CN110186887B - TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法 - Google Patents

TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法 Download PDF

Info

Publication number
CN110186887B
CN110186887B CN201910466701.7A CN201910466701A CN110186887B CN 110186887 B CN110186887 B CN 110186887B CN 201910466701 A CN201910466701 A CN 201910466701A CN 110186887 B CN110186887 B CN 110186887B
Authority
CN
China
Prior art keywords
film
solution
tio
spinning solution
tio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910466701.7A
Other languages
English (en)
Other versions
CN110186887A (zh
Inventor
韩晓建
王浩
张晓丽
焦晨璐
邱琳琳
杨光道
王健
梅毓
刘陶
李彦君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Jiandao New Material Technology Co ltd
Anhui Agricultural University AHAU
Original Assignee
Nanjing Jiandao New Material Technology Co ltd
Anhui Agricultural University AHAU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Jiandao New Material Technology Co ltd, Anhui Agricultural University AHAU filed Critical Nanjing Jiandao New Material Technology Co ltd
Publication of CN110186887A publication Critical patent/CN110186887A/zh
Application granted granted Critical
Publication of CN110186887B publication Critical patent/CN110186887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/40Cellulose acetate
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/82Textiles which contain different kinds of fibres
    • D06P3/8204Textiles which contain different kinds of fibres fibres of different chemical nature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开一种TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法,其特征在于,包括以下步骤:(1)配置PU/CA混合纺丝溶液;(2)将TiO2加入至步骤(1)的PU/CA混合纺丝溶液中;(3)将Ag+溶液加入至步骤(2)的溶液中;(4)对步骤(3)的溶液进行静电纺丝,得到TiO2/Ag+/PU/CA薄膜;(5)用N719钌染料溶液对步骤(4)中的薄膜进行浸泡整理,得到N719改性TiO2/Ag+PU/CA薄膜;(6)干燥后,得产物。本发明的多元荧光薄膜具有成型良好,细度均价,具有比表面积大、检测荧光猝灭现象来判断金属离子浓度的优点。

Description

TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法
技术领域
本发明涉及功能性纺织制品技术领域,尤其涉及 TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法。
背景技术
重金属汞是一种广泛存在于自然界中金属,主要以金属汞、汞盐和有机汞三种形式存在,而大多数汞盐都是剧毒物质,存在于水体中,可在环境中在动植物体内形成富集,误食容易使人体慢性神经中毒,严重者甚至死亡,危害严重。但日常生活中,人们不易发现的Hg2+存在,所以导致许多的汞误食现象,例如饮用水中的Hg2+,食物中所携带的Hg2+富集。
据世界卫生组织介绍:单质汞和甲基汞会毒害中央和周围神经系统。吸入汞蒸汽可对神经、消化和免疫系统,以及肺和肾造成损害,后果可能是致命的。汞的无机盐会腐蚀皮肤、眼睛和胃肠道,如果不小心食入,则可能引发肾中毒等症状。在被不同汞化合物的吸入、食入或表皮接触后,可能观察到神经和功能紊乱。症状包括震颤、失眠、记忆力减退、神经肌肉的影响、头痛和认知能力和运动功能障碍。接触空气中单质汞水平 20μg/m3或以上达几年之久的工人,可以观察到中枢神经系统中毒的轻微亚临床症状。对肾脏的影响已有报道,从尿蛋白增加到肾功能衰竭。
目前对Hg2+的检测主要有电化学分析法、中子活性分析法、质谱法和原子光谱法。而原子光谱法主要包括原子吸收光谱法、原子发射光谱法和原子荧光光谱法。
李倩,李红.[Ru2(bpy)4bpib]4+的发光调制性能及在Hg2+检测中的应用 [C].//2009年第十五次全国电化学学术会议论文集。通过研究金属离子、 EDTA、DNA对双核钌配合物[Ru2(bpy)4bpib]4+(bpy=2,2′-联吡啶,bpib=桥联配体1,4-二([1,10]邻菲咯啉[5,6-d]并咪唑-2-yl)苯)的发光调制性能,进而发展了以该双钌(II)配合物及其与DNA间的作用产物为荧光探针的Hg2+检测。
蔡苹,侯敬冉,彭天右等.联吡啶钌-稀土混合金属化合物的荧光性质[J]. 武汉大学学报。通过Ru(bpy)2-BL(ClO4)2为结构单元与稀土化合物合成并表征了3个异核双金属化合物,荧光测试发现在这些双核化合物中,联吡啶钌中心的荧光发射峰强度降低甚至猝灭,而出现稀土中心在近红外区的发射峰。表明:在稀土与钌形成异核的双核化合物中,实现了分子内的能量传递,激发联吡啶钌单元的MLCT以在近红外区得到稀土元素的强激光发射,该类配合物可望作为光转换分子器件的模型。
喻秀.新型汞离子选择性电极的制备及三联吡啶钌在1-丁基-3-甲基咪唑离子液体中的电致化学发光研究[D].四川大学。通过合成了4-(4-N,N 一二甲氦基苯基)-2,6一二苯基吡喃蹋盐,并将其作为敏感材料制备出一种新的汞离子选择性电极。该电极对汞离子具有良好的选择性,在1.0×10-8~ 1.0×10-3mol/L范围内有良好的线性响应关系,能斯特斜率为34mV,检出限为1.0×10-8mol/L,电极在pH范围2.5~7.0响应信号良好,使用寿命大于 30天。
发明内容
本发明旨在公开一种通过检测荧光猝灭现象来判断金属离子浓度的TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法。
本发明通过以下技术手段实现解决上述技术问题的:
一种TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法,包括以下步骤:
(1)配置PU/CA混合纺丝溶液,包括以下步骤:
1)将四氢呋喃、N-N二甲基甲酰胺和氯仿按体积比4.5:4.5:1混合,得到PU溶剂,加入占所述PU溶剂质量比为6%的PU切片,40℃烘箱烘燥2h,制得PU纺丝溶液;
2)将丙酮和二甲基乙酰胺的按质量比2:1混合,得到CA溶剂,加入占CA溶剂质量比15%的CA切片,40℃烘箱烘燥2h,制得CA纺丝溶液;
3)将制得的PU纺丝溶液和CA纺丝溶液按照体积比8:2混合,制得 PU/CA混合纺丝溶液;
(2)将TiO2加入至步骤(1)的PU/CA混合纺丝溶液中;
(3)将Ag+溶液加入至步骤(2)的溶液中;
(4)对步骤(3)的溶液进行静电纺丝,得到TiO2/Ag+/PU/CA薄膜;
(5)用N719钌染料溶液对步骤(4)中的薄膜进行浸泡整理,得到 N719改性TiO2/Ag+/PU/CA薄膜;
(6)干燥后,得产物。
优选地,所述步骤(4)中的PU/CA混合纺丝溶液在电压21kV、极距 18cm、流速2ml/h、直径为0.7mm针头的条件下制成TiO2/Ag+/PU/CA薄膜。
优选地,所述步骤(2)中浸泡整理包括以下步骤:
1)将N719钌染料溶解于无水乙醇中,在40℃温度下、搅拌12h,再避光处理一昼夜,制得5×10-4mol/L的染料溶液;
2)将TiO2/Ag+/PU/CA薄膜从锡纸上揭下来,浸泡到N719钌染料溶液中24h,取出阴干。
优选地,所述步骤(2)中,TiO2按照占据PU/CA混合纺丝溶液其溶质质量的8%混入。
优选地,所述步骤(4)中,Ag+溶液的溶剂为水,Ag+与TiO2的摩尔比2:100。
本发明还公开一种TiO2/Ag+/N719/PU/CA多元荧光薄膜,所述薄膜的荧光强度为1788a.u.、发射波长在608nm。
本发明还公开一种N719改性PU/CA薄膜,所述薄膜的红外光谱中,在1520cm-1处存在酰胺特征吸收峰,在770cm-1处存在N-与过度金属Ru 的配位峰,在2100cm-1处存在N配位的NC的振动峰。
发明还公开一种上述TiO2/Ag+/N719/PU/CA多元显色薄膜在对检测水体Hg2+含量的应用。
优选地,所述Hg2+含量≤1.5mmol/L。
本发明的优点在于:本发明通过对静电混纺含CA材料的PU/CA薄膜的接触角检测,我们发现含有CA材料的薄膜亲水性有了很大的提高,对后道工序的实现提供了前提,而对PU/CA薄膜的电镜扫描则表征了荧光物质载体材料的微观表面结构是由纤维堆砌而成的,且成型良好,细度均价,具有比表面积大的特点,达到利用大比表面积增强荧光性的要求。
本发明的Ag+具有增强N719染料荧光性能的作用,所有可作为荧光增强剂使含N719染料的PU/CA薄膜的荧光性能得以增强。然后将添加了Ag+的含N719染料的PU/CA薄膜作为荧光检测工具检测不同浓度的Hg2+,浓度梯度分别为0mmol/L、0.2mmol/L、0.4mmol/L、0.6mmol/L、0.8mmol/L 和1mmol/L的硝酸汞溶液,实验发现随着Hg2+浓度的增加,荧光逐渐猝灭,具有很好的检测效果,而检测的灵敏度应该在Hg2+浓度在1.5mmol/L以下。
附图说明
图1为本发明中纯PU溶液纺制的薄膜在放大1000倍状态下的扫电镜图。
图2为本发明中纯PU薄膜在放大3000倍状态下的扫电镜图。
图3为本发明中纯PU薄膜在放大5000倍状态下的扫电镜图。
图4为本发明中纯CU薄膜在放大1000倍状态下的扫电镜图。
图5为本发明中纯CU薄膜在放大3000倍状态下的扫电镜图。
图6为本发明中纯CU薄膜在放大5000倍状态下的扫电镜图。
图7为本发明中PU/CA薄膜在放大1000倍状态下的扫电镜图。
图8为本发明中PU/CA薄膜在放大3000倍状态下的扫电镜图。
图9为本发明中PU/CA薄膜在放大5000倍状态下的扫电镜图。
图10为本发明中N719改性PU/CA薄膜在放大1000倍状态下的扫电镜图。
图11为本发明中N719改性PU/CA薄膜在放大3000倍状态下的扫电镜图。
图12为本发明中N719改性PU/CA薄膜在放大5000倍状态下的扫电镜图。
图13为本发明中PU/CA薄膜、N719改性PU/CA薄膜的红外光谱图。
图14为本发明中各种N719改性PU/CA薄膜的荧光强度图。
图15为本发明中TiO2/Ag+/N719/PU/CA多元荧光薄膜其荧光强度随着Hg2+的浓度变化而变化的荧光强度图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
实施例1
静电纺丝溶液制备
PU溶液:将四氢呋喃、N-N二甲基甲酰胺和氯仿体积按4.5:4.5:1的比例混合,加入占溶剂质量比为6%的PU切片,40℃烘箱烘燥2h制得PU 纺丝溶液;
CA溶液:将丙酮和二甲基乙酰胺的质量按2:1的比例混合,加入占溶剂质量比15%的CA切片,40℃烘箱烘燥2h,制得CA纺丝溶液;
PU/CA混合纺丝溶液:将制得的PU和CA溶液体积按8:2的比例混合均匀,制得PU/CA混合纺丝溶液。
实施例2
静电纺丝制备薄膜
PU溶液纺丝:将纺丝液在电压21kV,极距20cm,流速2.5ml/h和直径为0.7mm针头的条件下制成实验所需的薄膜;
CA溶液纺丝:将纺丝液在电压11kV,极距15cm,流速0.2ml/h和直径为0.7mm针头的条件下制成实验所需的薄膜;
PU/CA混合纺丝溶液纺丝:将纺丝液在电压21kV,极距18cm,流速 2ml/h和直径为0.7mm针头的条件下制成实验所需的薄膜。
实施例3
N719钌染料溶液配制与接枝
配制5×10-4mol/L的染料溶液:将N719钌染料溶解于无水乙醇中,在 40℃温度下用磁力搅拌器搅拌12h,再避光处理一昼夜,既可制得 5×10-4mol/L的染料溶液;
将制得的PU/CA薄膜从锡纸上揭下来,剪成面积为2cm2大小的片膜,浸泡到N719钌染料溶液中24h,取出阴干,得到实验用的N719改性PU/CA 薄膜。
实施例4
金属离子添加物
分别在实施例1中的PU/CA混合纺丝溶液中加入TiO2、Cu2+溶液、 Ag+溶液,分别制得含TiO2、TiO2/Cu2+、TiO2/Ag+、TiO2/Cu2+/Ag+的四种 PU/CA薄膜。其中TiO2按照占据PU/CA混合纺丝溶液其溶质质量的8%混入溶液;
Ag+、Cu2+溶液的溶剂为水,Ag+、Cu2+与TiO2的摩尔比均为2:100。
实施例5
荧光淬灭检测
用去离子水配置0.2mmol/L、0.4mmol/L、0.6mmol/L、0.8mmol/L和 1mmol/L的硝酸汞溶液,做荧光检测,取实施例4中的各个PU/CA薄膜,再用其检测Hg+溶液。
实施例6
N719钌染料与PU/CA薄膜的结合牢固
将纺丝溶液用纺丝机纺制的薄膜,用锡纸作为载体接收纤维,纤维堆积一段时间后就形成了薄膜,当厚度达到一定程度后可将薄膜从锡纸上揭下,得到实验用的N719钌染料载体,颜色洁白,手感丰厚。而在N719钌染料中浸泡24小时(避光处理)后的薄膜则被染成紫红色,表明N719钌染料已与薄膜结合在一起。
实施例7
扫描电镜分析
对PU薄膜、CA薄膜、PU/CA薄膜、N719改性PU/CA薄膜分别做扫描电镜,实验测试电压为3kV,放大倍率分别为1000倍、3000倍和5000 倍。如图1-3所示,PU的扫描电镜图中可以清晰看出,纯PU溶液纺制的微纳薄膜虽然有些零散分布的珠粒,但从总体上看成纤效果还是比较良好的,PU薄膜基本上是由一根根的纤维堆砌而成,纤维直径粗细比较均匀,是一张不错的纤维薄膜;如图4-6所示,CA的扫描电镜图可以看出,CA 薄膜纤维直径粗细及不均匀,而且有大量的成片状糊块带,从整体上看纤维直径粗细相差也甚大,成纤效果不是很理想,基于CA薄膜的表面结构较差和脆性较大的缺陷,实验虽然利用其增加薄膜吸水性,但必须考虑整体的结构性能,所以进行配比时的比例应该不能太高而避免影响薄膜的整体性能;如图7-9所示,而PU/CA混纺的薄膜,则较少出现珠粒,且纤维直径粗细均匀,直径均在10nm至100nm之间,大体在50nm左右,条理清晰,所以在此PU/CA(8/2)比例下的薄膜材料的整体成纤性能比单纺PU 材料的成纤性能不仅提高了,而且由于CA材料的加入还有了亲水性能还有很大的提高,符合本次的实验纳米纤维比表面积大和亲水性强的要求;如图10-12所示,在浸泡了N719染料后,PU/CA薄膜仍然结构完好,没有比浸泡之前发生结构变形,说明长时间的浸泡N719染料溶液不会对 PU/CA薄膜结构造成破坏,实验所用的薄膜能很好的体现比表面积大的优良特点。
实施例8
PU/CA薄膜亲水性分析
采用的实验检测方法多与溶液接触有关,所以要求薄膜必须具有较好的亲水性,PU是一种很好的静电纺丝材料,其所纺得的薄膜强度高弹性大,但由于PU是一种化学纤维,分子中缺少亲水性基团,造成了PU材料的亲水性较差,但是CA材料却是由天然植物纤维再生而成的再生纤维,分子中具有较多的亲水基团,是一种亲水较好的的材料,但在实际静电纺丝制造中却不易纺制,且强度低,脆性大,不具有使用性。所以本发明采用的以PU材料为主混入CA(PU/CA的质量比为8/2)的方式在保证薄膜的实用性的同时综合了两种材料的优点,适当提高其亲水性。
在对PU薄膜和PU/CA混纺薄膜的亲水接触角检测实验中发现,纯PU 薄膜的接触角较小,而混纺的PU/CA薄膜接触角明显增大。表明了混纺薄膜材料由于亲水性CA加入的原因,CA纤维是以纤维素糟粕为原料制成的,属于再生天然纤维,虽然纤维素中的羟基被醋酯乙酰化而生成纤维素脂,但仍然比化学纤维的亲水性好很多,所以能很好的提高薄膜的亲水性。
实施例9
红外光谱分析
如图13所示,对PU/CA薄膜和N719改性PU/CA薄膜分别做红外光谱表征。图中,位置在上的曲线为PU/CA薄膜的红外光谱、位置在下的曲线为N719改性PU/CA薄膜的红外光谱。
PU/CA薄膜和N719改性PU/CA薄膜曲线中,我们可以看到在3357 cm-1处有强烈的吸收峰,它是-OH的特征峰,明显N719改性PU/CA薄膜的峰强度要大。从N719改性PU/CA薄膜图中我们可以看观察到,在 1520cm-1出现较强吸收峰,我们知道它们是酰胺(NH—CO-NH)的特征吸收峰。在770cm-1以附近应有c=s的振动峰,是N-与过度金属Ru的配位峰。另外,可看出含N719染料的薄膜在2100cm-1处有一强烈的吸收峰,它是 N配位的NC的振动峰。以上说明N719染料成功附着到了PU/CA薄膜上。
实施例10
比色反应
将上述N719改性PU/CA薄膜阴干后检测不同浓度的Hg2+,用Hg2+浓度分别为0mmol/L、0.2mmol/L、0.4mmol/L、0.6mmol/L、0.8mmol/L和 1mmol/L的硝酸汞溶液浸润N719改性PU/CA薄膜。
薄膜颜色随Hg2+浓度的增加颜色逐渐由紫红色向橘黄色改变,具有较好的比色现象。这原因可能是Hg2+与N719染料中的显色基团产生配位的导致了电子轨道的的跳跃,从而导致吸收的波长发生变化,随着Hg2+浓度的增加这类基团的数量增加从而颜色逐渐变化。
但在用Ag+、Cu2+等浸润后,薄膜的颜色也会出现很大的变化,含N719 染料薄膜颜色紫红色、与Ag+反应后的颜色变成了橘黄色、与Cu2+反应后的颜色却变成了浅紫色和与Ag+/CU2+反应后的颜色变成了橘黄色。
将N719改性PU/CA薄膜用Ag+浸润后再与浓度分别为0mmol/L、 0.2mmol/L、0.4mmol/L、0.6mmol/L、0.8mmol/L和1mmol/L的硝酸汞溶液浸润后,颜色几乎都为橘黄色,并没有显著的差异,不再能形成良好的比色现象。
造成这种现象的可能原因是Ag+的大量加入造成了N719染料中的显色基团被Ag+先配位占据,导致Hg2+后来加入后无法再形成其与N719染料的配位基团而显示Hg2+与显色基团配位而显示的颜色。
实施例11
荧光分析
将N719改性后含TiO2、TiO2/Ag+、TiO2/Cu2+和TiO2/Ag+/Cu2+的四个不同的PU/CA薄膜样品。分别做荧光光度计分析,在激发波长458nm的时候,荧光发射峰最高。
在图14荧光强度图中,按照曲线的峰值高度由上至下依次为TiO2/Ag+/ N719/PU/CA薄膜、TiO2/Ag+/Cu2+/N719/PU/CA薄膜、TiO2/N719/PU/CA 薄膜、TiO2/Cu2+N719/PU/CA薄膜的荧光强度曲线。
激发波长460nm时荧光强度最大,发射波长相对应的为608nm。浸润TiO2/Ag+的PU/CA薄膜峰发射峰最高,说明其荧光效果最好,其次依次是 TiO2/Ag+/Cu2+的PU/CA薄膜,TiO2的PU/CA薄膜和TiO2/Cu2+的薄膜。这表明在含N719染料的PU/CA薄膜中加入Ag+对其荧光性能有增强的效果,而Cu2+的加入则一定程度上减弱了N719染料的荧光性能。其原因可能是因为金属离子与荧光基团之间的距离差异导致了荧光基团的跃进方式,金属Cu2+与荧光基团的距离应该大于30nm,导致了荧光的增强效果的急剧减弱,而Ag+与荧光基团的距离在2nm于30nm之间,荧光增强。所以实验表明Ag+的添加具有增强N719染料荧光性能的作用。
如图15所示,图中曲线按照其峰值高度由上至下依次为Hg2+浓度为 0mmol/L、0.2mmol/L、0.4mmol/L、0.6mmol/L、0.8mmol/L和1mmol/L的硝酸汞溶液浸润TiO2/Ag+/N719/PU/CA薄膜后,然后进行荧光性检测的强光强度曲线。
选用含TiO2/Ag+/N719/PU/CA薄膜进行Hg2+荧光性能检测,用浓度分别为0mmol/L、0.2mmol/L、0.4mmol/L、0.6mmol/L、0.8mmol/L和1mmol/L 的硝酸汞溶液浸润TiO2/Ag+/N719/PU/CA薄膜,然后进行荧光性检测,荧光强度随着Hg2+的浓度增加而逐渐减小,出现荧光猝灭的反应。伴随着Hg2+浓度的增加,Hg2+逐渐荧光基团发生配位反应,随着荧光基团的被取代而使得荧光发生猝灭;或者是由于Hg2+与荧光基团的距离小于2nm导致了荧光的猝灭。检测的灵敏度应该在Hg2+浓度在1.5mmol/L以下,以此规律可作为Hg2+的荧光检测。
本发明的原料优选为:
聚氨基甲酸酯PU(Polyurethane,-C10H8N2O2(C6H14O3)-),生工生物有限公司;
乙酸纤维素CA(Ethyl cellulose,-C6H702(OC2Hs)3-)分析纯,生工生物有限公司;
二氧化钛(Titanium dioxide,Ti02,200rim),大连七色光太阳能科技开发有限公司;
N-N二甲基甲酰胺(N,N-Dimethylformamide,C3H7NO)分析纯,江苏强盛功能化学有限公司;
氯仿(Trichloromethane,CHCl3)分析纯,上海振企化学有限公司;
四氢呋喃THF(Tetrahydrofuran,C4H8O)分析纯,天津博迪化学股份有限公司;
丙酮(Acetone,C3H60)分析纯,上海振企化学试剂有限公司;
二甲基乙酰胺(Dimethylacetamide,CH3C(O)N(CH3)2)分析纯,天津博运化工股份有限公司;
硝酸汞(Mercuric nitrate,Hg(NO3)2)分析纯,贵州铜仁泰瑞尔化工有限公司;
硝酸银(Silver nitrate,AgNO3)分析纯,上海申博化工有限公司;锡纸(Aluminium foil),武汉市鸿泰世家纸塑制品有限公司;
无水乙醇(Ethyl alcohol absolute,C2H50H)分析纯,上海博河精细化学有限公司;
硝酸铜(Cupric nitrate,Cu(NO3)2)分析纯,西陇化工股份有限公司;N719钌染料(Di-tetrabutylammonium cis-bis(isothiocyanato)bis (2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II),C58H86N8O8RuS2,武汉晶格太阳能科技有限公司。
需要说明的是,在本文中,如若存在第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法,其特征在于,包括以下步骤:
(1)配置PU/CA混合纺丝溶液,包括以下步骤:
1)将四氢呋喃、N-N二甲基甲酰胺和氯仿按体积比4.5:4.5:1混合,得到PU溶剂,加入占所述PU溶剂质量比为6%的PU切片,40℃烘箱烘燥2h,制得PU纺丝溶液;
2)将丙酮和二甲基乙酰胺的按质量比2:1混合,得到CA溶剂,加入占CA溶剂质量比15%的CA切片,40℃烘箱烘燥2h,制得CA纺丝溶液;
3)将制得的PU纺丝溶液和CA纺丝溶液按照体积比8:2混合,制得PU/CA混合纺丝溶液;
(2)将TiO2加入至步骤(1)的PU/CA混合纺丝溶液中;
所述步骤(2)中,TiO2按照占据PU/CA混合纺丝溶液其溶质质量的8%混入溶液;
(3)将Ag+溶液加入至步骤(2)的溶液中;
所述步骤(3)中,Ag+溶液的溶剂为水,Ag+与TiO2的摩尔比2:100;
(4)对步骤(3)的溶液进行静电纺丝,得到TiO2/Ag+/PU/CA薄膜;
(5)用N719钌染料溶液对步骤(4)中的薄膜进行浸泡整理,得到N719改性TiO2/Ag+/PU/CA薄膜;
(6)干燥后,得产物。
2.根据权利要求1所述的TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法,其特征在于,所述步骤(4)中的PU/CA混合纺丝溶液在电压21kV、极距18cm、流速2ml/h、直径为0.7mm针头的条件下制成TiO2/Ag+/PU/CA薄膜。
3.根据权利要求1所述的TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法,其特征在于,所述步骤(5)中浸泡整理包括以下步骤:
1)将N719钌染料溶解于无水乙醇中,在40℃温度下、搅拌12h,再避光处理一昼夜,制得5×10-4mol/L的染料溶液;
2)将步骤(4)制备的TiO2/Ag+/PU/CA薄膜从锡纸上揭下来,浸泡到N719钌染料溶液中24h,取出阴干,得到N719改性TiO2/Ag+/PU/CA薄膜。
4.一种使用如权利要求1-3任一项所述的TiO2/Ag+/N719/PU/CA多元荧光薄膜制备方法所制得的N719改性TiO2/Ag+/PU/CA薄膜在检测水体Hg2+含量的应用。
5.根据权利要求4所述的检测水体Hg2+含量的应用,其特征在于,所述Hg2+含量≤1.5mmol/L。
CN201910466701.7A 2018-06-27 2019-05-30 TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法 Active CN110186887B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2018106820267 2018-06-27
CN201810682026.7A CN108801999A (zh) 2018-06-27 2018-06-27 TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN110186887A CN110186887A (zh) 2019-08-30
CN110186887B true CN110186887B (zh) 2022-07-26

Family

ID=64072117

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810682026.7A Withdrawn CN108801999A (zh) 2018-06-27 2018-06-27 TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法
CN201910466701.7A Active CN110186887B (zh) 2018-06-27 2019-05-30 TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201810682026.7A Withdrawn CN108801999A (zh) 2018-06-27 2018-06-27 TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法

Country Status (1)

Country Link
CN (2) CN108801999A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300800A (zh) * 2020-11-05 2021-02-02 福州大学 一种可控增强上转换红光发射的复合薄膜材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348963A (en) * 1964-11-14 1967-10-24 Kurashiki Rayon Co Method of producing gas-permeable elastic polyurethane films
CN101399122A (zh) * 2007-08-29 2009-04-01 韩国科学技术研究院 具有金属氧化物层的染料敏化太阳能电池及其制造方法
CN105040157A (zh) * 2015-07-27 2015-11-11 北京林业大学 一种木质液化物静电纺丝液的制备及纺丝方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348963A (en) * 1964-11-14 1967-10-24 Kurashiki Rayon Co Method of producing gas-permeable elastic polyurethane films
CN101399122A (zh) * 2007-08-29 2009-04-01 韩国科学技术研究院 具有金属氧化物层的染料敏化太阳能电池及其制造方法
CN105040157A (zh) * 2015-07-27 2015-11-11 北京林业大学 一种木质液化物静电纺丝液的制备及纺丝方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Preparation of cellulose acetate(CA)/polyurethane(PU) composite nanofiber by electrospinning;Tang, CY等;《Proceedings Of The 2007 International Conference On Advanced Fibers And Polymer Materials 》;20071017;全文 *
功能性纳米纤维的静电纺丝制备及其生物医学应用研究;蔡晴等;《高分子通报》;20130430;全文 *
静电纺丝工艺参数对含纳米银的明胶纳米纤维形态结构的影响;徐雄立等;《东华大学学报(自然科学版)》;20080430;全文 *

Also Published As

Publication number Publication date
CN108801999A (zh) 2018-11-13
CN110186887A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
Halali et al. Perovskite nanomaterials as optical and electrochemical sensors
KR101745128B1 (ko) 수소 변색 나노입자, 이의 제조 방법 및 이를 포함하는 수소 센서
Su et al. Visible light photoelectrochemical sulfide sensor based the use of TiO 2 nanotube arrays loaded with Cu 2 O
Cao et al. Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC
Dashtian et al. Preparation and characterization of a novel optical chemical sensor for determination of trace amounts of Praseodymium ion by UV/Vis spectrophotometry
US11307163B2 (en) Carbon nanotube based reference electrodes and all-carbon electrode assemblies for sensing and electrochemical characterization
AT512675A1 (de) Opto-chemischer Sensor
Díaz-Liñán et al. based sorptive phases for microextraction and sensing
CN105223183A (zh) 一种可用于阴阳离子色素选择性检测的基底
CN110186887B (zh) TiO2/Ag+/N719/PU/CA多元荧光薄膜的制备方法
Zhang et al. Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media
Surendra et al. Cost-effective aegle marmelos extract-assisted synthesis of ZnFe2O4: Cu2+ NPs: photocatalytic and electrochemical sensor applications
WO2021072958A1 (zh) 一种金属-有机框架材料的制备方法及其应用
Balasubramanian et al. Design of Neodymium Vanadate Nanoparticles Decorated on Carbon–Boron Core-Shell Microspheres Matrix: An Electrochemical Detection of Nilutamide
CN107121424B (zh) 一种饮料中玫瑰红b的快速检测方法
WO2019069158A1 (en) MODIFIED COTTON FABRIC FOR SOLID PHASE EXTRACTION AND METHOD OF MANUFACTURE
KR101432235B1 (ko) 마이크로 에멀전법과 전기방사법을 이용한 중공구조의 산화티타늄 나노 섬유 제조 방법
CN103084073B (zh) 1,4-二羟基蒽醌与二价铜离子掺杂纤维素组成的多孔膜及其制备方法和用途
US20170294612A1 (en) Composite containing silver nanoparticles and antibacterial agent, photoelectric converter, photosensitive pointing device, and thin-film photovoltaic cell using this composite
CN114181698B (zh) 一种双发射碳点及其制备方法和用途
CN108760716B (zh) 一种表面增强拉曼光谱湿巾及其制备方法与应用
Li et al. A high-performance SERS imprinted membrane based on Ag/CNTs for selective detection of spiramycin
Al-Odayni et al. C arica papaya peel extract-induced iron-doped zinc oxide nanostructures: synthesis, characterization, hemolysis, and antibacterial properties
CN114634812B (zh) 丹磺酰aa在乙醇-水超分子团簇的可视化监测、可视化区分及稳定性检测中的应用
CN118005015B (zh) 一种石墨烯复合材料修饰的电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant