベクターおよび方法
BR112023015303A2 (pt) 2021-02-01 2023-11-14 Regenxbio Inc Método para tratar doença cln2 devido a deficiência de tpp1 em um sujeito
TR2021022284A2 (tr) * 2021-12-31 2022-01-21 T C Ueskuedar Ueniversitesi Retinitis pigmentosa (rp) hastalığının tedavisinde kullanılmak üzere retinol dehidrojenaz 12 (rdh12) gen mutasyonlarına yönelik crıspr-pe sistemi.
JP7168814B1 (ja) 2022-07-01 2022-11-09 東洋インキScホールディングス株式会社 積層体の分離回収方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075154A2 (en) * 2013-11-20 2015-05-28 Fondazione Telethon Artificial dna-binding proteins and uses thereof
US20160015288A1 (en) * 2009-09-15 2016-01-21 Jay Neitz Reagents and methods for modulating cone photoreceptor activity
WO2016019364A1 (en) * 2014-08-01 2016-02-04 The Trustees Of The University Of Pennsylvania Compositions and methods for self-regulated inducible gene expression

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139941A (en) 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
US5436146A (en) 1989-09-07 1995-07-25 The Trustees Of Princeton University Helper-free stocks of recombinant adeno-associated virus vectors
US6268213B1 (en) 1992-06-03 2001-07-31 Richard Jude Samulski Adeno-associated virus vector and cis-acting regulatory and promoter elements capable of expressing at least one gene and method of using same for gene therapy
US5869305A (en) 1992-12-04 1999-02-09 The University Of Pittsburgh Recombinant viral vector system
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
US6204059B1 (en) 1994-06-30 2001-03-20 University Of Pittsburgh AAV capsid vehicles for molecular transfer
US6093570A (en) 1995-06-07 2000-07-25 The University Of North Carolina At Chapel Hill Helper virus-free AAV production
US5741683A (en) 1995-06-07 1998-04-21 The Research Foundation Of State University Of New York In vitro packaging of adeno-associated virus DNA
US6548286B1 (en) 1997-04-14 2003-04-15 Cell Genesys, Inc. Methods for increasing the efficiency of recombinant AAV product
CA2304168A1 (en) 1997-09-19 1999-04-01 The Trustees Of The University Of Pennsylvania Methods and cell line useful for production of recombinant adeno-associated viruses
EP1080218A1 (en) 1998-05-27 2001-03-07 University of Florida Method of preparing recombinant adeno-associated virus compositions by using an iodixanol gradient
AU780231B2 (en) 1998-11-10 2005-03-10 University Of North Carolina At Chapel Hill, The Virus vectors and methods of making and administering the same
ES2478635T3 (es) 1999-08-09 2014-07-22 Targeted Genetics Corporation Incremento de la expresión de una secuencia de nucleótidos heteróloga monocatenaria de vectores virales recombinantes diseñando la secuencia de modo que forma pares de bases intracatenarios
ATE438414T1 (de) 2000-06-01 2009-08-15 Univ North Carolina Verfahren und zusammensetzungen zur kontrollierter abgabe von rekombinant parvovirus vektoren
CA2442670A1 (en) 2001-04-13 2002-10-24 The Trustees Of The University Of Pennsylvania Method of treating or retarding the development of blindness
ES2258601T3 (es) 2001-11-13 2006-09-01 The Trustees Of The University Of Pennsylvania Un metodo para la identificacion de las secuencias desconocidas del virus adeno-asociado (vaa) y un kit para el metodo.
EP3517134B1 (en) 2001-12-17 2024-01-17 The Trustees of the University of Pennsylvania Adeno-associated virus (aav) serotype 8 sequences, vectors containing same and uses therefor
US20070015238A1 (en) 2002-06-05 2007-01-18 Snyder Richard O Production of pseudotyped recombinant AAV virions
AU2003301148A1 (en) 2002-12-23 2004-07-22 Vical Incorporated Codon-optimized polynucleotide-based vaccines against human cytomegalovirus infection
EP1486567A1 (en) 2003-06-11 2004-12-15 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Improved adeno-associated virus (AAV) vector for gene therapy
CN1856576B (zh) 2003-09-30 2011-05-04 宾夕法尼亚州立大学托管会 腺伴随病毒(aav)进化支、序列、含有这些序列的载体及它们的应用
US7422840B2 (en) 2004-11-12 2008-09-09 E.I. Du Pont De Nemours And Company Apparatus and process for forming a printing form having a cylindrical support
EP2359865B1 (en) 2005-04-07 2013-10-02 The Trustees of The University of Pennsylvania Method of increasing the function of an AAV vector
WO2006132118A1 (ja) 2005-06-09 2006-12-14 Matsushita Electric Industrial Co., Ltd. 振幅誤差補償装置及び直交度誤差補償装置
EP2007795B1 (en) 2006-03-30 2016-11-16 The Board Of Trustees Of The Leland Stanford Junior University Aav capsid proteins
US20100081707A1 (en) * 2008-02-21 2010-04-01 Ali Robin R Devices and methods for delivering polynucleotides into retinal cells of the macula and fovea
US7561972B1 (en) 2008-06-06 2009-07-14 Dna Twopointo, Inc. Synthetic nucleic acids for expression of encoded proteins
US7561973B1 (en) 2008-07-31 2009-07-14 Dna Twopointo, Inc. Methods for determining properties that affect an expression property value of polynucleotides in an expression system
AU2011238708B2 (en) 2010-03-29 2016-02-11 The Trustees Of The University Of Pennsylvania Pharmacologically Induced Transgene Ablation system
US9315825B2 (en) 2010-03-29 2016-04-19 The Trustees Of The University Of Pennsylvania Pharmacologically induced transgene ablation system
WO2012158757A1 (en) 2011-05-16 2012-11-22 The Trustees Of The University Of Pennsylvania Proviral plasmids for production of recombinant adeno-associated virus
CA2868398A1 (en) * 2012-04-02 2013-10-10 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
AU2013287281B2 (en) 2012-07-11 2018-04-26 The Trustees Of The University Of Pennsylvania AAV-mediated gene therapy for RPGR x-linked retinal degeneration
WO2015012924A2 (en) 2013-04-29 2015-01-29 The Trustees Of The University Of Pennsylvania Tissue preferential codon modified expression cassettes, vectors containing same, and use thereof
US10000741B2 (en) * 2014-03-17 2018-06-19 Adverum Biotechnologies, Inc. Compositions and methods for enhanced gene expression in cone cells
EP3137497B1 (en) * 2014-05-02 2021-04-07 Genzyme Corporation Aav vectors for retinal and cns gene therapy
RU2764920C2 (ru) * 2016-07-08 2022-01-24 Зе Трастис Оф Зе Юниверсити Оф Пенсильвания Способы и композиции для лечения нарушений и заболеваний, связанных с rdh12

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160015288A1 (en) * 2009-09-15 2016-01-21 Jay Neitz Reagents and methods for modulating cone photoreceptor activity
WO2015075154A2 (en) * 2013-11-20 2015-05-28 Fondazione Telethon Artificial dna-binding proteins and uses thereof
WO2016019364A1 (en) * 2014-08-01 2016-02-04 The Trustees Of The University Of Pennsylvania Compositions and methods for self-regulated inducible gene expression

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEUNG-AH LEE等: "Overproduction of Bioactive Retinoic Acid in Cells Expressing Disease-associated Mutants of Retinol Dehydrogenase 12", 《THE JOURNAL OF BIOLOGICAL CHEMISTRY》 *

Also Published As

Publication number Publication date
RU2019103488A (ru) 2020-08-10
KR20230062878A (ko) 2023-05-09
BR112019000171A2 (pt) 2019-10-01
RU2019103488A3 (zh) 2021-02-04
US20230009257A1 (en) 2023-01-12
RU2764920C2 (ru) 2022-01-24
JP2019524090A (ja) 2019-09-05
IL297095A (en) 2022-12-01
WO2018009814A1 (en) 2018-01-11
JP2022106918A (ja) 2022-07-20
US20230132391A9 (en) 2023-04-27
IL264070B2 (en) 2023-03-01
CA3029646A1 (en) 2018-01-11
EP3481958A4 (en) 2019-12-25
AU2017292010A1 (en) 2019-01-24
US11197936B2 (en) 2021-12-14
JP7101656B2 (ja) 2022-07-15
KR20190034221A (ko) 2019-04-01
US20190151473A1 (en) 2019-05-23
US20230037283A9 (en) 2023-02-02
IL264070A (en) 2019-01-31
IL264070B (en) 2022-11-01
AU2023251411A1 (en) 2023-11-09
AU2017292010B2 (en) 2023-07-27
US20220118110A1 (en) 2022-04-21
KR102526506B1 (ko) 2023-05-03
US20220118111A1 (en) 2022-04-21
EP3481958A1 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
US20220118111A1 (en) Methods and Compositions for Treatment of Disorders and Diseases Involving RDH12
RU2762747C2 (ru) Генная терапия офтальмологических нарушений
US20170348387A1 (en) Aav-mediated gene therapy for nphp5 lca-ciliopathy
US20210060176A1 (en) Methods and compositions for treatment of ocular disorders and blinding diseases
US20230233709A1 (en) Gene therapy for ocular disorders
JP2023116709A (ja) 眼疾患のための遺伝子療法
JP7285022B2 (ja) 組換えヒトII型ミトコンドリアダイニン様GTPaseの遺伝子配列及びその使用
WO2018218359A1 (en) Gene therapy for treating peroxisomal disorders
US20220143217A1 (en) Neuroprotective gene therapy targeting the akt pathway

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40013460

Country of ref document: HK