CN110177463A - 2-羟基苄胺在治疗和预防肺动脉高压中的应用 - Google Patents

2-羟基苄胺在治疗和预防肺动脉高压中的应用 Download PDF

Info

Publication number
CN110177463A
CN110177463A CN201780083516.9A CN201780083516A CN110177463A CN 110177463 A CN110177463 A CN 110177463A CN 201780083516 A CN201780083516 A CN 201780083516A CN 110177463 A CN110177463 A CN 110177463A
Authority
CN
China
Prior art keywords
bmpr2
glutamine
compound
pharmaceutically acceptable
acceptable salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780083516.9A
Other languages
English (en)
Other versions
CN110177463B (zh
Inventor
J·P·费塞尔
L·J·罗伯茨
J·威斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vanderbilt University
Original Assignee
Vanderbilt University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanderbilt University filed Critical Vanderbilt University
Publication of CN110177463A publication Critical patent/CN110177463A/zh
Application granted granted Critical
Publication of CN110177463B publication Critical patent/CN110177463B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Pulmonology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

化合物,其用于治疗、预防或改善肺动脉高压;在有需要的患者中减少谷氨酰胺代谢,和/或在有需要的患者中增加SIRT3活性的方法。

Description

2-羟基苄胺在治疗和预防肺动脉高压中的应用
政府支持
本发明是根据国立卫生研究院所授予的资助号K08 HL121174、K23 HL098743、R01HL095797、P01 HL108800、T32 HL007106-34、T32 HL-007891(认定合同)在政府支持下完成的。政府拥有本发明中的某些权利。
发明背景和发明内容
肺动脉高压(PAH)越发地被认为是由影响所有主要碳底物(包括氨基酸)的多条代谢途径的正常功能的改变所驱使的全身性疾病。本发明人发现人肺动脉高压患者(WHOGroup I,PAH)在谷氨酰胺代谢中表现出全身性和肺部特异性改变,其中患病的肺血管系统比对照的肺血管系统摄取明显更多的谷氨酰胺。本发明人使用细胞培养模型和表达引起PAH的BMPR2突变的转基因小鼠发现PAH中的肺内皮比野生型内皮将明显更多的谷氨酰胺分流进入三羧酸(TCA)循环。PAH中的内皮需要通过TCA循环的增加的谷氨酰胺代谢以存活、维持正常的能量学并表现出疾病的过度增殖表型特征。对谷氨酰胺的严格要求是由去乙酰化酶-3(SIRT3)活性的丧失驱动的,去乙酰化酶-3活性的丧失是藉由脂质过氧化的反应产物导致的共价修饰。
使用本发明的化合物(包括2-羟基苄胺(或者称为水杨胺、SAM或2HOBA),反应性脂质过氧化产物的清除剂),保留SIRT3功能,使谷氨酰胺代谢正常化,并且防止BMPR2突变小鼠形成PAH。在PAH中,靶向谷氨酰胺代谢以及成为谷氨酰胺驱动的代谢重编程(metabolicreprogramming)的基础的机制代表了PAH疗法开发的可行的新途径。
各种细胞类型使用的正常代谢策略的改变越来越多地被认为是肺动脉高压的主要发病机制的一部分。1,2任何给定的细胞类型——内皮、平滑肌、心肌、骨骼肌等——表现出在健康、稳态条件下的“代谢程序”,即所有可用碳源(主要是碳水化合物、脂肪和氨基酸)的使用和命运的总和。细胞代谢程序的细节通常是该细胞类型独有的。例如,在正常情况下,心肌细胞主要氧化脂肪酸作为能量来源,而内皮细胞优先通过氧化和非氧化途径使用葡萄糖。3,4需要细胞增加能量产生、增加大分子合成或抵抗促死亡刺激的任何干扰会对细胞的碳资源造成压力,并且必然会改变细胞的代谢程序。相反,限制细胞使用一种或多种碳底物的能力的任何事物都可以诱导代谢重编程,该代谢重编程通常会改变该细胞的一种或多种重要性质,例如分化状态、增殖速率或对细胞凋亡的敏感性。因此,细胞的代谢程序与细胞在健康和疾病中所起的作用密不可分。
在PAH中,众所周知,参与疾病发病机制的多种细胞类型表现出代谢重编程,该代谢重编程的特征在于尽管存在允许葡萄糖氧化代谢的足够的氧供应,但葡萄糖衍生的碳进入非氧化的乳酸产生途径的分流增加。1,2,5-7这通俗地被称为“瓦博格效应(Warburgeffect)”,其最初由Otto Warburg描述为癌细胞的特征。然而,细胞内代谢途径的网络是高度相互关联的,并且很少有一种途径可以单独改变。事实上,人们越来越认识到PAH中的脂肪酸代谢也显著改变,并且葡萄糖和脂肪酸氧化之间的相互关系(所谓的“Randle循环”)在PAH中是异常的并且可能有助于心脏和肺血管系统两者的发病机制。8-13第三个主要的细胞碳源——一般是氨基酸,特别是谷氨酰胺——在PAH中仍然相对未被充分研究。14虽然氨基酸代表了大多数细胞使用的第三大碳源,但在PAH中,氨基酸运输主要是在一氧化氮合成的背景下来进行研究的。癌症生物学中的最近发现认为整体上氨基酸、特别是谷氨酰胺在生物合成、细胞能量学和氧化还原稳态中起主要作用。15-18本发明人在通过骨形态发生蛋白受体2型(BMPR2)的功能障碍性信号转导的特定背景下,检查了PAH中的谷氨酰胺代谢,其表明PAH中的肺内皮会以与在癌症中所观察到的相似的方式表现出作为主要碳源的谷氨酰胺代谢的异常增加。
新出现的数据表明,大多数WHO Group I肺动脉高压是由BMP信号转导功能障碍,特别是BMPR2信号转导功能障碍驱动的。本发明人关注与可遗传的PAH相关的BMPR2的功能丧失基因突变,但是受损的BMPR2信号转导的分子结果在WHO Group I疾病的已知变体中是相似的。
因此,本发明的实施方案包括本发明的化合物(包括水杨胺)在预防或治疗WHOGroup I肺血管疾病病例中的用途。
在美国,总体而言,WHO Group II肺动脉高压是肺动脉高压的最常见形式。这种类型的PH与代谢综合征和氧化应激有关。最近,SIRT3功能丧失已被认为是驱动WHO Group IIPH形成的关键分子机制。鉴于我们发现水杨胺通过保留去乙酰化酶亚型(特别是SIRT3)的活性在多种情况下起作用,本发明人推测水杨胺会在治疗或预防WHO Group II肺动脉高压中显示出功效。
WHO Group III肺血管疾病与导致慢性或间歇性缺氧的肺部疾病有关。这是已知驱动活性氧的过量产生、需要SIRT3功能丧失的途径的激活、代谢重编程和包括纤维化在内的血管结构重塑的刺激物。已发现所有这些发病过程至少部分地被本发明化合物,特别是水杨胺改善。因此,本发明的实施方案是本文公开的化合物在治疗和预防WHO Group III肺动脉高压中的用途。
WHO Group IV:慢性血栓栓塞性肺动脉高压(CTEPH)是静脉血栓栓塞/肺栓塞的一种罕见但破坏性的并发症。这通常是涉及凝块消退失败而不是新血栓的持续过量产生的疾病。虽然基础的生物学仍在研究中,但氧化应激和代谢改变已经与CTEPH的发病机制有关。因此,本发明的实施方案是本文公开的化合物在治疗和预防WHO Group IV肺动脉高压中的用途。
WHO Group V:这是一类没有明显的统一发病机制的肺血管疾病。然而,Group V中的许多组成相关性疾病,例如结节病、慢性肾病、甲状腺疾病、全身性代谢紊乱和自身免疫性血管炎,都具有氧化应激作为共同的病原性过程。因此,本发明的实施方案是本发明的化合物(包括水杨胺)在治疗和预防Group V肺动脉高压中的用途。
因此,公开了治疗、预防或改善肺动脉高压的方法,其包括向有此需要的患者给药本发明的化合物或药物组合物。实施方案包括这样的方法,其中所述化合物具有下式:
其中:R是N或C-R5;R2独立地为H、取代或未取代的烷基、烷氧基、烷基-烷氧基;R3为H、取代或未取代的烷基、卤素、烷氧基、羟基、硝基;R4是H、取代或未取代的烷基、羧基、羧酸、烷基-羧酸;R5是H、取代或未取代的烷基;及其药学上可接受的盐。
还公开了在有需要的患者中减少谷氨酰胺代谢的方法,其包括向有此需要的患者给药本发明的化合物或药物组合物。实施方案包括这样的方法,其中所述化合物具有下式:
其中:R是N或C-R5;R2独立地为H、取代或未取代的烷基、烷氧基、烷基-烷氧基;R3为H、取代或未取代的烷基、卤素、烷氧基、羟基、硝基;R4是H、取代或未取代的烷基、羧基、羧酸、烷基-羧酸;R5是H、取代或未取代的烷基;及其药学上可接受的盐。
还公开了在有需要的患者中增加SIRT3活性的方法,其包括向有此需要的患者给药本发明的化合物或药物组合物。实施方案包括这样的方法,其中化合物具有下式:
其中:R是N或C-R5;R2独立地为H、取代或未取代的烷基、烷氧基、烷基-烷氧基;R3为H、取代或未取代的烷基、卤素、烷氧基、羟基、硝基;R4是H、取代或未取代的烷基、羧基、羧酸、烷基-羧酸;R5是H、取代或未取代的烷基;及其药学上可接受的盐。
还公开了用于上述方法的化合物,该化合物具有下式:
其中:R是N或C-R5;R2独立地为H、取代或未取代的烷基、烷氧基、烷基-烷氧基;R3为H、取代或未取代的烷基、卤素、烷氧基、羟基、硝基;R4是H、取代或未取代的烷基、羧基、羧酸、烷基-羧酸;R5是H、取代或未取代的烷基;及其药学上可接受的盐。
本发明的其他优点将在下面的部分描述中阐述,并且部分地从描述中显而易见,或者可以通过本发明的实践来得知。通过尤其是所附权利要求中指出的元素和组合会意识到并且实现本发明的优点。应理解,该描述是示例性的,而不是对要求保护的本发明的限制。
附图简要说明
图1是显示具有PAH和受损的BMPR2信号转导的人表现出谷氨酰胺代谢的全身和肺血管重编程的图。A)与具有WT BMPR2的家族成员相比,具有BMPR2突变的人,无论是否存在经诊断的PAH,都具有统计学上显著的循环谷氨酰胺增加。N=11-24,*p<0.02。B)与具有正常血液动力学的个体相比以及与具有WHO Group III肺动脉高压的个体相比,在具有WHOGroup I PAH的患者中,在右心导管插入术中测量的经肺谷氨酰胺摄取显著增加。N=6-11,*p<0.05.
图2显示BMPR2突变型PMVEC将显著更多的谷氨酰胺分流进入TCA循环。A)BMPR2突变型PMVEC的特异性胞外谷氨酰胺摄取通量率是针对WT PMVEC测量的那些的两倍。N=4次独立实验,通过双尾t检验,*p<0.005。B)确定进入TCA循环的碳流量的[U-13C5]-L-谷氨酰胺标记的概念示意图。C)与WT相比,BMPR2突变型PMVEC大约是谷氨酰胺衍生的碳的量的两倍,其通过质谱法定量的13C%原子富集被掺入多个TCA循环中间体(柠檬酸盐,苹果酸盐,以及α-酮戊二酸的直接前体谷氨酸盐)中。N=4,通过使用Tukey post-hoc检验的双向ANOVA,*p<0.05。D)13C5-L-谷氨酰胺标记和通过质谱法定量TCA循环中间体显示与WT相比,BMPR2突变型PMVEC中谷氨酰胺衍生的碳的细胞内命运的显著改变,由苹果酸盐的等同位素体(isotopomer)例示。在WT细胞中,大部分TCA循环碳是未标记的,由M0等同位素体表示,表明使用未标记的碳源(主要是葡萄糖)。相比之下,BMPR2突变型PMVEC中>60%的TCA碳显示掺入至少2个标记的碳,其中40%的总苹果酸盐池被完全标记,由M4等同位素体表示。对于WT和BMPR2突变型,N各自=3。
图3显示BMPR2突变型PMVEC需要增加的谷氨酰胺可用性以显示PAH典型的过度增殖行为。A)在谷氨酰胺限制条件(0.2mM)下,WT PMVEC能够维持稳定增殖,但BMPR2R899XPMVEC在培养24小时后开始迅速死亡。B)在谷氨酰胺更充足的条件(0.5mM)下,WT PMVEC基本上不受影响,而BMPR2R899X PMVEC表现出PAH特有的过度增殖表型。对于每个时间点N=6,通过双侧t检验,*p<0.01,**p<0.001。
图4显示PAH引起的BMPR2突变驱动针对谷氨酰胺偏好的线粒体功能障碍和代谢重编程。A)尽管限制了作为碳源的葡萄糖和谷氨酰胺的可用性,但是使用双光子自发荧光定量活细胞中的细胞内NADH和FAD+库以计算光学氧化还原比,显示培养的人WT PMVEC通过维持细胞内氧化还原状态保持代谢灵活性。相反,当葡萄糖和谷氨酰胺受限时,表达突变型BMPR2的PMVEC表现出氧化还原比的显著降低。在标准培养基中N=3,在无葡萄糖/无谷氨酰胺的培养基中N=6,通过使用Tukey post-hoc检验的双向ANOVA,*p<0.05。B-D)与WT相比,表达突变型Bmpr2的培养的鼠PMVEC表现出增强的谷氨酰胺支持的ATP-耦联的线粒体呼吸(图B,与所有其他组相比,通过ANOVA,**p<0.0001)、减少的漏呼吸(leak respiration)(图C,与所有其他组相比,通过ANOVA,**p<0.0001)和增加的耦合效率(图D,与所有其他组相比,通过ANOVA,**p<0.0001)。对于每个实验的每种条件,N=8-10次测量,一式两份进行试验。
图5显示BMPR2突变型PMVEC中的常氧HIF1α激活有助于代谢重编程。A-B)HIF1α在常氧条件下在PMVEC中表达的两种不同类型的BMPR2突变中增加(A),并通过光密度测定法定量(B),于人和鼠PMVEC各自N=3个独立的实验,整体分析数据,通过双尾t检验*p<0.05。C)用低剂量黑毛霉素(chetomin)(一种HIF1α的药理学抑制剂)处理BMPR2突变型PMVEC显著降低谷氨酰胺与葡萄糖通量比,同时使WT PMVEC基本上不受影响。对于每种条件N=3,*p<0.05。
图6显示SMPT3在BMPR2R899X小鼠中失活。A)与WT相比,从BMPR2R899X小鼠分离的线粒体具有相等的SIRT3含量,但表现出多种线粒体蛋白的高度乙酰化(泳道1-2和5-6),表明SIRT3功能丧失。用2-羟基苄胺(2HOBA)(异缩酮(isoketal)的清除剂)处理BMPR2R899X小鼠,归一化线粒体蛋白乙酰化状态(泳道3-4和7-8)。Western图像是在剥离和用所示蛋白质的抗体重新探测后相同印迹的单独连续曝光。B)示意图显示线粒体膜的氧化损伤如何被认为通过异缩酮的加合使SIRT3失活。C)通过发光测定(Sirt-Glo,Promega)测量的纯化的重组人SIRT3活性被异缩酮剂量依赖性地抑制。D)来自一式三份进行的实验的4-9只动物的光密度测定法定量。通过使用Tukey post-hoc检验的ANOVA,与所有其他组相比,**p<0.01。
图7显示2HOBA降低循环谷氨酰胺并防止BMPR2R899X小鼠形成PAH。A)与WT(泳道1-2)相比,BMPR2R899X小鼠(泳道5-6)中肝线粒体部分中的谷氨酰胺合成酶升高。2HOBA处理降低了BMPR2R899X小鼠(泳道7-8)中的谷氨酰胺合成酶,但基本上不降低WT中的谷氨酰胺合成酶(泳道3-4)。Western图像是在剥离和用所示蛋白质的抗体重新探测后相同印迹的单独连续曝光。B)与2HOBA处理的WT小鼠相比,用2HOBA处理显著降低BMPR2R899X小鼠中的血浆谷氨酰胺可用性。N=6-29,*p<0.05。C)2HOBA处理将BMPR2R899X小鼠的总肺阻力降低至统计学上与WT无法区分的水平。N=5-14,通过使用Tukey post-hoc分析的ANOVA,*p<0.02。
图8显示了BMPR2介导的代谢重编程的示意图。正常的肺内皮主要依赖于葡萄糖作为其生物能燃料。当正常的BMPR2信号转导丧失时,线粒体中的氧化损伤通过异缩酮的加合驱动SIRT3的失活。这可以用2-羟基苄胺中断。未加抑制(unchecked)但持续的氧化损伤和SIRT3失活导致HIF稳定,所有这些都驱动作为PAH形成的基础的过度增殖的、嗜谷氨酰胺(glutamine avid)的肺内皮表型。
图9显示了在海马细胞外通量分析仪中测量线粒体呼吸和计算呼吸参数的示意图。蓝色曲线是在培养的PMVEC中测量的氧消耗速率(OCR,pmol/min)随时间的代表性数据。通过添加所示化合物(寡霉素A、FCCP、抗霉素A/鱼藤酮)获得代表基础呼吸(1)、寡霉素敏感性呼吸(2)、最大呼吸(3)和非线粒体呼吸(4)的特定曲线部分。利用所示呼吸曲线的各个部分计算ATP耦联的呼吸、漏呼吸和耦合效率。
图10显示骨骼肌中的谷氨酰胺合成酶在BMPR2R899X小鼠中上调。固定腓肠肌并用谷氨酰胺合成酶抗体染色(红色),并用DAPI核染色复染(蓝色)。与WT肌肉相比,BMPR2R899X突变的表达上调骨骼肌中的谷氨酰胺合成酶,骨骼肌是体内谷氨酰胺合成的主要部位之一。比例尺=25微米。
图11显示2HOBA改善BMPR2R899X小鼠的心输出量和右心室收缩压(RVSP)二者。与WT相比,BMPR2R899X突变的表达显著降低心输出量(A)并不太多地升高RVSP(B)。与载剂处理的突变型相比,在用2HOBA处理的BMPR2R899X中心脏输出趋向于改善并且RVSP趋向于减少,但是两者均未达到在2HOBA处理的WT小鼠中测量的值。
图12显示谷氨酰胺衍生的碳不成比例地掺入BMPR2突变型PMVEC中的丙氨酸池中。细胞内乳酸池显示来自标记的谷氨酰胺的少量13C掺入(通过质谱法定量),并且在WT和BMPR2突变型PMVEC之间没有差异。相比之下,与WT相比,BMPR2突变型PMVEC的丙氨酸池中存在来自标记的谷氨酰胺的大量的13C富集,表明BMPR2突变细胞中增加的谷氨酰胺衍生的碳对丙酮酸和TCA循环上游的代谢途径没有促进作用,但是可能确实促进丙酮酸循环。N=3,*p<0.05。
具体实施方式
在公开和描述本发明化合物、组合物、制品、系统、装置和/或方法之前,应理解,除非另有说明,否则它们不限于特定的合成方法,或除非另有说明,否则不限于特定的试剂,因此当然可能会变化。还应当理解,本文使用的术语只为了描述特定方面,而不意在限制。尽管与本文描述的那些类似或等同的任何方法和材料可用于本发明的实践或测试,但现在描述示例性方法和材料。
本文提及的所有出版物,特别是包括下文标题为“参考文献”的部分,通过引用并入本文,以公开和描述与所引用的出版物相关的方法和/或材料。本文论述的出版物仅是为了它们在本申请的提交日期之前公开而提供的。本文中的任何内容都不能被解释为承认本发明无权凭借在先发明而先于这些出版物。此外,本文提供的出版日期可能不同于实际出版日期,可能需要单独确认。
如说明书和所附权利要求中所使用的,单数形式“一”、“一个”和“该”包括复数个指示物,除非上下文另有明确规定。因此,例如,提及“官能团”、“烷基”或“残基”包括两个或更多个这样的官能团、烷基或残基的混合物等。
本文可将范围表示为从“约”一个具体值和/或至“约”另一个具体值。当表达这样的范围时,另一方面包括从一个特定值和/或到另一个特定值。类似地,当通过使用先行词“约”将值表示为近似值时,应理解该特定值形成另一方面。还应理解的是,每个范围的端值不论是与另一个端值相关,还是与另一个端值不相关,都是有意义的。还应该理解,本文公开了许多数值,并且每个数值在本文中也被公开为“约”该特定数值以及该数值本身。例如,如果公开了数值“10”,那么还公开了“约10”。还应理解为特定单元之间的每个单元也被公开。例如,如果公开了10和15,则还公开了11、12、13和14。
如本文所用,术语“任选的”或“任选地”是指随后描述的事件或情况可以发生或可以不发生,并且该描述包括所述事件或情况发生的情况和所述事件或情况不发生的情况。
如本文所用,术语“个体”是指给药对象。本文公开的方法的个体可以是脊椎动物,例如哺乳动物、鱼、鸟、爬行动物或两栖动物。因此,本文公开的方法的个体可以是人、非人灵长类动物、马、猪、兔、狗、绵羊、山羊、牛、猫、豚鼠或啮齿动物。该术语不指具体的年龄或性别。因此,不论是雄性的还是雌性的成年和新生个体及胎儿都被涵盖。患者是指患有疾病或病症的个体。术语“患者”包括人和兽类个体。
如本文所用,术语“治疗”是指患者的医学管理,其旨在治愈、改善、稳定或预防疾病、病理状况或病症。该术语包括积极治疗,即特别地旨在改善疾病、病理状况或病症的治疗,还包括病因治疗,即旨在消除相关疾病、病理状况或病症的病因的治疗。此外,该术语包括姑息治疗,即旨在缓解症状而不是治愈疾病、病理状况或病症的治疗;预防性治疗,即旨在最小化或者部分或完全抑制相关疾病、病理状况或病症形成的治疗;和支持性治疗,即用于补充另一种旨在改善相关疾病、病理状况或病症的特定疗法的治疗。
如本文所使用的,术语“预防(prevent)”或“防止(preventing)”是指排除、阻止、避免、防止、预防或阻碍某事发生,尤其是通过提前行动。应当理解,除非另有明确说明,在本文使用减少、抑制或预防的情况下,也明确公开了其他两个词的使用。如本文中所见,治疗和预防的定义存在重叠。
如本文所用,术语“经诊断的”意指已经由本领域技术人员(例如,医师)进行身体检查,并且发现其具有可被诊断或通过本文所公开的化合物、组合物或方法治疗的病症。如本文所用,短语“鉴定为需要治疗病症”等是指基于对治疗病症的需要选择个体。例如,基于本领域技术人员的早期诊断可以将个体鉴定为需要治疗病症(例如,与炎症有关的病症),然后接受该病症的治疗。在一个方面,预期鉴别可以由与进行诊断的人不同的人来执行。在另一方面,还预期可由随后进行给药的人来给药。
如本文所用,术语“施用(administering)”和“给药(administration)”是指向个体提供药物制剂的任何方法。这些方法是本领域技术人员公知的,包括但不限于口服给药、透皮给药、吸入给药、鼻腔给药、局部给药、阴道内给药、眼科给药、耳内给药、脑内给药、直肠给药和肠胃外给药,包括注射,例如静脉内给药、动脉内给药、肌内给药和皮下给药。给药可以是连续的或间歇的。在各个方面,可以治疗性地给药制剂;即给药以治疗现有的疾病或病症。在其他各个方面,可以预防性地给药制剂;即给药以预防疾病或病症。
如本文所用,术语“有效量”是指足以实现所需结果或对不希望的病症具有效力的量。例如,“治疗有效量”是指足以实现所需治疗结果或对不希望的症状具有效力,但通常不足以引起不良副作用的量。任何特定患者的特定治疗有效剂量水平会取决于多种因素,包括所治疗的病症和病症的严重程度;使用的特定组合物;患者的年龄、体重、一般健康状况、性别和饮食;给药时间;给药途径;所使用的特定化合物的排泄速度;治疗的持续时间;与所用特定化合物联合或同时使用的药物以及医学领域熟知的相似因素。例如,在本领域的技术范围内是:以低于达到期望的治疗效果所需的剂量的水平开始化合物的剂量,逐步增加剂量,直至达到期望的治疗效果。无需要,可将有效日剂量分为多个剂量用于给药。所以,单剂量组合物可含有这样的量或者其约数以达到每日剂量。在任何禁忌症的情况下,个体医师可以调整剂量。剂量可以变化,并且可以每天以一或多次剂量给药施用,持续一天或几天。对于给定类别的药物产品,可以在文献中找到关于适当剂量的指导。在其他各个方面,制剂可以“预防有效量”给药;即,有效预防疾病或病症的量。
如本文所用,术语“药学上可接受的载体”是指无菌水性或非水性溶液、分散液、悬浮液或乳液,以及用于在使用前重建成无菌可注射溶液或分散液的无菌粉末。合适的水性或非水性载体、稀释剂、溶剂或载剂包括水、乙醇、多元醇(例如丙三醇、丙二醇、聚乙二醇等等)、羧甲基纤维素和它们合适的混合物、植物油(例如橄榄油)和可注射的有机酯例如油酸乙酯。例如,可通过以下方式来维持合适的流动性:使用包衣材料例如卵磷脂,对于分散剂通过维持所需的粒径,以及使用表面活性剂。这些组合物也可以包含辅剂,例如防腐剂、润湿剂、乳化剂和分散剂。微生物的作用的预防可通过加入各种抗菌剂和抗真菌剂(例如对羟基苯甲酸酯、三氯叔丁醇、苯酚、山梨酸等)来确保。也可能需要包含等渗剂,例如糖、氯化钠等。通过包含延迟吸收的试剂(例如单硬脂酸铝和明胶)可以实现可注射药物形式的延长吸收。通过形成药物在生物可降解聚合物(例如聚乳酸-乙醇酸、聚(原酸酯)和聚酸酐)中的微胶囊基质,制成可注射的“储库”形式。取决于药物与聚合物的比例和所用特定聚合物的性质,可以控制药物释放速率。通过将药物包裹在与身体组织相容的脂质体或微乳液中也制得贮库型可注射制剂。例如通过用留住细菌的滤器进行过滤,或在临使用之前通过掺入可以溶于或分散于无菌水或其他的无菌可注射介质的无菌固体组合物形式的灭菌剂,将可注射的制剂灭菌。合适的惰性载体可包括糖,例如乳糖。以重量计,期望的是,至少95重量%的活性成份的颗粒具有0.01至10μm的有效粒径。
如本文所用,术语“清除剂”或“清除”是指可以被给药以将杂质或不需要的反应产物除去或灭活的化学物质。例如,异缩酮不可逆地与蛋白质上的赖氨酸残基特异性加合。本发明的异缩酮清除剂在异缩酮与赖氨酸残基加合之前与异缩酮反应。因此,本发明化合物“清除”异缩酮,从而防止它们与蛋白质加合。
如本文所使用,术语“取代的”旨在包括有机化合物所有可允许的取代基。在一个概括的方面,可运许的取代基包括有机化合物的非环状的和环状的、支链的或无支链的、碳环的和杂环的、芳香性的和非芳香性的取代基。示例性的取代基包括例如下面所述的那些取代基。对于适当的有机化合物,可允许的取代基可为一个或多个并其可相同或不同。为了本发明目的,杂原子例如氮可以具有氢取代基和/或本文描述的、符合杂原子化合价的、有机化合物的任何可允许的取代基。不欲以任何方式通过有机化合物的可允许的取代基限制本发明。而且,术语“取代”或“被...取代”包括隐含的条件,即此类取代符合被取代的原子及取代基的允许的化合价,并且该取代形成稳定的化合物,例如不会通过诸如重排、环化、消去等自发进行转变的化合物。
本文所用的术语“烷基”是1至24个碳原子的支链或非支链饱和烃基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、仲戊基、新戊基、己基、庚基、辛基、壬基、癸基、十二烷基、十四烷基、十六烷基、二十烷基、二十四烷基等。烷基可以是环状或非环状的。烷基可以是支链或非支链的。烷基也可以是取代的或未取代的。例如,烷基可以被一个或多个基团取代,所述基团包括但不限于任选取代的烷基、环烷基、烷氧基、氨基、醚、卤化物、羟基、硝基、甲硅烷基、磺基氧基或硫醇,如本文所述。“低级烷基”基团是含有1至6个(例如,1至4个)碳原子的烷基。
在整个说明书中,“烷基”通常用于表示未取代的烷基和取代的烷基二者;然而,取代的烷基在本文中也通过鉴定该烷基上的特定取代基而被具体提及。例如,术语“卤代烷基”具体是指被一个或多个卤化物(例如氟、氯、溴或碘)取代的烷基。术语“烷氧基烷基”具体是指被一个或多个如下所述的烷氧基取代的烷基。术语“烷基氨基”具体是指被一个或多个如下所述的氨基取代的烷基,等等。当在一种情况下使用“烷基”并且在另一种情况下使用例如“烷基醇”的特定术语时,并不表示意指术语“烷基”也不是指例如“烷基醇”之类的特定术语等。
该实践也用于本文描述的其他组。也就是说,虽然例如“环烷基”的术语是指未取代的环烷基部分和取代的环烷基部分二者,但是取代的部分还可以在本文中被特别地标识;例如,特定的取代的环烷基可以称为例如“烷基环烷基”。类似地,取代的烷氧基可以特别地称为例如“卤代烷氧基”,特定的取代的烯基可以是例如“烯基醇”等。同样,使用例如“环烷基”的通用术语和例如“烷基环烷基”的特定术语的实践并不意味着暗示通用术语也不包括特定术语。
本文所用的术语“环烷基”是包含至少三个碳原子的非芳族碳基环。环烷基的实施例包括但不限于环丙基、环丁基、环戊基、环己基、降冰片基等。术语“杂环烷基”是如上定义的一类环烷基,并且包括在术语“环烷基”的含义内,其中环的至少一个碳原子被杂原子替代,所述杂原子例如但不限于氮、氧、硫或磷。环烷基和杂环烷基可以为取代的或未取代的。环烷基和杂环烷基可以被一个或多个基团取代,包括但不限于本文所述的任选取代的烷基、环烷基、烷氧基、氨基、醚、卤化物、羟基、硝基、甲硅烷基、磺基氧基或硫醇。
如本文所用的术语“聚亚烷基”是具有两个或更多个彼此连接的CH2基团的基团。聚亚烷基可由式-(CH2)a-表示,其中“a”为2至500的整数。
本文所用的术语“烷氧基(alkoxy)”和“烷氧基(alkoxyl)”是指通过醚键键合的烷基或环烷基;也就是说,“烷氧基”基团可以定义为-OA1,其中A1是如上定义的烷基或环烷基。“烷氧基”还包括如上所述的烷氧基聚合物;也就是说,烷氧基可以是聚醚,例如-OA1-OA2或-OA1-(OA2)a-OA3,其中“a”是1-200的整数,并且A1、A2和A3是烷基和/或环烷基。
本文所用的术语“胺”或“氨基”由式NA1A2A3表示,其中A1、A2和A3可独立地为氢或如本文所述的任选取代的烷基、环烷基、烯基、环烯基、炔基、环炔基、芳基或杂芳基。
本文所用的术语“羟基”由式-OH表示。
本文所用的术语“硝基”由式-NO2表示。
术语“药学上可接受的”描述了在生物学上或其他方面不是不合需要的材料,即,不会产生不可接受的水平的不良生物学效应或以有害的方式相互作用的材料。
本发明化合物快速结合γ-KAs以“清除”这些有害介质以防止氧化性蛋白质修饰,作为上游治疗的替代方法。本发明的化合物之一,水杨胺,是在临床前动物研究中具有优异安全性的天然产物。此外,水杨胺在阿尔茨海默病和高血压的动物模型中防止γ-KAs和毒性蛋白寡聚体二者的形成,具有显著的治疗益处。本发明人已经在与PAH易感性相关的细胞和体内模型中鉴定了蛋白质寡聚体和γ-KAs的氧化应激/形成。重要的是,本发明人已证明清除γ-KAs的有益效果,即调节谷氨酰胺代谢和增加SIRT3的活性。因此,包括水杨胺在内的本发明化合物代表了预防和治疗肺动脉高压的全新疗法。
本发明化合物的实例包括但不限于选自下式的化合物:
其中:
R是N或C-R5
R2独立地为H、取代或未取代的烷基、烷氧基、烷基-烷氧基;
R3为H、取代或未取代的烷基、卤素、烷氧基、羟基、硝基;
R4是H、取代或未取代的烷基、羧基、羧酸、烷基-羧酸;
R5是H、取代或未取代的烷基;
及其药学上可接受的盐。
在优选的实施方案中,所述化合物是水杨胺(2-羟基苄胺或2-HOBA)。
所述化合物可选自:
或其药学上可接受的盐。
所述化合物也可选自:
或其药学上可接受的盐。
所述化合物或类似物也可选自:
或其药学上可接受的盐。
所述化合物也可选自:
或其药学上可接受的盐。
所述化合物也可选自:
或其药学上可接受的盐。
如本文所用,术语“药学上可接受的盐”是指由药学上可接受的无毒碱或酸制备的盐。当本发明化合物是酸性的时,其相应的盐可以方便地从药学上可接受的无毒性碱(包括无机碱和有机碱)制备。得自此类无机碱的盐包括铝盐、铵盐、钙盐、铜(二价和一价)盐、三价铁盐、二价铁盐、锂盐、镁盐、锰(三价和二价)盐、钾盐、钠盐、锌盐等。特别优选的是铵盐、钙盐、镁盐、钾盐和钠盐。得自药学上可接受的有机无毒碱的盐包括伯胺、仲胺和叔胺以及环胺和取代的胺(例如天然存在和合成的取代的胺)的盐。可用来形成盐的其它药学上可接受的无毒有机碱包括离子交换树脂,例如精氨酸、甜菜碱、咖啡因、胆碱、N,N`-二苄基乙二胺、二乙胺、2-二乙氨基乙醇、2-二甲氨基乙醇、乙醇胺、乙二胺、N-乙基吗啉、N-乙基哌啶、葡糖胺、氨基葡萄糖、组氨酸、海巴明(hydrabamine)、异丙胺、赖氨酸、甲基葡糖胺、吗啉、哌嗪、哌啶、聚胺树脂、普鲁卡因、嘌呤、可可碱、三乙胺、三甲胺、三丙胺、氨丁三醇等。
本发明的其他实施方案包括可以与本文公开的方法结合使用的药物组合物。这些组合物包含至少一种本发明的化合物和药学上可接受的载体。即,可以提供这样的药物组合物,其包含治疗有效量的至少一种所公开的化合物或所公开的方法的至少一种产物和药学上可接受的载体。
在某些方面,所公开的药物组合物包含作为活性成分的所公开的化合物(包括其药学上可接受的盐)、药学上可接受的载体和任选存在的其他治疗成分或辅剂。本发明的组合物包括适合口服、直肠、局部和胃肠外(包括皮下、肌内和静脉内)给药的组合物,然而在任何既定情况下最适合的路径将取决于特定宿主以及给予该活性成分的病症的性质以及严重程度。所述药物组合物可以方便地以单位剂型的形式提供,并通过药学领域中熟知的任何方法制备。
在实践中,可以根据常规制药技术,将本发明的化合物或其药学上可接受的盐作为活性成分与药用载体紧密混合。所述载体可依据给药(例如口服或肠胃外(包括静脉内))所需的制剂形式有很多种形式。因此,本发明的药物组合物可以以适合口服的分离单元的形式提供,例如各自包含预定量的活性成分的胶囊剂、扁囊剂或片剂。此外,所述组合物可以作为散剂、颗粒剂、溶液、在水性液体中的混悬剂、非水性液体、水包油乳液或油包水液体乳液提供。除了上述常见剂型外,本发明的化合物和/或其药学上可接受的盐还可以通过控释装置和/或递送装置给药。所述组合物可以通过任何药学方法来制备。通常,此类方法包括将活性成分与构成一种或多种必需成分的载体组合在一起的步骤。通常,通过将活性成分和液体载体或研磨成细粉的固体载体或它们两者均一而紧密地混合在一起,来制备所述组合物。然后,可以方便地将产物的形状制成需要的形式。
因此,本发明的药物组合物可包含药学上可接受的载体和本发明化合物或本发明化合物的药学上可接受的盐。本发明化合物或其药学上可接受的盐也可以与一种或多种其它的治疗活性化合物组合而被包含在所述药物组合物中。所用的药物载体可以是例如固体、液体或气体。固体载体的实例包括乳糖、白陶土、蔗糖、滑石、明胶、琼脂、果胶、阿拉伯胶、硬脂酸镁和硬脂酸。液体载体的实例为糖浆、花生油、橄榄油和水。气体载体的实例包括二氧化碳和氮气。
在制备用于口服剂型的组合物时,可以使用任何方便的药物基质。例如,水、二醇、油、醇、调味剂、防腐剂、着色剂等可用于形成口服液体制剂,例如混悬剂、酏剂和溶液;而诸如淀粉、糖、微晶纤维素、稀释剂、造粒剂、润滑剂、粘合剂、崩解剂等载体可用于形成口服固体制剂,例如散剂、胶囊剂和片剂。因为给药方便,所以片剂和胶囊是优选的口服剂量单位,由此使用的载体是固体药用载体。任选地,片剂可通过标准的水性或非水技术包衣。
含有本发明组合物的片剂可以任选地与一种或者多种附属组分或者助剂通过压制或者成型来制备。压制片剂可在合适的机器上将以自由流动的形式例如粉末或颗粒存在的活性成分任选与粘合剂、润滑剂、惰性稀释剂、表面活性剂或分散剂混合压制而成。铸形片剂可以通过在适宜的机械中,将粉末化的用惰性液体稀释剂湿润后的化合物进行塑形而制得。
本发明的药物组合物可利包含作为活性成分的本发明的化合物(或其药学上可接受盐)、药学上可接受的载体和任选存在的一种或多种其它治疗剂或辅剂。本发明的组合物包括适合口服、直肠、局部和胃肠外(包括皮下、肌内和静脉内)给药的组合物,然而在任何既定情况下最适合的途径将取决于特定宿主以及给予活性成分所为的病症的性质和严重程度。所述药物组合物可以方便地以单位剂型的形式存在,并通过药学领域中熟知的任何方法制备。
适于胃肠外给药的本发明的药物组合物可以制成活性化合物在水中的溶液或悬浮液。可以包含适合的表面活性剂,例如羟丙基纤维素。还可以在甘油、液态聚乙二醇和它们在油中的混合物中制备分散液。此外,还可以包含防腐剂以防止微生物的有害生长。
适于注射用的本发明的药物组合物包括无菌的水溶液或分散液。此外,所述的组合物可以为用于临时制备这样的无菌可注射溶液或者分散液的无菌粉末的形式。在任何情况下,最终的可注射形式必须无菌且必须实际上为流体,以方便注射。药物组合物在制造和储存条件下必须是稳定的;因此,优选的贮存应防止微生物例如细菌和真菌的污染作用。载体可以是溶剂或分散介质,其含有例如水、乙醇、多元醇(例如甘油、丙二醇和液态聚乙二醇)、植物油及其合适的混合物。
本发明的药物组合物可为适于局部使用的形式,例如气雾剂、乳膏、软膏、洗剂、撒粉、漱口剂、含漱剂等。此外,所述组合物可为适用于透皮装置的形式。这些制剂可以通过常规加工方法,利用本发明的化合物或其药学上可接受的盐制备。举例来讲,乳膏或软膏通过以下方式制备:将亲水性物质和水以及约5%重量至约10%重量的化合物混合以产生具有所需稠度的乳膏或软膏。
本发明的药物组合物可以是适于直肠给药的形式,其中载体是固体。优选的是,混合物形成单位剂量栓剂。适合的载体包括可脂及本领域常用的其它物质。通过首先将组合物和软化或熔化的载体混合,然后在模具中冷却和成形,可方便地形成栓剂。
除了上述的载体成分外,视情况而定,上面描述的药物制剂可以包含一种或者多种另外的载体成分,例如稀释剂、缓冲剂、调味剂、粘合剂、表面活性剂、增稠剂、润滑剂、防腐剂(包括抗氧化剂)等等。另外,可以包含其它的辅剂以使所述制剂与目标受体的血液等渗。含有本发明化合物和/或其药学上可接受的盐的组合物也可以制备成粉末或液体浓缩物形式。
在一方面,本发明涉及药物组合物,其包含具有由下式的化合物表示的结构的化合物:
其中:
R是N或C-R5
R2独立地为H、取代或未取代的烷基、烷氧基、烷基-烷氧基;
R3为H、取代或未取代的烷基、卤素、烷氧基、羟基、硝基;
R4是H、取代或未取代的烷基、羧基、羧酸、烷基-羧酸;
R5是H、取代或未取代的烷基;
及其药学上可接受的盐;和药学上可接受的载体。
实施例
该实施例详细描述了与本发明的实施方案有关的研究。
原料和方法
试剂:13C5-L-谷氨酰胺购自Sigma-Aldrich(密苏里州圣路易斯)。黑毛霉素购自Cayman Chemical(密歇根州安娜堡)。如前所述,在Vanderbilt合成2-羟基苄胺(2HOBA)。19如下购买抗体:HIF1α和谷氨酰胺合成酶,Novus Biologicals(科罗拉多州立托顿);Sirt3,Cell Signaling Technology(马萨诸塞州丹佛斯);乙酰赖氨酸,EMD Millipore(马萨诸塞州比尔里卡);Cox4,Abcam(马萨诸塞州剑桥市)。重组人SIRT3购自R&D Systems(明尼苏达州明尼阿波利斯市)。Sirt-Glo测定试剂盒购自Promega(威斯康辛州麦迪逊)并根据制造商的说明书使用。
细胞培养:本发明人使用先前表征的WT和BMPR2突变型(BMPR2R899X)肺微血管内皮细胞(其分离自在ImmortoMouse背景下产生的条件永生化鼠科细胞系)20和WT和BMPR2突变型PMVEC(其来自稳定地表达转染到亲本系中并保持在G418S选择下的WT或BMPR2突变构建体的亲本永生化人细胞系)。对于鼠科细胞系,在实验前至少72小时,通过去除鼠干扰素-γ并转变至37℃(从33℃开始,其通过SV40大T的表达维持条件性永生表型)将细胞恢复至原代内皮细胞表型,并向培养基添加多西环素(300ng/mL)以诱导转基因的表达(构建体为Rosa26-rtTA×TetO7-BMPR2R899X,与“动物研究”中使用的相同)。人细胞系稳定表达WT或突变型BMPR2,并且在实验前停止用G418S选择达24小时。
代谢通量和稳定同位素标记:使用YSI 2300Stat葡萄糖和乳酸盐分析仪(俄亥俄州黄温泉市)测量葡萄糖和乳酸盐水平。高效液相色谱(HPLC)用于定量氨基酸浓度,其中正缬氨酸作为内标。然后使用如前所述的两相色谱法将氨基酸样品注射到Zorbax EclipsePlus C18柱(Agilent)上。对于同位素示踪剂研究,WT和BMPR2突变型PMVEC在含有代替未标记的谷氨酰胺的2mM[U-13C5]-谷氨酰胺的培养基中培养24小时。21将分析物萃取到冰冷的甲醇中并在1:1氯仿:H2O中分离。然后将含有氨基酸和有机酸的水相在室温下在空气中干燥。使用MBTSTFA+1%TBDMCS(Pierce)衍生样品。然后将2μL每种衍生的样品注射到Agilent6890N/5975B GC-MS中的30mDB-35ms毛细管柱上。通量率使用ETA软件包计算。22
细胞增殖测定:在结果中概述的特定培养基条件下接种细胞并培养。使用台盼蓝排除法计数细胞的总细胞和活细胞,并使用Countess细胞计数器(LifeTechologies,内布拉斯加州格兰德岛市)进行自动计数。
光学氧化还原比的双光子自发荧光测量:如前所述获得并分析双光子图像。23简言之,将细胞以一致的密度接种在玻璃底皿上并48小时后成像。使用双光子显微镜(Bruker)和40x油浸物镜(1.3NA)来获得相同视野的NADH和FAD自发荧光。将图像导入MATLAB(Mathworks),并且对于每个像素将NADH强度除以FAD强度,以计算氧化还原比图像。每个图像的氧化还原比取平均值。
线粒体功能研究:为了评估培养的PMVEC中的线粒体呼吸,将细胞以每孔50000个活细胞的接种密度接种在来自Seahorse Biosciences(马萨诸塞州比尔里卡)的96孔板中的生长培养基中。第二天,洗涤细胞并置于补充有特异性底物(1gm/L葡萄糖、2mML-谷氨酰胺)的Seahorse Assay Media中。平衡后,使用Mito Stress Test方案在Seahorse XFe96分析仪上测量氧消耗速率。对于线粒体蛋白质测量,如前所述从新鲜鼠肝组织中分离线粒体。24
动物研究:所有动物研究均获得Vanderbilt IACUC批准。雄性和雌性FVB/N小鼠为10-16周龄。如前所述产生并维持BMPR2R899X小鼠。24、25对于2HOBA研究,在饮用水中给药1gm/L,水瓶避光并且每2-3天换水。
对麻醉的小鼠(异氟醚麻醉)进行超声心动图检查以确定心输出量。使用溴乙醇作为麻醉剂,如所描述的那样侵入性地测量右心室收缩压(RVSP)。24、25
人体研究:所有人类研究均获得范德比尔特大学机构审查委员会、北卡罗来纳大学教堂山分校和耶鲁大学的批准。获得了每名患者的知情同意。为了测量循环谷氨酰胺水平,通过外周静脉穿刺获得血液样品,离心以分离血浆,并储存在-80℃直至分析。使用标准CLIA批准的方法在Vanderbilt临床化学实验室中定量氨基酸谱。对于经肺测量,在临床指示的诊断性右心导管插入术时获得样品,如前所述。26、27根据侵入性血液动力学测试的结果,患者被分类为患有或不患有肺动脉高压,其中WHO组之间的差异由临床病史确定。
统计分析:除非另有说明,否则所有统计均使用GraphPad Prism 6.0或MicrosoftExcel进行。对于动物实验,基于先前的实验选择样品大小,其中约80%的转基因动物显示RVSP>30mmHg。通过笼子将动物随机分配到治疗组。对于所有测量,研究人员不知晓治疗和基因型,直到数据分析。如所指示的,使用双尾t检验或具有Tukey事后检验的双向ANOVA来分析数据。在校正多重比较后,显著性设定为α<0.05。
结果
谷氨酰胺代谢在人PAH患者中是异常的:为了检验PAH涉及谷氨酰胺代谢改变的假设,本发明人在具有已知BMPR2突变的可遗传PAH患者中中、在未患病的突变携带者(具有已知的BMPR2突变但没有PAH迹象的个体)中以及在来自与患者和携带者相同的家庭的已婚对照中定量空腹血清谷氨酰胺水平。本发明人发现,与对照(399+/-82umol/L,p<0.05,图1A)相比,可遗传的PAH患者(451+/-68umol/L)和BMPR2突变携带者(450+/-50umol/L)二者的循环谷氨酰胺水平显著升高。这是出乎意料的,因为之前的研究表明增加心脏谷氨酰胺摄取是PAH中异常代谢程序的一个特征。14为了更好地量化肺血管系统内的谷氨酰胺代谢,本发明人测量了WHO Group I PAH患者、WHO Group III PH患者和具有正常肺血流动力学的个体的肺间谷氨酰胺梯度。在诊断性右心导管插入术时从主肺动脉和肺毛细血管楔形位置收集样品。26量化各样品中的谷氨酰胺浓度,并且各个体的PCW和PA样品之间的差异是梯度测量(负值表示净吸收、正值表示净释放)。与WHO Group III患者和对照相比,WHO Group IPAH患者显示出肺血管系统对谷氨酰胺的大量摄取(图1B)。总之,这些数据表明,具有异常BMPR2功能的PAH患者在全身和肺血管谷氨酰胺代谢方面具有显著变化。
BMPR2突变型内皮表现出谷氨酰胺碳的异常亲和力:本发明人测定了具有功能失调的BMPR2的肺内皮细胞对谷氨酰胺摄取的增加是否是这些细胞的固有特性或仅仅是由于谷氨酰胺的可用性增加。为了评估这一点,在培养基中培养野生型(WT)和BMPR2突变型肺微血管内皮细胞(PMVEC),并在培养基中提供显著超过生理水平的谷氨酰胺(2mM)。在谷氨酰胺过量的条件下,BMPR2突变型PMVEC以两倍于WT细胞的速率摄取谷氨酰胺(图2A),表明增加的谷氨酰胺摄取是具有BMPR2信号转导障碍的PMVEC所固有的。
谷氨酰胺可以用作TCA循环的碳输入源,但它也是细胞中氮的重要来源,供给需要氮的过程,例如核苷酸合成。本发明人假设谷氨酰胺被用作碳源,并且与WT相比,它优先分流到BMPR2突变型PMVEC中的TCA循环。为了验证这一假设,WT和BMPR2突变型PMVEC在2mM[U-13C5]-L-谷氨酰胺(谷氨酰胺的稳定同位素,其中所有5个碳原子都是碳-13,其可容易地通过质谱法检测(参见示意图2B))存在下培养24小时。其他主要的细胞碳源(葡萄糖、脂肪酸)未标记,所用的血清已经透析以除去游离氨基酸。与WT相比,BMPR2突变型PMVEC显示谷氨酰胺衍生的碳过量掺入TCA循环的多个中间体中(图2C)。此外,当通过串联质谱法分解特定的TCA中间体(例如,苹果酸盐)以测定掺入了多少谷氨酰胺衍生的碳原子(对于苹果酸盐,为0、1、2、3或4)时,本发明人发现存在的大部分苹果酸盐(40%)含有4个13C原子,表明TCA循环中的大部分碳来自谷氨酰胺,因为这是可得到的唯一13C来源(图2D)。相比之下,在WT PMVEC中,存在的大部分苹果酸盐(55+%)不含13C原子,表明在WT细胞中,TCA循环中的大部分碳不是来自谷氨酰胺,而是来自未标记的葡萄糖和脂肪酸。
谷氨酰胺是BMPR2突变型PMVEC的必需碳源
本发明人接下来测定了BMPR2突变型PMVEC是否对谷氨酰胺具有绝对要求,或者这是否代表由于过量谷氨酰胺的存在而产生的“方便的安排”。本发明人以两种浓度的谷氨酰胺——500μM(模拟BMPR2突变型患者中的血清浓度)和200μM(代表在人类中被认为是正常的最低水平)——来培养WT和BMPR2突变型PMVEC。在500μM谷氨酰胺下,BMPR2突变型PMVEC在72小时内在所有时间点显示出超过WT PMVEC的速率的净增殖(图3A)。在200μM谷氨酰胺下,WT PMVEC的净增殖率基本不变,但BMPR2突变型PMVEC完全不耐受谷氨酰胺受限的条件并且全部在72小时内死亡(图3B)。
为了更好地理解谷氨酰胺利用的细节和谷氨酰胺限制在BMPR2突变型PMVEC中的作用,本发明人使用内源NADH和FAD(由TCA循环活动控制的主要电子载体)的双光子自发荧光定量WT和BMPR2突变型PMVEC的总细胞内氧化还原状态。来自这两种物质的荧光允许计算光学氧化还原比,更高的比率表明更多的TCA循环活动、降低更多的细胞内氧化还原环境和增加的总体代谢活性。相反,光学氧化还原比率的降低表明代谢活性整体下降,特别是通过TCA循环。28-30双光子自发荧光具有非常高的时间分辨率,允许被检测和量化的细胞的代谢和氧化还原状态快速变化。本发明人在基础条件下以在快速去除谷氨酰胺和葡萄糖的情况下量化了WT和BMPR2突变型PMVEC中的光学氧化还原比。在基线处,BMPR2突变型PMVEC具有比WT细胞更低的光学氧化还原比(图4A),表明了相对受损的维持细胞内氧化还原环境的能力和相对受损的总体代谢活性。在对TCA循环底物的快速限制的情况下,WT PMVEC能够快速调整其代谢行为以维持光学氧化还原比(图4A),而BMPR2突变型PMVEC显示光学氧化还原比率的显著进一步降低(图4A),表明急性代谢灵活性显著丧失。
接下来检查了BMPR2突变型PMVEC中TCA循环谷氨酰胺对线粒体功能的依赖的后果。培养的WT和BMPR2突变型PMVEC被给予葡萄糖或谷氨酰胺作为唯一可得的能量底物。使用Seahorse XFe96分析仪量化线粒体氧消耗,并且由氧消耗曲线计算细胞呼吸的特定组分(ATP耦联的呼吸、质子漏和耦合效率)(参见图9的示意图)。在葡萄糖或谷氨酰胺作为唯一碳源的情况下WT PMVEC都显示等效的ATP耦联呼吸,但是,与葡萄糖相比,在谷氨酰胺作为碳源的情况下BMPR2突变型PMVEC显示增强的ATP耦联呼吸(图4B)。当使用谷氨酰胺时,与使用葡萄糖时相比,WT PMVEC在线粒体中表现出增加的质子漏,但是,BMPR2突变细胞在谷氨酰胺的情况下或在葡萄糖的情况下都维持低水平的质子漏(图4C),表明与WT相比,在BMPR2突变型PMVEC中使用谷氨酰胺作为支持ATP合成的燃料的总体效率要大得多。与此相一致,当比较ATP耦联的呼吸与基础呼吸时,当使用谷氨酰胺作为燃料时,WT内皮细胞表现出较低的耦合效率,而BMPR2突变型PMVEC保持高耦合效率(图4D)。总之,这些数据表明谷氨酰胺是BMPR2突变型PMVEC中能量产生的优选底物。
氧化应激驱动BMPR2突变型中的HIF激活和SIRT3损伤
本发明人接下来希望测定有助于谷氨酰胺依赖的BMPR2突变下游的分子事件。多种信号转导途径已被证明调节多种疾病背景下谷氨酰胺利用率的增加。15、31-35在可能的候选途径中,与PAH关联最强又有效调节谷氨酰胺代谢的途径是缺氧诱导因子1-α(HIF1α)。已表明HIF1α在实验性PAH和人PAH中在常氧条件下稳定,并且HIF1α的激活可诱导谷氨酰胺依赖。36-39本发明人发现培养基中生长的BMPR2突变型PMVEC相比于WT在蛋白质水平上表现出显著的HIF1α常氧稳定性(图5A和5B),并且这对于两种不同的PAH相关的BMPR2突变类型都是可以证明的。然后用黑毛霉素(HIF的药理学抑制剂)处理WT和BMPR2突变型PMVEC,并通过量化谷氨酰胺与葡萄糖的细胞外通量比来评估葡萄糖和谷氨酰胺摄取。WT细胞的处理对谷氨酰胺与葡萄糖通量比没有影响(图5C)。然而,用HIF抑制剂处理BMPR2突变型PMVEC显著降低谷氨酰胺与葡萄糖通量比(图5C),表明HIF1活性有助于驱动BMPR2突变型内皮中的谷氨酰胺需求。
尽管HIF1α激活有助于BMPR2突变细胞中的谷氨酰胺摄取和利用,但本发明人怀疑已知的控制代谢的信号转导途径中存在另外的改变。HIF1α本身的激活已被表明驱动谷氨酰胺代谢,但谷氨酰胺不成比例地用于生物合成。39-41鉴于发现BMPR2突变型PMVEC中的谷氨酰胺用于能量产生而不是明显用于不成比例的生物合成,本发明人假设直接参与谷氨酰胺调节和能量产生的代谢控制途径可能已经改变。去乙酰化酶-3(SIRT3)是一种参与线粒体能量产生和氧化还原稳态的赖氨酸脱乙酰酶,已成为一种强有力的候选物。已显示SIRT3的缺失位于HIF1激活的上游并且与肺动脉高压有关。15、42-44
由于去乙酰化酶的表达和活性受到底物可用性、营养摄入、体力活动以及器官系统之间运作的相互作用信号转导途径的严格调节,所以最好在鼠模型系统中研究SIRT3在BMPR2介导的PAH中的作用。为了研究SMPT3在BMPR2介导的PAH中失活的作用,本发明人从喂食Western饮食(60%卡路里来自脂肪)达8周的野生型和BMPR2突变型(BMPR2R899X)小鼠中分离线粒体。对于赖氨酸残基的乙酰化,评估了线粒体蛋白质组,其中SIRT3失活导致赖氨酸超乙酰化。与WT相比,BMPR2R899X线粒体具有相等的SIRT3蛋白水平,但显示出多种线粒体蛋白的显著赖氨酸超乙酰化(图6A,WT的泳道1-2和突变型的泳道5-6,在图6D中定量),与BMPR2R899X小鼠中的SIRT3活性的丧失一致。
在SIRT3蛋白含量没有变化的情况下线粒体蛋白质组的超乙酰化与SIRT3酶活性的丧失一致。本发明人先前已经表明BMPR2R899X小鼠中的线粒体膜表现出广泛的脂质过氧化,并且脂质过氧化的特征在于蛋白质和异缩酮之间的共价加合物(高反应性脂质过氧化产物的子集)的过量产生。24、45因此,本发明人假设SIRT3在BMPR2R899X小鼠的线粒体中经历氧化失活,并且用异缩酮清除剂2-羟基苄胺(2HOBA)处理会恢复正常的SIRT3活性(图6B中的示意图)。本发明人通过在体外将合成纯的异缩酮与重组人SIRT3一起温育而证明了该假设的生化可信性。异缩酮处理以浓度依赖性方式失活SIRT3,如通过Sirt-Glo测定由发光所测量的(图6C)。然后,通过用在饮用水中的1g/L 2HOBA处理WT和BMPR2R899X小鼠来测试清除异酮醛会保留SIRT3功能的假设。与WT相比,用2HOBA处理显著降低BMPR2R899X小鼠中线粒体蛋白质组中的赖氨酸乙酰化,而不影响线粒体中的总SIRT3含量(图6A,WT的泳道3-4和突变型的泳道7-8,在图6D中定量),与SIRT3催化活性的保持相一致。
2HOBA使谷氨酰胺代谢正常化并体内预防PAH:已显示BMPR2功能受损与SIRT3功能丧失有关,并且这可通过2HOBA处理以清除破坏性脂质过氧化产物来预防,本发明人接下来希望评估体内BMPR2突变下游代谢功能障碍、与PAH的关系以及2HOBA处理的效力。本发明人假设2HOBA会阻止BMPR2R899X小鼠中形成PAH,并且会对体内谷氨酰胺代谢具有有益的调节作用。与WT相比,BMPR2R899X等位基因的表达足以驱动骨骼肌(图10)和肝线粒体(图7A)中谷氨酰胺合成酶的上调。尽管谷氨酰胺合成酶上调,但载剂处理的WT和BMPR2R899X小鼠中的循环谷氨酰胺浓度相当(图7B),表明BMPR2突变型中增加的谷氨酰胺合成与增加的消耗相匹配。在2HOBA处理后,BMPR2R899X小鼠在肝线粒体中具有降低的谷氨酰胺合成酶(图7A)并且具有比经处理的WT小鼠显著降低循环谷氨酰胺(图7B),表明对突变型中的谷氨酰胺平衡具有有利影响。与对SIRT3和谷氨酰胺代谢的影响一致,与载剂处理的小鼠相比,2HOBA处理预防了肺动脉高压的形成,如通过BMPR2R899X小鼠中的总肺阻力所测量的(图7C)。在BMPR2R899X小鼠中用2HOBA处理适度地增加心输出量(图11A)和降低RVSP(图11B),其组合效果是显著降低总肺阻力。
讨论
作为该实施例的一部分,本发明人使用人和鼠细胞培养模型、转基因小鼠和来自活PAH患者的样品来证明由于BMPR2信号转导功能障碍而显著改变的谷氨酰胺代谢程序(图8)。正常BMPR2功能的丧失导致线粒体中的氧化损伤和称为异缩酮的脂质过氧化反应产物的形成。45异缩酮使SIRT3失活,其与增加的氧化应激一起导致HIF1α的稳定化。总之,对于一般的细胞代谢和特别的谷氨酰胺代谢,SIRT3和HIF1α是最常见的两种“主要调节因子”途径。本发明人表明,通过用口服生物可利用的异缩酮清除剂2-羟基苄胺(2HOBA)处理可以在体内中断该过程,并且导致谷氨酰胺成瘾的分子级联的中断阻止了PAH的形成。
本发明人的发现使证据的分量快速增加,所述证据表明改变的细胞代谢是肺动脉高压形成和维持的主要原因。尽管存在足以允许完全的葡萄糖氧化的氧浓度,PAH中描述的第一主要代谢扰动是向产生乳酸的糖酵解的转变。现在,几乎在实验性和人PAH的几乎每个场景中都复制了这一发现,并且分子基础继续得到澄清。1、2、6、11、38、46-48然而,对于癌症研究也是如此,本发明人和其他人发现,PAH中细胞代谢情形的变化不仅限于糖酵解,而是似乎涉及大多数主要代谢途径。鉴于健康细胞中代谢物组的相互关联,这可能并不令人惊讶。实际上,本发明人先前已经表明,PMVEC中BMPR2的突变亚型的表达足以重编程多种代谢途径。47
我们的发现有助于汇集其他几个最近发表的关于肺动脉高压中代谢程序改变的报告。Piao等人表明野百合碱处理的大鼠中RV谷氨酰胺代谢的增加,并且人类PAH患者的RV中也存在谷氨酰胺代谢增加的特征。14Paulin等人最近发表了通过蛋白质水平的降低而丧失SIRT3活性使小鼠易于形成PAH,然而下调的机制尚不完全清楚。44Lai等人将这些研究结果进行延展,在最近发现了SIRT3在肺动脉高压中的重要作用以及在具有保持的射血分数的左心衰竭中见到的相关全身代谢紊乱。49Diebold等人报道了具有降低的BMPR2表达的肺内皮细胞中的代谢重塑,然而PAH表型的表现需要暴露于缺氧,表明HIF而不是SIRT3。46,50与本发明相关的发现通过提供可能的机制,填补这些研究之内和之间的重要空白,所有这些公开的发现通过该机制可以彼此一致。此外,本发明人提供了活PAH患者中的证据,表明动态代谢实际上以与在模型系统和死后组织中所观察到的方式相似的方式重新编程。本发明人还表明,靶向PAH中代谢重编程的至少一种机制在体内具有有益效果,并且本发明人已经使用可用于人的化合物这样做了。2-羟基苄胺具有非常有利的长期安全性,在小鼠中连续给药超过12个月没有显著的毒性。2-羟基苄胺是一种天然存在的产物,允许在人体中的加速原理证明研究,随后的研究集中于具有改善的药代动力学的相关化合物。重要的是,2HOBA的作用机制已在其他疾病模型和跨物种中得到证实。19、51
参考文献:
1.Sutendra G,Michelakis ED.The metabolic basis of pulmonary arterialhypertension.Cell metabolism.2014;19(4):558-573.
2.Ryan JJ,Archer SL.Emerging concepts in the molecular basis ofpulmonary arterial hypertension:part I:metabolic plasticity and mitochondrialdynamics in the pulmonary circulation and right ventricle in pulmonaryarterial hypertension.Circulation.2015;131(19):1691-1702.
3.Taegtmeyer H,Young ME,Lopaschuk GD,Abel ED,Brunengraber H,Darley-Usmar V,Des Rosiers C,et al.Assessing Cardiac Metabolism:A ScientificStatement From the American Heart Association.Circulation research.2016;118(10):1659-1701.
4.Eelen G,de Zeeuw P,Simons M,Carmeliet P.Endothelial cell metabolismin normal and diseased vasculature.Circulation research.2015;116(7):1231-1244.
5.Gomez-Arroyo J,Mizuno S,Szczepanek K,Van Tassell B,Natarajan R,dosRemedios CG,Drake JI,et al.Metabolic gene remodeling and mitochondrialdysfunction in failing right ventricular hypertrophy secondary to pulmonaryarterial hypertension.Circ Heart Fail.2013;6(1):136-144.
6.Ryan J,Dasgupta A,Huston J,Chen KH,Archer SL.Mitochondrial dynamicsin pulmonary arterial hypertension.Journal of molecular medicine.2015;93(3):229-242.
7.Obre E,Rossignol R.Emerging concepts in bioenergetics and cancerresearch:metabolic flexibility,coupling,symbiosis,switch,oxidative tumors,metabolic remodeling,signaling and bioenergetic therapy.Int J Biochem CellBiol.2015;59:167-181.
8.Chen X,Talati M,Fessel JP,Hemnes AR,Gladson S,French J,Shay S,etal.Estrogen Metabolite 16alpha-Hydroxyestrone Exacerbates Bone MorphogeneticProtein Receptor Type II-Associated Pulmonary Arterial Hypertension ThroughMicroRNA-29-Mediated Modulation of Cellular Metabolism.Circulation.2016;133(1):82-97.
9.Hemnes AR,Brittain EL,Trammell AW,Fessel JP,Austin ED,Penner N,Maynard KB,et al.Evidence for right ventricular lipotoxicity in heritablepulmonary arterial hypertension.Am J Respir Crit Care Med.2014;189(3):325-334.
10.West J,Niswender KD,Johnson JA,Pugh ME,Gleaves L,Fessel JP,HemnesAR.A potential role for insulin resistance in experimental pulmonaryhypertension.The European respiratory journal.2013;41(4):861-871.
11.Dyck JR,Hopkins TA,Bonnet S,Michelakis ED,Young ME,Watanabe M,Kawase Y,Jishage K,Lopaschuk GD.Absence of malonyl coenzyme A decarboxylasein mice increases cardiac glucose oxidation and protects the heart fromischemic injury.Circulation.2006;114(16):1721-1728.
12.Talati MH,Brittain EL,Fessel JP,Penner N,Atkinson J,Funke M,Grueter C,et al.Mechanisms of Lipid Accumulation in the Bone MorphogenicProtein Receptor 2 Mutant Right Ventricle.Am J Respir Crit Care Med.2016.
13.Brittain EL,Talati M,Fessel JP,Zhu H,Penner N,Calcutt MW,West JD,et al.Fatty Acid Metabolic Defects and Right Ventricular Lipotoxicity inHuman Pulmonary Arterial Hypertension.Circulation.2016;133(20):1936-1944.
14.Piao L,Fang YH,Parikh K,Ryan JJ,Toth PT,Archer SL.Cardiacglutaminolysis:a maladaptive cancer metabolism pathway in the right ventriclein pulmonary hypertension.Journal of molecular medicine.2013;91(10):1185-1197.
15.Li C,Zhang G,Zhao L,Ma Z,Chen H.Metabolic reprogramming in cancercells:glycolysis,glutaminolysis,and Bcl-2 proteins as novel therapeutictargets for cancer.World J Surg Oncol.2016;14(1):15.
16.Yang C,Ko B,Hensley CT,Jiang L,Wasti AT,Kim J,Sudderth J,etal.Glutamine oxidation maintains the TCA cycle and cell survival duringimpaired mitochondrial pyruvate transport.Molecular cell.2014;56(3):414-424.
17.Jiang L,Shestov AA,Swain P,Yang C,Parker SJ,Wang QA,Terada LS,etal.Reductive carboxylation supports redox homeostasis during anchorage-independent growth.Nature.2016;532(7598):255-258.
18.DeBerardinis RJ,Chandel NS.Fundamentals of cancer metabolism.SciAdv.2016;2(5):e1600200.
19.Kirabo A,Fontana V,de Faria AP,Loperena R,Galindo CL,Wu J,Bikineyeva AT,et al.DC isoketal-modified proteins activate T cells andpromote hypertension.The Journal of clinical investigation.2014;124(10):4642-4656.
20.Majka S,Hagen M,Blackwell T,Harral J,Johnson JA,Gendron R,ParadisH,et al.Physiologic and molecular consequences of endothelial Bmpr2mutation.Respir Res.2011;12:84.
21.Greene J,Henderson JW,Wikswo JP.Rapid and precise determination ofcellular amino acid flux rates using HPLC with automated derivatization withabsorbance detection.Agilent Application Notes.2009.
22.Murphy TA,Young JD.ETA:robust software for determination of cellspecific rates from extracellular time courses.Biotechnol Bioeng.2013;110(6):1748-1758.
23.Shah AT,Demory Beckler M,Walsh AJ,Jones WP,Pohlmann PR,SkalaMC.Optical metabolic imaging of treatment response in human head and necksquamous cell carcinoma.PLoS One.2014;9(3):e90746.
24.Fessel JP,Flynn CR,Robinson LJ,Penner NL,Gladson S,Kang CJ,Wasserman DH,Hemnes AR,West JD.Hyperoxia synergizes with mutant bonemorphogenic protein receptor 2 to cause metabolic stress,oxidant injury,andpulmonary hypertension.American journal of respiratory cell and molecularbiology.2013;49(5):778-787.
25.Johnson JA,Hemnes AR,Perrien DS,Schuster M,Robinson LJ,Gladson S,Loibner H,et al.Cytoskeletal defects in Bmpr2-associated pulmonary arterialhypertension.American journal of physiology.Lung cellular and molecularphysiology.2012;302(5):L474-484.
26.Fares WH,Ford HJ,Ghio AJ,Aris RM.Safety and feasibility ofobtaining wedged pulmonary artery samples and differential distribution ofbiomarkers in pulmonary hypertension.Pulmonary circulation.2012;2(4):477-482.
27.Monahan K,Scott TA,Su YR,Lenneman CG,Zhao DX,Robbins IM,HemnesAR.Reproducibility of intracardiac and transpulmonary biomarkers in theevaluation of pulmonary hypertension.Pulmonary circulation.2013;3(2):345-349.
28.Skala MC,Riching KM,Gendron-Fitzpatrick A,Eickhoff J,Eliceiri KW,White JG,Ramanujam N.In vivo multiphoton microscopy of NADH and FAD redoxstates,fluorescence lifetimes,and cellular morphology in precancerousepithelia.Proceedings of the National Academy of Sciences of the UnitedStates of America.2007;104(49):19494-19499.
29.Chance B,Schoener B,Oshino R,Itshak F,Nakase Y.Oxidation-reductionratio studies of mitochondria in freeze-trapped samples.NADH and flavoproteinfluorescence signals.The Journal of biological chemistry.1979;254(11):4764-4771.
30.Barlow CH,Harden WR,3rd,Harken AH,Simson MB,Haselgrove JC,ChanceB,O'Connor M,Austin G.Fluorescence mapping of mitochondrial redox changes inheart and brain.Crit Care Med.1979;7(9):402-406.
31.Sanchez EL,Lagunoff M.Viral activation of cellularmetabolism.Virology.2015;479-480:609-618.
32.Hough KP,Chisolm DA,Weinmann AS.Transcriptional regulation of Tcell metabolism.Mol Immunol.2015;68(2 Pt C):520-526.
33.Courtnay R,Ngo DC,Malik N,Ververis K,Tortorella SM,KaragiannisTC.Cancer metabolism and the Warburg effect:the role of HIF-1 and PI3K.MolBiol Rep.2015;42(4):841-851.
34.Ryan JJ,Archer SL.The right ventricle in pulmonary arterialhypertension:disorders of metabolism,angiogenesis and adrenergic signaling inright ventricular failure.Circulation research.2014;115(1):176-188.
35.Chen JQ,Russo J.Dysregulation of glucose transport,glycolysis,TCAcycle and glutaminolysis by oncogenes and tumor suppressors in cancercells.Biochim Biophys Acta.2012;1826(2):370-384.
36.Tuder RM,Archer SL,Dorfmuller P,Erzurum SC,Guignabert C,MichelakisE,Rabinovitch M,Schermuly R,Stenmark KR,Morrell NW.Relevant issues in thepathology and pathobiology of pulmonary hypertension.J Am Coll Cardiol.2013;62(25 Suppl):D4-12.
37.Pisarcik S,Maylor J,Lu W,Yun X,Undem C,Sylvester JT,Semenza GL,Shimoda LA.Activation of hypoxia-inducible factor-1 in pulmonary arterialsmooth muscle cells by endothelin-1.American journal of physiology.Lungcellular and molecular physiology.2013;304(8):L549-561.
38.Fijalkowska I,Xu W,Comhair SA,Janocha AJ,Mavrakis LA,Krishnamachary B,Zhen L,et al.Hypoxia inducible-factor1alpha regulates themetabolic shift of pulmonary hypertensive endothelial cells.The Americanjournal of pathology.2010;176(3):1130-1138.
39.Wise DR,Ward PS,Shay JE,Cross JR,Gruber JJ,Sachdeva UM,Platt JM,DeMatteo RG,Simon MC,Thompson CB.Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cellgrowth and viability.Proceedings of the National Academy of Sciences of theUnited States of America.2011;108(49):19611-19616.
40.Wise DR,DeBerardinis RJ,Mancuso A,Sayed N,Zhang XY,Pfeiffer HK,Nissim I,et al.Myc regulates a transcriptional program that stimulatesmitochondrial glutaminolysis and leads to glutamine addiction.Proceedings ofthe National Academy of Sciences of the United States of America.2008;105(48):18782-18787.
41.Hosios AM,Hecht VC,Danai LV,Johnson MO,Rathmell JC,Steinhauser ML,Manalis SR,Vander Heiden MG.Amino Acids Rather than Glucose Account for theMajority of Cell Mass in Proliferating Mammalian Cells.Dev Cell.2016;36(5):540-549.
42.Haigis MC,Deng CX,Finley LW,Kim HS,Gius D.SIRT3 is a mitochondrialtumor suppressor:a scientific tale that connects aberrant cellular ROS,theWarburg effect,and carcinogenesis.Cancer Res.2012;72(10):2468-2472.
43.Finley LW,Carracedo A,Lee J,Souza A,Egia A,Zhang J,Teruya-Feldstein J,et al.SIRT3 opposes reprogramming of cancer cell metabolismthrough HIF1alpha destabilization.Cancer cell.2011;19(3):416-428.
44.Paulin R,Dromparis P,Sutendra G,Gurtu V,Zervopoulos S,Bowers L,Haromy A,et al.Sirtuin 3 deficiency is associated with inhibitedmitochondrial function and pulmonary arterial hypertension in rodents andhumans.Cell metabolism.2014;20(5):827-839.
45.Lane KL,Talati M,Austin E,Hemnes AR,Johnson JA,Fessel JP,BlackwellT,et al.Oxidative injury is a common consequence of BMPR2 mutations.Pulmonarycirculation.2011;1(1):72-83.
46.Diebold I,Hennigs JK,Miyagawa K,Li CG,Nickel NP,Kaschwich M,Cao A,et al.BMPR2 Preserves Mitochondrial Function and DNA during Reoxygenation toPromote Endothelial Cell Survival and Reverse Pulmonary Hypertension.Cellmetabolism.2015;21(4):596-608.
47.Fessel JP,Hamid R,Wittmann BM,Robinson LJ,Blackwell T,Tada Y,Tanabe N,Tatsumi K,Hemnes AR,West JD.Metabolomic analysis of bonemorphogenetic protein receptor type 2 mutations in human pulmonaryendothelium reveals widespread metabolic reprogramming.Pulmonarycirculation.2012;2(2):201-213.
48.Xu W,Koeck T,Lara AR,Neumann D,DiFilippo FP,Koo M,Janocha AJ,etal.Alterations of cellular bioenergetics in pulmonary artery endothelialcells.Proceedings of the National Academy of Sciences of the United States ofAmerica.2007;104(4):1342-1347.
49.Lai YC,Tabima DM,Dube JJ,Hughan KS,Vanderpool RR,Goncharov DA,StCroix CM,et al.SIRT3-AMP-Activated Protein Kinase Activation by Nitrite andMetformin Improves Hyperglycemia and Normalizes Pulmonary HypertensionAssociated With Heart Failure With Preserved EjectionFraction.Circulation.2016;133(8):717-731.
50.Waypa GB,Osborne SW,Marks JD,Berkelhamer SK,Kondapalli J,Schumacker PT.Sirtuin 3 deficiency does not augment hypoxia-induced pulmonaryhypertension.American journal of respiratory cell and molecular biology.2013;49(6):885-891.
51.Nguyen TT,Caito SW,Zackert WE,West JD,Zhu S,Aschner M,Fessel JP,Roberts LJ,2nd.Scavengers of reactive gamma-ketoaldehydes extendCaenorhabditis elegans lifespan and healthspan through protein-levelinteractions with SIR-2.1and ETS-7.Aging(Albany NY).2016.
52.Bertero T,Oldham WM,Cottrill KA,Pisano S,Vanderpool RR,Yu Q,ZhaoJ,et al.Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysisto drive pulmonary hypertension.The Journal of clinical investigation.2016.
53.Schoors S,Bruning U,Missiaen R,Queiroz KC,Borgers G,Elia I,ZecchinA,et al.Fatty acid carbon is essential for dNTP synthesis in endothelialcells.Nature.2015;520(7546):192-197.
由此描述了本发明,对于本领域技术人员显而易见的是,在不脱离本发明的范围或精神的情况下,可以在本发明中进行各种修改和变化。考虑到本文公开的本发明的说明书和实践,本发明的其他方面对于本领域技术人员而言是显而易见的。说明书和实施例仅被认为是示例性的,本发明的真实范围和精神由所附权利要求及其等同指示。

Claims (18)

1.治疗、预防或改善肺动脉高压的方法,其包括向有此需要的患者给药下式的化合物:
其中:
R是N或C-R5
R2独立地为H、取代或未取代的烷基、烷氧基、烷基-烷氧基;
R3为H、取代或未取代的烷基、卤素、烷氧基、羟基、硝基;
R4是H、取代或未取代的烷基、羧基、羧酸、烷基-羧酸;
R5是H、取代或未取代的烷基;
及其药学上可接受的盐。
2.如权利要求1所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
3.如权利要求1所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
4.如权利要求1所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
5.如权利要求1所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
6.如权利要求1所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
7.在有需要的患者中降低谷氨酰胺代谢的方法,其包括向有此需要的患者给药下式的化合物:
其中:
R是N或C-R5
R2独立地为H、取代或未取代的烷基、烷氧基、烷基-烷氧基;
R3为H、取代或未取代的烷基、卤素、烷氧基、羟基、硝基;
R4是H、取代或未取代的烷基、羧基、羧酸、烷基-羧酸;
R5是H、取代或未取代的烷基;
及其药学上可接受的盐。
8.如权利要求7所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
9.如权利要求7所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
10.如权利要求7所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
11.如权利要求7所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
12.如权利要求7所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
13.在有需要的患者中增加SIRT3活性的方法,其包括向有此需要的患者给药下式的化合物:
其中:
R是N或C-R5
R2独立地为H、取代或未取代的烷基、烷氧基、烷基-烷氧基;
R3为H、取代或未取代的烷基、卤素、烷氧基、羟基、硝基;
R4是H、取代或未取代的烷基、羧基、羧酸、烷基-羧酸;
R5是H、取代或未取代的烷基;
及其药学上可接受的盐。
14.如权利要求13所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
15.如权利要求13所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
16.如权利要求13所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
17.如权利要求13所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
18.如权利要求13所述的方法,其中所述化合物具有下式:
或其药学上可接受的盐。
CN201780083516.9A 2016-11-15 2017-11-15 2-羟基苄胺在治疗和预防肺动脉高压中的应用 Active CN110177463B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662422486P 2016-11-15 2016-11-15
US62/422,486 2016-11-15
PCT/US2017/061854 WO2018093936A1 (en) 2016-11-15 2017-11-15 Use of 2-hydroxybenzylamine in the treatment and prevention of pulmonary hypertension

Publications (2)

Publication Number Publication Date
CN110177463A true CN110177463A (zh) 2019-08-27
CN110177463B CN110177463B (zh) 2022-03-08

Family

ID=62145792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780083516.9A Active CN110177463B (zh) 2016-11-15 2017-11-15 2-羟基苄胺在治疗和预防肺动脉高压中的应用

Country Status (9)

Country Link
US (1) US20190314302A1 (zh)
EP (2) EP4385576A3 (zh)
JP (1) JP7383285B2 (zh)
CN (1) CN110177463B (zh)
AU (1) AU2017362328B2 (zh)
ES (1) ES2981715T3 (zh)
HU (1) HUE067036T2 (zh)
PL (1) PL3541185T3 (zh)
WO (1) WO2018093936A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11400103B2 (en) * 2015-12-21 2022-08-02 Vanderbilt University Methods of preventing platelet activation
EP3914077A4 (en) * 2019-01-25 2022-11-30 Vanderbilt University ISOCETAL/ISOLEVUGLANDINE SENSORS TARGETING MITOCHONDRIA
AU2021214090A1 (en) * 2020-01-27 2022-09-22 Vanderbilt University Mitochondria-targeted isoketal/isolevuglandin scavengers and uses thereof
WO2022081777A1 (en) * 2020-10-13 2022-04-21 Vanderbilt University Method of preventing kidney injury disruption of intestinal lymphatics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120157501A1 (en) * 2004-10-20 2012-06-21 Vanderbilt University Isoketal scavengers and mitigation of disorders involving oxidative injury
US8709434B2 (en) * 2006-11-13 2014-04-29 Pcb Associates, Inc. Compositions for inhibiting NADPH oxidase activity
CN103796648A (zh) * 2011-07-12 2014-05-14 范德比尔特大学 用γ-醛酮清除剂治疗炎症和高血压的方法
US20150031068A1 (en) * 2012-03-19 2015-01-29 Lycera Corporation Methods and compositions for detecting immune system activation
WO2015127163A1 (en) * 2014-02-20 2015-08-27 Phd Biosciences ( Formerly Nanometics Llc) Pyridoxamine for the treatment of sickle cell disease, thalassemia and related blood diseases
US20160199463A1 (en) * 2014-12-15 2016-07-14 The Johns Hopkins University Hdac2 defends vascular endothelium from injury

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070167411A1 (en) * 2003-03-27 2007-07-19 Medicure International Inc. Compositions for treating angina
JP5132109B2 (ja) * 2006-09-01 2013-01-30 花王株式会社 一剤式染毛剤組成物
US8314015B2 (en) * 2010-07-14 2012-11-20 Sharp Laboratories Of America, Inc. Silicon surface modification for the electrochemical synthesis of silicon particles in suspension

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120157501A1 (en) * 2004-10-20 2012-06-21 Vanderbilt University Isoketal scavengers and mitigation of disorders involving oxidative injury
US8709434B2 (en) * 2006-11-13 2014-04-29 Pcb Associates, Inc. Compositions for inhibiting NADPH oxidase activity
CN103796648A (zh) * 2011-07-12 2014-05-14 范德比尔特大学 用γ-醛酮清除剂治疗炎症和高血压的方法
US20150031068A1 (en) * 2012-03-19 2015-01-29 Lycera Corporation Methods and compositions for detecting immune system activation
WO2015127163A1 (en) * 2014-02-20 2015-08-27 Phd Biosciences ( Formerly Nanometics Llc) Pyridoxamine for the treatment of sickle cell disease, thalassemia and related blood diseases
US20160199463A1 (en) * 2014-12-15 2016-07-14 The Johns Hopkins University Hdac2 defends vascular endothelium from injury

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KIRK L.LANE ET AL: "Oxidative injury is a common consequence of BMPR2 mutations", 《PULMONARY CIRCULATION》 *
PAULIN R ET AL: "Sirtuin 3 Deficiency Is Associated with Inhibited Mitochondrial Function and Pulmonary Arterial Hypertension in Rodents and Humans", 《CELL METABOLISM》 *
ROBERT A. EGNATCHIK ET AL: "Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension", 《PULMONARY CIRCULATION》 *
尤启东: "《药物化学》", 31 January 2004, 化学工业出版社 *

Also Published As

Publication number Publication date
WO2018093936A1 (en) 2018-05-24
CN110177463B (zh) 2022-03-08
EP3541185A4 (en) 2020-06-24
AU2017362328B2 (en) 2022-03-31
ES2981715T3 (es) 2024-10-10
HUE067036T2 (hu) 2024-09-28
EP3541185C0 (en) 2024-04-24
AU2017362328A1 (en) 2019-06-27
EP4385576A3 (en) 2024-09-04
PL3541185T3 (pl) 2024-08-12
US20190314302A1 (en) 2019-10-17
JP2019536778A (ja) 2019-12-19
EP3541185A1 (en) 2019-09-25
EP3541185B1 (en) 2024-04-24
EP4385576A2 (en) 2024-06-19
JP7383285B2 (ja) 2023-11-20

Similar Documents

Publication Publication Date Title
Shelton et al. Glutamine targeting inhibits systemic metastasis in the VM‐M3 murine tumor model
US10525029B2 (en) Treatment of diseases associated with hepatic stellate cell activation using ammonia-lowering therapies
Aizenman et al. Interaction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-D-aspartate receptor redox modulatory site
CN110177463A (zh) 2-羟基苄胺在治疗和预防肺动脉高压中的应用
Burrows et al. Rapid and transient inhibition of mitochondrial function following methamphetamine or 3, 4-methylenedioxymethamphetamine administration
Maines et al. Efficacy of a novel sphingosine kinase inhibitor in experimental Crohn’s disease
Lebrecht et al. Role of mtDNA lesions in anthracycline cardiotoxicity
CN102481271A (zh) 利用表观代谢转变剂、多维细胞内分子或环境影响剂治疗代谢障碍的方法
Xue et al. Neuroprotective effects of hydrogen sulfide in Parkinson's disease animal models: methods and protocols
Joshi et al. Opportunities for future therapeutic interventions for hyperoxaluria: targeting oxidative stress
Dewangan et al. Past and Future of in-vitro and in-vivo Animal Models for Diabetes: A Review
Sulaimon et al. Pharmacological significance of MitoQ in ameliorating mitochondria-related diseases
CN103596570B (zh) 作为抗癌治疗的蛋白质靶的氧化鲨烯环化酶
CN106480028A (zh) TPO基因的saRNA分子及其应用
Swierkosz et al. L-glutamine inhibits the release of endothelium-derived relaxing factor from the rabbit aorta
Jestin et al. Mitochondrial disease disrupts hepatic allostasis and lowers the threshold for immune-mediated liver toxicity
JP2014156423A (ja) プロテアソーム活性化剤
Fu et al. A combined nanotherapeutic approach targeting farnesoid X receptor, ferroptosis, and fibrosis for nonalcoholic steatohepatitis treatment
Schmid Hepatotoxic drugs causing porphyria in man and animals
Al-Ezzy et al. Isolation of Malassezia Furfur and Evaluation of Ivermectin and Cal-vatia Craniiformis as A Novel Antifungal Agents for Pityriasis Versi-color with Special Refer to Risk Factors in Iraqi Patients
CN108113990B (zh) 一种治疗尿路感染的药物组合物
CN108295084A (zh) 清除海马神经元细胞中β-淀粉样蛋白的方法
US20210205289A1 (en) Use of 2,3,5-substituted thiophene compound for enhancement of radiotherapy
Abdalla et al. Curcumin combined with verapamil improve cardiovascular phenotype of a Williams-Beuren Syndrome mice model reducing oxidative stress
Gautheron et al. The flavonoid resokaempferol improves insulin secretion from healthy and dysfunctional pancreatic β‐cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant