CN110190195A - 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法 - Google Patents

一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法 Download PDF

Info

Publication number
CN110190195A
CN110190195A CN201910406992.0A CN201910406992A CN110190195A CN 110190195 A CN110190195 A CN 110190195A CN 201910406992 A CN201910406992 A CN 201910406992A CN 110190195 A CN110190195 A CN 110190195A
Authority
CN
China
Prior art keywords
perovskite
layer
multifunction device
preparation
ometad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910406992.0A
Other languages
English (en)
Other versions
CN110190195B (zh
Inventor
严克友
谢江生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Zhida Yinowei Technology Co ltd
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910406992.0A priority Critical patent/CN110190195B/zh
Publication of CN110190195A publication Critical patent/CN110190195A/zh
Priority to PCT/CN2020/090745 priority patent/WO2020228832A1/zh
Priority to US17/608,983 priority patent/US20220231242A1/en
Application granted granted Critical
Publication of CN110190195B publication Critical patent/CN110190195B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种基于复合界面传输材料的钙钛矿光伏‑发光‑光探测多功能器件及其制备方法。所述多功能器件包括从下至上依次层叠设置的透明导电玻璃、复合电子传输层、钙钛矿活性层、复合空穴传输层和金属电极层。本发明是利用多元界面传输材料的复合调整界面传输层的功函数,让电子传输层和空穴传输层的功函数分别与钙钛矿活性层的导带和价带位置拉平。经实验结果对比,能带调控后的钙钛矿多功能器件光电转换效率和发光效率都有了明显的提升。

Description

一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功 能器件及其制备方法
技术领域
本发明所属钙钛矿光电领域,具体涉及一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法。
背景技术
近年来,有机无机卤化钙钛矿材料具有吸光系数高、载流子寿命长、禁带宽度可调和低成本等诸多优点而成为光电领域的研究热点。由该材料制备得到的太阳能电池和发光二极管都取得了巨大进展,逐渐展现出很好的应用前景。根据美国国家可再生能源实验室(NREL)统计,钙钛矿太阳能电池的最高认证能量转换效率已经达到23.7%。而作为电致发光材料,最新《自然》报道,钙钛矿发光二极管的外量子效率突破了20%。并且器件可以实现光探测功能,能否把多重功能统一起来,即在一个器件上实现多功能,制备出兼具光伏、发光和光探测的钙钛矿多功能器件,使其能够敏感响应光信号,在太阳光照下高效发电,黑暗情况下低能耗发光,是一个极具意义的研究课题。
虽然钙钛矿太阳能电池和发光二极管具有类似的器件结构,但在工作条件下具有相反的光电转换过程。图2b和2c比较了太阳能电池(图2b)、发光二极管(图2c)的能带排布。太阳能电池采用的是交错式能带排列,即钙钛矿活性层的导带高于电子传输层的导带(最低非占有轨道),价带低于空穴传输层的价带(最高占有轨道),见图2b,这种能带结构有利于活性层中的光生载流子有效分离至电子传输层和空穴传输层。而对于发光二极管,能带排列采用的是跨越式排布,即钙钛矿活性层的导带低于电子传输层的导带(最低非占有轨道),价带高于空穴传输层的价带(最高占有轨道),见图2c,这种能带结构有利于电子传输层和空穴传输层向活性层中的注入电荷到钙钛矿活性层,在活性层实现辐射复合发光。对于光探测器,需要降低暗电流等。因此,从能带排布来看,这两种器件的能带排布要求是不太相同的。制备高光电转换效率、高发光效率和高探测灵敏度于一体的钙钛矿多功能器件成为了挑战。
发明内容
针对异质结结构的太阳能电池,发光二极管,光电探测器中,由于不同器件中各个功能层不同的能带排布方式,导致难以在同一器件上同时实现高性能的光伏,发光,光探测性能的问题,本发明旨在提出一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法,通过能带工程消除钙钛矿活性层和传输层的势垒,设计得到如图2a所示的能带结构。该能带结构可以同时有效地提高钙钛矿多功能器件的光伏效率、发光效率和光探测灵敏度。
本发明的目的至少通过以下技术方案之一实现。
一种基于复合界面传输材料的钙钛矿的光伏-发光-光探测多功能器件,所述多功能器件包括从下至上依次层叠设置的透明导电玻璃、复合电子传输层、钙钛矿活性层、复合空穴传输层和金属电极层。
进一步的,所述透明导电电极层为ITO或FTO透明导电玻璃;具体的,透明导电电极的方块电阻为8~15Ω,透光率为85~90%,透明导电玻璃的厚度为1.1~2.2mm。
进一步的,所述金属电极层为金、银、铜或铝。具体通过热蒸镀的方法沉积在空穴传输层上,且其厚度为0.1~1000nm。
进一步的,所述复合电子传输层厚度为5~120nm,所述复合电子传输层为SnO2(Cl):GQDs或TiO2(Cl):GQDs薄膜,具体是包括氨基化的石墨烯量子点,且还包括氯盐制备的二氧化锡或的二氧化钛,且所述氯盐与氨基化的石墨烯量子点的质量比为10:1到1000:1。所述氯盐制备的二氧化锡或二氧化钛是部分Cl残留在SnO2或TiO2。且所述复合电子传输层的厚度为5-120nm。
进一步的,所述的钙钛矿活性层为CH3NH3PbX3、NH2CH2NH3PbX3或CsPbX3中一种或两种以上,且X为I或Br,其厚度为50~600nm。
进一步的,所述的复合空穴传输层为四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-OMeTAD)和2,7-二溴-9,9-双[3-(二甲氨基)丙基]芴(FN-Br)复合构成的spiro-OMeTAD:FN-Br,且spiro-OMeTAD与FN-Br的质量比为10-1000:1,且复合空穴传输层厚度为20~200nm。
进一步的,FN-Br可以被功函数大于5.4的TFB或F8BT取代。
本发明还提供了上述多功能器件的制备方法,包括以下步骤:
(1)透明导电玻璃的清洗
导电玻璃超声清洗,用氮气或者压缩空气将导电玻璃吹干,然后采用紫外光表面清洗处理去除有机物和增加成膜性;
(2)复合电子传输层的制备
制备二氯化锡、四氯化锡或四氯化钛制备前驱体溶液,然后加入氨基化的石墨烯量子点进行混合,将混合溶液旋涂在导电透明玻璃上,然后热处理,待冷却后进行紫外臭氧处理;所述紫外抽样处理形成悬挂键,可以增强后续成膜性;
(3)钙钛矿活性层的制备
将钙钛矿前驱体溶液旋涂在复合电子传输层上,在溶剂未干时滴加反型溶剂继续旋涂,将旋涂好的钙钛矿薄膜热处理;
(4)复合空穴传输层的制备
将spiro-OMeTAD和FN-Br混合溶液旋涂在钙钛矿活性层表面;
(5)金属电极的制备
在真空条件下,在复合空穴传输层上蒸镀金或银,得到所述基于钙钛矿的光伏-发光-光探测多功能器件。
进一步的,在步骤(1)中,导电玻璃依次在去离子水、洗洁精、丙酮、乙醇溶液中超声清洗5~10min,然后用氮气或者压缩空气将ITO或FTO导电玻璃吹干,采用紫外臭氧清洗机处理10~30min。
进一步的,步骤(2)中,具体是将混合溶液涂在导电透明玻璃基底上,转速为2000~5000rpm,旋涂时间为30~60s。最后,将旋涂好的薄膜放在加热台上180~270℃加热0.5~2h,待冷却后放入紫外臭氧中处理5~15min;混合溶液的溶剂为乙醇,且二氯化锡或四氯化锡的浓度为0.1%-10wt%,氨基化的石墨烯量子点的浓度为0.01~1wt%。
进一步的,步骤(3)中,将PbI2、NH2CH2NH3I(或者CH3NH3I等)和DMSO按1:1:1的摩尔比溶解在DMF溶液中,浓度为1.25~1.6mol/ml。溶解后,将钙钛矿前驱体溶液滴在复合电子传输层上,在3000~5000rpm下旋涂,在第20~25s时滴加100~1000μL的乙醚。将旋涂好的钙钛矿薄膜放在100~120℃的加热台上热处理5~30min。
进一步的,步骤(4)中,所述spiro-OMeTAD和FN-Br混合溶液是将spiro-OMeTAD和FN-Br粉末溶解于氯苯中,且spiro-OMeTAD的质量浓度为1~10wt%,FN-Br的质量浓度为0.01~1wt%。且旋涂条件为以3000~5000rpm转速旋涂35-60s。
进一步的,所述反型溶剂为甲苯、氯苯或乙醚。
本发明中的复合电子传输层、钙钛矿活性层和复合空穴传输层能带排布形成如图2a所示,其具体调控思路见图3,核心思路为利用功函数比较大的电子传输材料搭配功函数小的电子传输材料,得到和钙钛矿导带准费米能级拉平,消除复合电子传输层与钙钛矿发光层接触界面的电荷转移势垒,即使该接触界面电子转移势垒为零(见图3虚框),既可以向钙钛矿层注入电子又可以提取电子,其电子、空穴转移界面势垒为零,可以实现电荷注入和提取;还利用功函数比较大的空穴传输材料(如FN-Br)搭配功函数小的空穴传输材料(如spiro-OMeTAD),调整复合材料的功函数,使之与钙钛矿价带准费米能级拉平,消除复合空穴传输层与钙钛矿发光层接触界面的电荷转移势垒,即使该接触界面空穴转移势垒为零(见图3虚框),既可以向钙钛矿层注入空穴又可以提取空穴。这种由多种传输材料复合得到复合电子传输层和复合空穴传输层,搭配上钙钛矿活性层,获得高综合性能钙钛矿多功能器件,使器件形成了如图2a所示的接近电荷转移零势垒的能带结构排布,从而抑制了非辐射复合,最终大幅度提高了钙钛矿多功能器件的光电转换效率、发光效率和光探测性能。
与现有技术相比,本发明具有以下有益的技术效果:
和普通的钙钛矿太阳能电池和发光二极管相比,本发明的不同之处在于通过消除钙钛矿活性层和传输层之间的能带势垒,从而可以在外加电压下实现电荷注入到活性层,也可以在光照条件下实现从活性层提取电荷,制备出高光电转换效率、高发光效率、高探测灵敏度于一体的钙钛矿多功能器件。
关键技术在于利用复合电子/空穴材料实现能带调控,分别通过对多元电子传输材料和空穴传输材料进行掺杂复合,有效地调控电子传输层和空穴传输层的功函数,从而有效地消除了钙钛矿和传输层之间的界面势垒,抑制界面处的非辐射复合。经实验结果对比,能带调控后的钙钛矿多功能器件光电转换效率(20.45%)和发光效率(EQE,4.3%)都有了明显的提升。
附图说明
图1为本发明中基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件的结构图;
图2a为本发明中钙钛矿多功能器件能带结构原理图;
图2b为太阳能电池的能带结构原理图;
图2c为发光二极管的能带结构原理图;
图3为本发明实施1例中所述的钙钛矿多功能器件结构和工作原理图;
图4为本发明实施1例中所述的钙钛矿多功能器件电子传输层和空穴传输层的能带图;
图5为本发明实施1例中所述的钙钛矿多功能器件在AM1.5光照下的I-V曲线图;
图6为本发明实施1例中所述的钙钛矿多功能器件在AM1.5光照下的光响应图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释但不限于此。
实施例1
如图1所示,一种基于钙钛矿的光的光伏-发光-光探测多功能器件包括从下至上依次层叠的透明导电玻璃、复合电子传输层、钙钛矿活性层、复合空穴传输层和金属电极层。
所述基于钙钛矿的光的光伏-发光-光探测多功能器件的制备方法包括以下步骤:
(1)ITO玻璃的清洗:选择方块电阻为10Ω,透光率90%,厚度为1.1mm的ITO玻璃,将ITO导电玻璃依次在去离子水、洗洁精、丙酮、乙醇溶液中超声清洗5min,然后用氮气将ITO玻璃吹干,采用紫外臭氧清洗机处理20min。
(2)复合电子传输层的制备:将23mg的SnCl2·2H2O和0.4mg的氨基化石墨烯量子点溶解在1mL的乙醇溶液中(氨基化石墨烯量子点的浓度为0.05wt%,氯化亚锡的浓度为2.4wt%,二氯化锡与氨基化石墨烯量子点的质量比为190:4),溶解完全后将溶液旋涂在ITO基底上,转速为3000rpm,旋涂时间为30s。最后,将旋涂好的薄膜放在加热台上230℃加热1小时,待冷却后放入紫外臭氧中处理5min形成所述复合电子传输层,所述复合电子传输层的厚度为40nm;
(3)钙钛矿薄膜的制备:将PbI2、CH3NH3I和DMSO按1:1:1的摩尔比溶解在DMF中得到浓度为1.45mol/ml的钙钛矿前驱体溶液。待完全溶解后,将钙钛矿前驱体溶液滴在SnO2上。在1000rpm下旋涂10s后加速至5000rpm,在第20~22s时滴加600μL的乙醚。将旋涂好的钙钛矿薄膜放在100℃的加热台上热处理10min。
(4)复合空穴传输层的制备:将24mg spiro-OMeTAD、0.05mg FK209和1mg FN-Br粉末溶解于1mL的氯苯溶剂中(spiro-OMeTAD的质量浓度为2.1%,FN-Br的质量浓度为0.09%,spiro-OMeTAD与FN-Br的质量比为24:1,)。最后将spiro-OMeTAD混合溶液滴在钙钛矿薄膜表面,以3000rpm转速旋涂35s,所述复合空穴传输层的厚度为60nm;
(5)金属电极的制备:在1.0×10-3Pa的真空条件下,在spiro-OMeTAD薄膜上蒸镀金,制得厚度为100nm的金属电极;
完成上述步骤后得到所述基于钙钛矿的光的光伏-发光-光探测多功能器件。
在本实例中得到的钙钛矿多功能器件的性能如图4所示。图4中的(a)为复合电子传输层的能带图,图4中的(b)为复合空穴传输层的能带图,掺入氨基化石墨烯量子点后,SnO2电子传输层的功函数从4.45eV降低至4.25eV。掺入FN-Br后,spiro-OMeTAD的功函数从4.5eV提高至5.1eV。该多功能器件的光电效率反扫为21.54%,正扫为20.88%,如图所示5。优化前后器件的发光效率分别为0.2%和4.3%,如图6中的(a)所示,图6中的(b)为多功能器件的荧光发光谱,发光峰位为772nm。
实施例2
本实施例中,所用透明电极为FTO导电玻璃。其他步骤与实施例1相同,光电效率反扫为20.8%,正扫为20.2%。发光效率为1.8%。
实施例3
一种基于钙钛矿的光的光伏-发光-光探测多功能器件,其制备方法包括以下步骤:
(1)ITO玻璃的清洗:选择方块电阻为10Ω,透光率90%,厚度为1.1mm的ITO玻璃,将ITO导电玻璃依次在去离子水、洗洁精、丙酮、乙醇溶液中超声清洗5min,然后用氮气将ITO玻璃吹干,采用紫外臭氧清洗机处理20min。
(2)复合电子传输层的制备:将23mg的SnCl2·2H2O,0.5mg的氨基化的石墨烯量子点溶解在1mL的乙醇溶液中(氨基化石墨烯量子点的浓度为0.06wt%,氯化亚锡的浓度为2.4wt%,二氯化锡与氨基化石墨烯量子点的质量比为38:1),溶解完全后将溶液旋涂在ITO基底上,转速为3000rpm,旋涂时间为30s。最后,将旋涂好的薄膜放在加热台上200℃加热1小时,待冷却后放入紫外臭氧中处理5min,所述复合电子传输层的厚度为40nm;
(3)钙钛矿薄膜的制备:将PbI2、NH2CH2NH3I(或者CH3NH3I等)和DMSO按1:1:1的摩尔比溶解在DMF溶液中,浓度为1.45mol/ml。待溶液完全溶解后,将钙钛矿前驱体溶液滴在SnO2上。在1000rpm下旋涂10s后加速至5000rpm,在第20~22s时滴加600μL的乙醚。将旋涂好的钙钛矿薄膜放在100℃的加热台上热处理10min。
(4)复合空穴传输层的制备:将75mg spiro-OMeTAD,0.05mg FK209和2mg FN-Br粉末溶解于1mL的氯苯溶剂中(spiro-OMeTAD的质量浓度为6.3%,FN-Br的质量浓度为0.17%,spiro-OMeTAD与FN-Br的质量比为75:2)。最后将Spiro-OMeTAD混合溶液滴在钙钛矿薄膜表面,以3000rpm转速旋涂35s,所述复合空穴传输层的厚度为200nm;
(5)金属电极的制备:在1.0×10-3Pa的真空条件下,在spiro-OMeTAD薄膜上蒸镀金,制得厚度为100nm的金属电极;
完成上述步骤后得到所述基于钙钛矿的光的光伏-发光-光探测多功能器件。
在本实例中得到的钙钛矿多功能器件的光电效率反扫为20.7%,正扫为20.4%。发光效率为4.2%。
实施例4
本实施例中,SnO2的热处理温度为230℃。其他步骤与实施例3相同,在本实例中得到的钙钛矿多功能器件的光电效率反扫为21.1%,正扫为20.7%,发光效率为2.9%。
实施例5
本实施例中,将75mg spiro-OMeTAD,0.05mg FK209和0.75mg FN-Br粉末溶解于1mL的氯苯溶剂中(经计算,spiro-OMeTAD的质量浓度为6.3%,FN-Br的质量浓度为0.063%,spiro-OMeTAD与FN-Br的质量比为100:1)。其他步骤与实施例3相同,在本实例中得到的钙钛矿多功能器件的光电效率反扫为21.3%,正扫为20.1%,发光效率为2.2%。
实施例6
本实施例中,将10mg氨基化石墨烯量子点和100mg二氯化锡溶于1mL乙醇溶液中。将2mg FN-Br和100mg spiro-OMeTAD溶于1mL氯苯(计算得出氨基化石墨烯的浓度为0.01wt%,二氯化锡的浓度为0.1wt%,二氯化锡与氨基化石墨烯量子点的质量比为10:1,FN-Br的浓度为0.16wt%,spiro-OMeTAD的浓度为8.3wt%,且spiro-OMeTAD与FN-Br的质量比为50:1)。其他步骤与实施例3相同,在本实例中得到的钙钛矿多功能器件的光电效率反扫为20.4%,正扫为19.6%,发光效率为2.8%。
实施例7
本实施例中,将0.09mg氨基化石墨烯量子点和910mg二氯化锡溶于1mL乙醇溶液中,将12.3mgFN-Br和123mg spiro-OMeTAD溶于1mL氯苯(经计算,该实施例中氨基化石墨烯的浓度为0.01wt%,二氯化锡的浓度为10wt%,二者的质量比为1:1000,spiro-OMeTAD的浓度为10wt%,FN-Br的浓度为1wt%,二者的质量比为10:1),其他步骤与实施例3相同,在本实例中得到的钙钛矿多功能器件的光电效率反扫为20.1%,正扫为19.3%,发光外量子效率为2.1%。。
实施例8
本实施例中,将9mg氨基化石墨烯量子点和91mg二氯化锡溶于1mL乙醇溶液中,将0.123mg FN-Br和123mg spiro-OMeTAD溶于1mL氯苯(经计算,该实施例中氨基化石墨烯的浓度为1wt%,二氯化锡的浓度为10wt%,二者的质量比为1:10,spiro-OMeTAD的浓度为10wt%,FN-Br的浓度为0.01wt%,二者的质量比为1000:1),其他步骤与实施例3相同,在本实例中得到的钙钛矿多功能器件的光电效率反扫为19.8%,正扫为19.0%,发光效率为1.9%。
对比例1
本实施例中,在空穴传输层制备中不添加FN-Br,其他步骤与实施例1相同。所得到器件的性能结果见图5和6,光电效率反扫为17.4%,正扫为低于15%,发光效率仅为0.2%。
对比例2
本实施例中,在电子传输层制备中不添加石墨烯量子点,其他步骤与实施例1相同。所得到器件的性能结果见图5和6,光电效率反扫为20.2%,正扫为低于19.5%,发光效率仅为1.7%。
以上所述的具体实施例,对本发明的技术方案和有益效果进行了详细说明,所应理解的是,所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于复合界面传输材料的钙钛矿的光伏-发光-光探测多功能器件,其特征在于,所述多功能器件包括从下至上依次层叠设置的透明导电电极层、复合电子传输层、钙钛矿活性层、复合空穴传输层和金属电极层。
2.如权利要求1所述多功能器件,其特征在于,所述透明导电电极层为ITO或FTO透明导电玻璃;所述金属电极层为金、银、铜或铝。
3.如权利要求1所述多功能器件,其特征在于,所述复合电子传输层厚度为5~120 nm,所述复合电子传输层材料为氨基化的石墨烯量子点,且还包括氯盐制备的二氧化锡或二氧化钛,且所述氯盐与氨基化的石墨烯量子点的质量比为10:1到1000:1。
4.如权利要求1所述多功能器件,其特征在于,所述钙钛矿活性层为CH3NH3PbX3、NH2CH2NH3PbX3或CsPbX3中一种或两种以上,且X为I或Br;所述钙钛矿活性层的厚度为50-600nm。
5.如权利要求1所述多功能器件,其特征在于,所述复合空穴传输层厚度为20~200 nm,且所述复合空穴传输层为spiro-OMeTAD和FN-Br复合构成的spiro-OMeTAD:FN-Br,且spiro-OMeTAD与FN-Br的质量比为10-1000:1。
6.如权利要求5所述多功能器件,其特征在于,所述复合空穴传输层材料中FN-Br被功函数大于5.4 eV的TFB或F8BT取代。
7.权利要求1-6任一项所述多功能器件的制备方法,其特征在于,包括以下步骤:
(1)透明导电玻璃的清洗
导电玻璃超声清洗,用氮气或者压缩空气将导电玻璃吹干,然后采用紫外光表面清洗处理去除有机物和增加成膜性;
(2)复合电子传输层的制备
将二氯化锡、四氯化锡或四氯化钛制备前驱体溶液,然后加入氨基化的石墨烯量子点进行混合,将混合溶液旋涂在导电透明玻璃上,然后热处理,待冷却后进行紫外臭氧处理,臭氧处理形成悬挂键可以增强后续成膜性;
(3)钙钛矿活性层的制备
将钙钛矿前驱体溶液旋涂在复合电子传输层上,在溶剂未干时滴加反型溶剂继续旋涂,将旋涂好的钙钛矿薄膜热处理;
(4)复合空穴传输层的制备
将spiro-OMeTAD和FN-Br的混合溶液旋涂在钙钛矿活性层表面;
(5)金属电极的制备
在真空条件下,在复合空穴传输层上蒸镀金或银,得到所述基于钙钛矿的光伏-发光-光探测多功能器件。
8.如权利要求7所述的制备方法,其特征在于,所述前驱体溶液中溶剂为乙醇,且二氯化锡或四氯化锡的浓度为0.1%-10wt%,氨基化的石墨烯量子点的浓度为0.01~1wt%;且步骤(2)中热处理为180~270 °C加热0.5~2 h,紫外臭氧处理5~15 min。
9.如权利要求7所述的制备方法,其特征在于,所述spiro-OMeTAD和FN-Br混合溶液是将spiro-OMeTAD和FN-Br粉末溶解于氯苯中,且spiro-OMeTAD的浓度为1~10wt%,FN-Br的浓度为0.01~1wt%。
CN201910406992.0A 2019-05-16 2019-05-16 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法 Active CN110190195B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910406992.0A CN110190195B (zh) 2019-05-16 2019-05-16 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法
PCT/CN2020/090745 WO2020228832A1 (zh) 2019-05-16 2020-05-18 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法
US17/608,983 US20220231242A1 (en) 2019-05-16 2020-05-18 Composite interface transport material-based perovskite photovoltaic, light emission and light detection multi-functional device and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910406992.0A CN110190195B (zh) 2019-05-16 2019-05-16 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法

Publications (2)

Publication Number Publication Date
CN110190195A true CN110190195A (zh) 2019-08-30
CN110190195B CN110190195B (zh) 2021-03-30

Family

ID=67716551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910406992.0A Active CN110190195B (zh) 2019-05-16 2019-05-16 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法

Country Status (3)

Country Link
US (1) US20220231242A1 (zh)
CN (1) CN110190195B (zh)
WO (1) WO2020228832A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739399A (zh) * 2019-10-24 2020-01-31 昆明物理研究所 柔性垂直结构npb/氮掺杂石墨烯纳米异质结紫外探测器及其制备方法
CN111430558A (zh) * 2020-03-19 2020-07-17 电子科技大学 一种基于钙钛矿材料掺杂结构的双功能器件及其制备方法
CN111490163A (zh) * 2020-04-15 2020-08-04 电子科技大学 一种基于me-bt复合空穴传输层的钙钛矿光电探测器及其制备方法
WO2020228832A1 (zh) * 2019-05-16 2020-11-19 华南理工大学 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法
CN112259688A (zh) * 2020-10-12 2021-01-22 隆基绿能科技股份有限公司 一种太阳能电池、太阳能电池的制备方法和光伏组件
CN112599646A (zh) * 2020-12-25 2021-04-02 惠州学院 一种全光谱光电双通道器件及其制备方法和应用
CN113097388A (zh) * 2021-04-02 2021-07-09 福州大学 一种基于复合电子传输层的钙钛矿电池及其制备方法
CN113097386A (zh) * 2021-03-31 2021-07-09 合肥工业大学 一种具有高效电荷提取的复合电子传输层及其在钙钛矿太阳能电池中的应用
CN113421934A (zh) * 2021-06-16 2021-09-21 青岛科技大学 一种钙钛矿吸光层材料及方法
WO2023103650A1 (zh) * 2021-12-08 2023-06-15 宁德时代新能源科技股份有限公司 钙钛矿太阳能电池和光伏组件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540358B (zh) * 2021-06-28 2023-04-25 苏州大学 一种无铅锡基钙钛矿室内光伏器件及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1579023A (zh) * 2001-06-11 2005-02-09 普林斯顿大学理事会 有机光生伏打器件
CN101048887A (zh) * 2004-10-28 2007-10-03 皇家飞利浦电子股份有限公司 具有发光电荷传输层的发光二极管
EP2194055A1 (en) * 2008-12-03 2010-06-09 Novaled AG Bridged pyridoquinazoline or phenanthroline compounds and organic semiconducting material comprising that compound
US20140374728A1 (en) * 2012-01-26 2014-12-25 Universal Display Corporation Phosphorescent organic light emitting devices having a hole transporting cohost material in the emissive region
CN105449110A (zh) * 2015-12-28 2016-03-30 Tcl集团股份有限公司 基于有机无机复合传输层的量子点发光二极管及制备方法
CN107482120A (zh) * 2017-07-12 2017-12-15 北京科技大学 一种基于复合电子传输层的钙钛矿电池及制备方法
CN107501269A (zh) * 2017-08-08 2017-12-22 华中科技大学 有机脒分子n型掺杂剂及其在半导体光电器件中的应用
US9978974B2 (en) * 2016-08-10 2018-05-22 Samsung Display Co., Ltd. Light-emitting device
CN108461637A (zh) * 2018-03-13 2018-08-28 常州大学 一种用于聚合物太阳能电池电子传输层的杂化物及其制备方法
WO2018234878A1 (en) * 2017-06-23 2018-12-27 King Abdullah University Of Science And Technology HOLES LOCKING LAYERS FOR ELECTRONIC DEVICES AND METHOD FOR PRODUCING AN ELECTRONIC DEVICE HAVING A HOLES LOCKING LAYER
CN109473559A (zh) * 2018-10-19 2019-03-15 京东方科技集团股份有限公司 一种电致发光器件及其制作方法、显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573791B (zh) * 2014-08-05 2019-03-15 韩国化学研究院 无机、有机杂化钙钛矿化合物膜的制备方法
CN108389977B (zh) * 2018-04-26 2022-02-11 西南石油大学 一种钙钛矿太阳能电池及其制备方法
CN109638165B (zh) * 2018-12-17 2020-06-23 深圳大学 一种多功能的光电子器件
CN110190195B (zh) * 2019-05-16 2021-03-30 华南理工大学 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1579023A (zh) * 2001-06-11 2005-02-09 普林斯顿大学理事会 有机光生伏打器件
CN101048887A (zh) * 2004-10-28 2007-10-03 皇家飞利浦电子股份有限公司 具有发光电荷传输层的发光二极管
EP2194055A1 (en) * 2008-12-03 2010-06-09 Novaled AG Bridged pyridoquinazoline or phenanthroline compounds and organic semiconducting material comprising that compound
US20140374728A1 (en) * 2012-01-26 2014-12-25 Universal Display Corporation Phosphorescent organic light emitting devices having a hole transporting cohost material in the emissive region
CN105449110A (zh) * 2015-12-28 2016-03-30 Tcl集团股份有限公司 基于有机无机复合传输层的量子点发光二极管及制备方法
US9978974B2 (en) * 2016-08-10 2018-05-22 Samsung Display Co., Ltd. Light-emitting device
WO2018234878A1 (en) * 2017-06-23 2018-12-27 King Abdullah University Of Science And Technology HOLES LOCKING LAYERS FOR ELECTRONIC DEVICES AND METHOD FOR PRODUCING AN ELECTRONIC DEVICE HAVING A HOLES LOCKING LAYER
CN107482120A (zh) * 2017-07-12 2017-12-15 北京科技大学 一种基于复合电子传输层的钙钛矿电池及制备方法
CN107501269A (zh) * 2017-08-08 2017-12-22 华中科技大学 有机脒分子n型掺杂剂及其在半导体光电器件中的应用
CN108461637A (zh) * 2018-03-13 2018-08-28 常州大学 一种用于聚合物太阳能电池电子传输层的杂化物及其制备方法
CN109473559A (zh) * 2018-10-19 2019-03-15 京东方科技集团股份有限公司 一种电致发光器件及其制作方法、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANGSHENG XIE等: "Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells", 《ACS NANO》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020228832A1 (zh) * 2019-05-16 2020-11-19 华南理工大学 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法
CN110739399A (zh) * 2019-10-24 2020-01-31 昆明物理研究所 柔性垂直结构npb/氮掺杂石墨烯纳米异质结紫外探测器及其制备方法
CN111430558A (zh) * 2020-03-19 2020-07-17 电子科技大学 一种基于钙钛矿材料掺杂结构的双功能器件及其制备方法
CN111490163A (zh) * 2020-04-15 2020-08-04 电子科技大学 一种基于me-bt复合空穴传输层的钙钛矿光电探测器及其制备方法
CN111490163B (zh) * 2020-04-15 2023-09-12 电子科技大学 一种基于me-bt复合空穴传输层的钙钛矿光电探测器及其制备方法
CN112259688A (zh) * 2020-10-12 2021-01-22 隆基绿能科技股份有限公司 一种太阳能电池、太阳能电池的制备方法和光伏组件
CN112599646B (zh) * 2020-12-25 2022-12-16 惠州学院 一种全光谱光电双通道器件及其制备方法和应用
CN112599646A (zh) * 2020-12-25 2021-04-02 惠州学院 一种全光谱光电双通道器件及其制备方法和应用
CN113097386A (zh) * 2021-03-31 2021-07-09 合肥工业大学 一种具有高效电荷提取的复合电子传输层及其在钙钛矿太阳能电池中的应用
CN113097388A (zh) * 2021-04-02 2021-07-09 福州大学 一种基于复合电子传输层的钙钛矿电池及其制备方法
CN113097388B (zh) * 2021-04-02 2024-02-13 厦门中科晏阳新材料有限公司 一种基于复合电子传输层的钙钛矿电池及其制备方法
CN113421934A (zh) * 2021-06-16 2021-09-21 青岛科技大学 一种钙钛矿吸光层材料及方法
WO2023103650A1 (zh) * 2021-12-08 2023-06-15 宁德时代新能源科技股份有限公司 钙钛矿太阳能电池和光伏组件

Also Published As

Publication number Publication date
CN110190195B (zh) 2021-03-30
WO2020228832A1 (zh) 2020-11-19
US20220231242A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
CN110190195A (zh) 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法
AU2016275302B2 (en) Multijunction photovoltaic device
EP1909341A1 (en) Organic power generating device
EP2999017B1 (en) Organic photovoltaic cell
CN112018209B (zh) 一种钙钛矿-硅异质结叠层太阳能电池及其制作方法
JP2015515749A (ja) 有機分子によりドープされた金属酸化物電荷輸送材料
CN105118921B (zh) 一种高外量子效率和宽光谱响应的有机光电探测器及其制备方法
Fu et al. High performance photomultiplication perovskite photodetectors with PC60BM and NPB as the interlayers
Gil-Escrig et al. Interface engineering in efficient vacuum deposited perovskite solar cells
CN106025078B (zh) 一种平面异质结钙钛矿光伏电池及其制备方法
KR102106643B1 (ko) 페로브스카이트 태양전지의 제조 방법 및 이를 이용한 페로브스카이트 태양전지
GB2566293A (en) Multi-junction photovoltaic device
Bai et al. Bright prospect of using alcohol-soluble Nb2O5 as anode buffer layer for efficient polymer solar cells based on fullerene and non-fullerene acceptors
CN109166972A (zh) 一种双缓冲层钙钛矿太阳能电池制造方法
CN102280590A (zh) 一种基于胶体量子点及石墨烯为光阳极的太阳电池及其制备方法
WO2012160911A1 (ja) 有機発電素子
JP5805394B2 (ja) 有機薄膜太陽電池の製造方法
CN107154461B (zh) 基于紫外光屏蔽层的钙钛矿光伏电池
CN109326718A (zh) 一种双缓冲层钙钛矿太阳能电池制造方法
KR101791801B1 (ko) 칼코겐원소로 개질된 n형 반도체를 갖는 페로브스카이트 태양전지 및 그 제조방법
Lin et al. Enhancing conversion efficiency of inverted organic solar cells using Ag nanoparticles and long wavelength absorbing tin (II) phthalocyanine
EP2787547A1 (en) Polymer solar cell and method for preparing same
EP2538452A2 (en) All-solid-state heterojunction solar cell
CN111106250A (zh) 一种具有纳米二氧化钛/聚氨酯保护层的钙钛矿太阳能电池
Liu et al. Improvement in sensitivity of an indirect-type organic X-ray detector using an amorphous IGZO interfacial layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220705

Address after: 519000 room 2204, 22 / F, building 1, Meixi Commercial Plaza, No. 168, Youxing Road, Xiangzhou District, Zhuhai City, Guangdong Province

Patentee after: Guangdong Zhida yinowei Technology Co.,Ltd.

Address before: 510640 No. five, 381 mountain road, Guangzhou, Guangdong, Tianhe District

Patentee before: SOUTH CHINA University OF TECHNOLOGY