CN110176526B - A white LED structure with extremely high barrier layer insertion layers - Google Patents

A white LED structure with extremely high barrier layer insertion layers Download PDF

Info

Publication number
CN110176526B
CN110176526B CN201910507115.2A CN201910507115A CN110176526B CN 110176526 B CN110176526 B CN 110176526B CN 201910507115 A CN201910507115 A CN 201910507115A CN 110176526 B CN110176526 B CN 110176526B
Authority
CN
China
Prior art keywords
layer
extremely high
white light
high barrier
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910507115.2A
Other languages
Chinese (zh)
Other versions
CN110176526A (en
Inventor
霍丽艳
滕龙
刘锐森
崔晓慧
林加城
周浩
方誉
谢祥彬
刘兆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Qianzhao Photoelectric Co ltd
Original Assignee
Jiangxi Qianzhao Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Qianzhao Photoelectric Co ltd filed Critical Jiangxi Qianzhao Photoelectric Co ltd
Priority to CN201910507115.2A priority Critical patent/CN110176526B/en
Publication of CN110176526A publication Critical patent/CN110176526A/en
Application granted granted Critical
Publication of CN110176526B publication Critical patent/CN110176526B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • H10H20/8513Wavelength conversion materials having two or more wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/819Bodies characterised by their shape, e.g. curved or truncated substrates

Landscapes

  • Led Devices (AREA)

Abstract

The invention improves the white light LED structure with the extremely high barrier layer insertion layer, and the white light LED structure with the extremely high barrier layer insertion layer enables the white light LED structure to simultaneously excite blue light and yellow light by generating the dual-band MQW layer on the substrate, the blue light and the yellow light are mixed to generate white light, and the extremely high barrier layer insertion layer is inserted into the blue light band MQW layer (two sides or one side of a trap), so that the problem that a blue light spectrum cannot be excited due to the problem of energy bands of a blue light emitting region can be avoided, and the white light LED with high luminous efficiency, good stability and uniform chromaticity can be successfully grown. Compared with the existing white light LED technology, the fluorescent powder is not used, so that the packaging process can be reduced, and the stability problem caused by aging of the fluorescent powder can be reduced.

Description

一种带有极高垒层插入层的白光LED结构A white LED structure with extremely high barrier layer insertion layers

技术领域Technical field

本发明涉及LED技术领域,更具体地说,涉及一种带有极高垒层插入层的白光LED结构。The present invention relates to the field of LED technology, and more specifically, to a white light LED structure with an extremely high barrier layer insertion layer.

背景技术Background technique

可见光光谱的波长范围为380nm-760nm,是人眼可感受到的七色光,即红、橙、黄、绿、青、蓝、紫,但该七色光都是一种单色光,由于白色光不是单色光,因此在可见光的光谱中没有白色光,其是由多种单色光合成的复合光。The wavelength range of the visible light spectrum is 380nm-760nm. It is seven colors of light that can be felt by the human eye, namely red, orange, yellow, green, cyan, blue, and violet. However, the seven colors of light are all monochromatic light. Since white light It is not monochromatic light, so there is no white light in the spectrum of visible light. It is a composite light synthesized from multiple monochromatic lights.

那么,要使LED发出白光,它的光谱特性应包括整个可见的光谱范围。根据对可见光的研究,人眼所能见的白光,至少需要两种光的混合,即二波长发光(蓝光+黄光)或三波长发光(蓝光+绿光+红光)的模式。Then, for an LED to emit white light, its spectral characteristics should include the entire visible spectral range. According to the research on visible light, the white light that the human eye can see requires the mixing of at least two kinds of light, that is, a two-wavelength light emission (blue light + yellow light) or a three-wavelength light emission (blue light + green light + red light) mode.

对于一般照明,在工艺结构上,白光LED通常采用两种方法形成,第一种是利用“蓝光技术”与荧光粉配合形成白光;第二种是多种单色光混合方法。这两种方法都已能成功产生曝光器件。第一种方法产生的白光系统,当荧光粉受蓝光激发后发出黄色光,蓝光和黄光混合形成白光。第二种方法采用不同色光的芯片封装在一起,通过各色光混合而产生白光。For general lighting, in terms of process structure, white LEDs are usually formed using two methods. The first is to use "blue light technology" and phosphors to form white light; the second is to mix multiple monochromatic lights. Both methods have successfully produced exposed devices. The white light system produced by the first method emits yellow light when the phosphor is excited by blue light, and the blue light and yellow light mix to form white light. The second method uses chips of different colors of light to be packaged together, and white light is generated by mixing the colors of light.

其中,第一种方法荧光粉转换的白光LED为最常用的方法,但是由于白光降频导致的光效损失为10%-30%,另外存在荧光粉老化的稳定性问题和包装成本问题,以及对GaN基LED的依赖性问题。第二种方法的生产工序比较复杂,成产成本高。Among them, the first method, phosphor-converted white light LED, is the most commonly used method, but the loss of light efficiency due to white light frequency reduction is 10%-30%. In addition, there are stability issues with phosphor aging and packaging cost issues, and Dependence on GaN-based LEDs. The production process of the second method is more complicated and the production cost is high.

因此,如何提供高效率和低成本的白光LED是本领域技术人员亟待解决的问题。Therefore, how to provide high-efficiency and low-cost white light LEDs is an urgent problem that needs to be solved by those skilled in the art.

发明内容Contents of the invention

有鉴于此,为解决上述问题,本发明提供一种带有极高垒层插入层的白光LED结构,技术方案如下:In view of this, in order to solve the above problems, the present invention provides a white light LED structure with an extremely high barrier layer insertion layer. The technical solution is as follows:

一种带有极高垒层插入层的白光LED结构,所述白光LED结构包括:A white light LED structure with an extremely high barrier layer insertion layer, the white light LED structure includes:

衬底;substrate;

依次设置在所述衬底上的N型层、双波段MQW层和P型层;An N-type layer, a dual-band MQW layer and a P-type layer are arranged on the substrate in sequence;

其中,所述双波段MQW层包括:相邻所述衬底的依次堆叠设置的至少一层黄光波段MQW层,以及相邻所述P型层的依次堆叠设置的至少一层蓝光波段MQW层;Wherein, the dual-band MQW layer includes: at least one yellow-band MQW layer that is stacked in sequence adjacent to the substrate, and at least one blue-band MQW layer that is stacked in sequence adjacent to the P-type layer. ;

所述黄光波段MQW层包括在第一方向上依次设置的第一功能层和第二功能层,所述蓝光波段MQW层包括在所述第一方向上依次设置的第三功能层和第四功能层,所述第一方向垂直于所述衬底,且由所述衬底指向所述P型层;The yellow light band MQW layer includes a first functional layer and a second functional layer arranged sequentially in the first direction, and the blue light band MQW layer includes a third functional layer and a fourth functional layer arranged sequentially in the first direction. Functional layer, the first direction is perpendicular to the substrate and directed from the substrate to the P-type layer;

与所述第四功能层依次交叠设置极高垒层插入层。An extremely high barrier layer insertion layer is provided sequentially overlapping with the fourth functional layer.

优选的,在上述白光LED结构中,所述衬底为三元InxGa(1-x)N衬底,其中,0.05<x<0.4,包括端点值。Preferably, in the above white light LED structure, the substrate is a ternary In x Ga (1-x) N substrate, where 0.05<x<0.4, including endpoint values.

优选的,在上述白光LED结构中,所述N型层为InxGa(1-x)N层,其中,0.05<x<0.4,包括端点值;Preferably, in the above white light LED structure, the N-type layer is an In x Ga (1-x) N layer, where 0.05<x<0.4, including endpoint values;

所述N型层的掺杂元素为Si和In,其中,Si的掺杂浓度为2×1018/cm3-9×1018/cm3,包括端点值;The doping elements of the N-type layer are Si and In, where the doping concentration of Si is 2×10 18 /cm 3 -9×10 18 /cm 3 , including endpoint values;

所述N型层的厚度为0.2μm-1μm,包括端点值。The thickness of the N-type layer is 0.2 μm-1 μm, inclusive.

优选的,在上述白光LED结构中,所述双波段MQW层的层数为2层-8层,包括端点值;Preferably, in the above white light LED structure, the number of layers of the dual-band MQW layer is 2-8 layers, including endpoint values;

其中,所述黄光波段MQW层的层数为1层-7层,包括端点值;Wherein, the number of layers of the yellow light band MQW layer is 1-7 layers, including endpoint values;

所述蓝光波段MQW层的层数为1层-7层;包括端点值。The number of layers of the blue-light band MQW layer ranges from 1 to 7, including endpoint values.

优选的,在上述白光LED结构中,所述第一功能层为InxGa(1-x)N层,其中,0.2<x<0.4,包括端点值;Preferably, in the above white light LED structure, the first functional layer is an In x Ga (1-x) N layer, where 0.2<x<0.4, including endpoint values;

所述第一功能层的厚度为3nm-10nm,包括端点值。The thickness of the first functional layer is 3nm-10nm, inclusive.

优选的,在上述白光LED结构中,所述第二功能层为InyGa(1-y)N层,其中,0.05<y<0.4,包括端点值;Preferably, in the above white light LED structure, the second functional layer is an In y Ga (1-y) N layer, where 0.05<y<0.4, including endpoint values;

所述第二功能层的厚度为5nm-15nm,包括端点值。The thickness of the second functional layer is 5nm-15nm, inclusive.

优选的,在上述白光LED结构中,所述第三功能层为InxGa(1-x)N层,其中,0.10<x<0.3,包括端点值;Preferably, in the above white light LED structure, the third functional layer is an In x Ga (1-x) N layer, where 0.10<x<0.3, including endpoint values;

所述第三功能层的厚度为3nm-10nm,包括端点值。The thickness of the third functional layer is 3nm-10nm, inclusive.

优选的,在上述白光LED结构中,所述第四功能层为InyGa(1-y)N层,其中,0.05<y<0.4,包括端点值;Preferably, in the above white light LED structure, the fourth functional layer is an In y Ga (1-y) N layer, where 0.05<y<0.4, including endpoint values;

所述第四功能层的厚度为5nm-15nm,包括端点值。The thickness of the fourth functional layer is 5nm-15nm, inclusive.

优选的,在上述白光LED结构中,所述极高垒层插入层的层数为1层-5层,包括端点值;Preferably, in the above-mentioned white light LED structure, the number of layers of the extremely high barrier layer insertion layer is 1-5 layers, including endpoint values;

所述极高垒层插入层的厚度为0.5nm-2nm,包括端点值;The thickness of the extremely high barrier layer insertion layer is 0.5nm-2nm, including endpoint values;

所述极高垒层插入层为AlGaN极高垒层插入层或AlInGaN极高垒层插入层或AlN极高垒层插入层,其中,Al组分为0.005-0.04,In组分为0.05-0.4。The extremely high barrier layer insertion layer is an AlGaN extremely high barrier layer insertion layer or an AlInGaN extremely high barrier layer insertion layer or an AlN extremely high barrier layer insertion layer, wherein the Al component is 0.005-0.04, and the In component is 0.05-0.4 .

优选的,在上述白光LED结构中,所述P型层为InxGa(1-x)N层,其中,0.05<x<0.4,包括端点值;Preferably, in the above white light LED structure, the P-type layer is an In x Ga (1-x) N layer, where 0.05<x<0.4, including endpoint values;

所述P型层的掺杂元素为Mg和In,其中,Si的掺杂浓度为1×1018/cm3-8×1018/cm3,包括端点值;The doping elements of the P-type layer are Mg and In, wherein the doping concentration of Si is 1×10 18 /cm 3 -8×10 18 /cm 3 , including endpoint values;

所述P型层的厚度为0.2μm-1μm,包括端点值。The thickness of the P-type layer is 0.2 μm-1 μm, inclusive.

相较于现有技术,本发明实现的有益效果为:Compared with the existing technology, the beneficial effects achieved by the present invention are:

该带有极高垒层插入层的白光LED结构通过在衬底上生成双波段MQW层,以使所述白光LED结构同时激发蓝光和黄光,蓝光和黄光混合产生白光,并且在蓝光波段MQW层中(阱两侧或一侧)插入极高垒层插入层的结构,可以避免因蓝光发光区能带的问题,导致蓝光光谱不能激发的问题,进而成功生长出发光效率高、稳定性好和色度均匀的白光LED。This white LED structure with an extremely high barrier layer insertion layer generates a dual-band MQW layer on the substrate, so that the white LED structure excites blue light and yellow light at the same time, and the blue light and yellow light are mixed to produce white light, and in the blue light band The structure of inserting an extremely high barrier layer into the MQW layer (on both sides or one side of the well) can avoid the problem of inability to excite the blue light spectrum due to the energy band problem of the blue light emitting region, and then successfully grow high luminous efficiency and stability. Good and uniform chromaticity white LED.

与现有的白光LED技术相比,本申请不用荧光光粉,这样既可以减少封装的工序,又能减少因荧光粉老化产生的稳定性问题。Compared with the existing white light LED technology, this application does not use fluorescent powder, which can not only reduce the packaging process, but also reduce the stability problems caused by the aging of the fluorescent powder.

附图说明Description of the drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on the provided drawings without exerting creative efforts.

图1为本发明实施例提供的一种带有极高垒层插入层的白光LED结构的结构示意图;Figure 1 is a schematic structural diagram of a white LED structure with an extremely high barrier layer insertion layer provided by an embodiment of the present invention;

图2为本发明实施例提供的另一种带有极高垒层插入层的白光LED结构的结构示意图;Figure 2 is a schematic structural diagram of another white light LED structure with an extremely high barrier layer insertion layer provided by an embodiment of the present invention;

图3为本发明实施例提供的又一种带有极高垒层插入层的白光LED结构的结构示意图;Figure 3 is a schematic structural diagram of another white LED structure with an extremely high barrier layer insertion layer provided by an embodiment of the present invention;

图4为本发明实施例提供的又一种带有极高垒层插入层的白光LED结构的结构示意图;Figure 4 is a schematic structural diagram of another white LED structure with an extremely high barrier layer insertion layer provided by an embodiment of the present invention;

图5为本发明实施例提供的又一种带有极高垒层插入层的白光LED结构的结构示意图。FIG. 5 is a schematic structural diagram of another white LED structure with an extremely high barrier layer insertion layer provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more obvious and understandable, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

参考图1,图1为本发明实施例提供的一种带有极高垒层插入层的白光LED结构的结构示意图,所述白光LED结构包括:Referring to Figure 1, Figure 1 is a schematic structural diagram of a white light LED structure with an extremely high barrier layer insertion layer provided by an embodiment of the present invention. The white light LED structure includes:

衬底11;substrate 11;

依次设置在所述衬底11上的N型层12、双波段MQW层13和P型层14;The N-type layer 12, the dual-band MQW layer 13 and the P-type layer 14 are sequentially provided on the substrate 11;

其中,所述双波段MQW层13包括:相邻所述衬底11的依次堆叠设置的至少一层黄光波段MQW层15,以及相邻所述P型层14的依次堆叠设置的至少一层蓝光波段MQW层16;Wherein, the dual-band MQW layer 13 includes: at least one yellow-band MQW layer 15 that is stacked in sequence adjacent to the substrate 11, and at least one layer of yellow-band MQW layer 15 that is stacked in sequence adjacent to the P-type layer 14. Blue band MQW layer 16;

所述黄光波段MQW层15包括在第一方向上依次设置的第一功能层17和第二功能层18,所述蓝光波段MQW层16包括在所述第一方向上依次设置的第三功能层19和第四功能层20,所述第一方向垂直于所述衬底11,且由所述衬底11指向所述P型层14;The yellow light band MQW layer 15 includes a first functional layer 17 and a second functional layer 18 arranged sequentially in the first direction, and the blue light band MQW layer 16 includes a third functional layer arranged sequentially in the first direction. layer 19 and the fourth functional layer 20, the first direction is perpendicular to the substrate 11 and directed from the substrate 11 to the P-type layer 14;

与所述第四功能层20依次交叠设置极高垒层插入层21。A very high barrier layer insertion layer 21 is provided sequentially overlapping the fourth functional layer 20 .

在该实施例中,该带有极高垒层插入层的白光LED结构通过在衬底11上生成双波段MQW层13,以使所述白光LED结构同时激发蓝光和黄光,蓝光和黄光混合产生白光,并且在蓝光波段MQW层16中(阱两侧或一侧)插入极高垒层插入层21的结构,可以避免因蓝光发光区能带的问题,导致蓝光光谱不能激发的问题,进而成功生长出发光效率高、稳定性好和色度均匀的白光LED。In this embodiment, the white LED structure with an extremely high barrier layer insertion layer is generated by generating a dual-band MQW layer 13 on the substrate 11, so that the white LED structure simultaneously excites blue light and yellow light, and blue light and yellow light. Mixing produces white light, and inserting a very high barrier layer insertion layer 21 into the blue light band MQW layer 16 (on both sides or one side of the well) can avoid the problem that the blue light spectrum cannot be excited due to the energy band problem of the blue light emitting region. Then, white light LEDs with high luminous efficiency, good stability and uniform chromaticity were successfully grown.

与现有的白光LED技术相比,本申请不用荧光光粉,这样既可以减少封装的工序,又能减少因荧光粉老化产生的稳定性问题。Compared with the existing white light LED technology, this application does not use fluorescent powder, which can not only reduce the packaging process, but also reduce the stability problems caused by the aging of the fluorescent powder.

进一步的,基于本发明上述实施例,所述衬底11包括但不限定为三元InxGa(1-x)N衬底,其中,0.05<x<0.4,包括端点值。Further, based on the above embodiments of the present invention, the substrate 11 includes but is not limited to a ternary In x Ga (1-x) N substrate, where 0.05<x<0.4 includes endpoint values.

进一步的,基于本发明上述实施例,所述N型层12为InxGa(1-x)N层,其中,0.05<x<0.4,包括端点值;Further, based on the above embodiments of the present invention, the N-type layer 12 is an In x Ga (1-x) N layer, where 0.05<x<0.4, including endpoint values;

所述N型层12的掺杂元素为Si和In,其中,Si的掺杂浓度为2×1018/cm3-9×1018/cm3,包括端点值;The doping elements of the N-type layer 12 are Si and In, where the doping concentration of Si is 2×10 18 /cm 3 -9×10 18 /cm 3 , including endpoint values;

所述N型层12的厚度为0.2μm-1μm,包括端点值。The thickness of the N-type layer 12 is 0.2 μm-1 μm, inclusive.

需要说明的是,所述N型层12中In的浓度与所述三元InxGa(1-x)N衬底中的In浓度相同。It should be noted that the In concentration in the N-type layer 12 is the same as the In concentration in the ternary In x Ga (1-x) N substrate.

进一步的,基于本发明上述实施例,所述双波段MQW层13的层数为2层-8层,包括端点值;Further, based on the above embodiments of the present invention, the number of layers of the dual-band MQW layer 13 is 2-8 layers, including endpoint values;

其中,所述黄光波段MQW层15的层数为1层-7层,包括端点值;Wherein, the number of layers of the yellow light band MQW layer 15 is 1-7 layers, including endpoint values;

所述蓝光波段MQW层16的层数为1层-7层。包括端点值。The number of layers of the blue-band MQW layer 16 ranges from 1 to 7 layers. Include endpoint values.

在该实施例中,例如,所述黄光波段MQW层15的层数为1层,所述蓝光波段MQW层16的层数为3层。In this embodiment, for example, the number of layers of the yellow light band MQW layer 15 is one layer, and the number of layers of the blue light band MQW layer 16 is three layers.

进一步的,基于本发明上述实施例,所述第一功能层17为InxGa(1-x)N层,其中,0.2<x<0.4,包括端点值;Further, based on the above embodiments of the present invention, the first functional layer 17 is an In x Ga (1-x) N layer, where 0.2<x<0.4, including endpoint values;

所述第一功能层17的厚度为3nm-10nm,包括端点值。The thickness of the first functional layer 17 is 3 nm-10 nm, inclusive.

在该实施例中,所述第一功能层17的厚度为5nm或7nm或9nm。In this embodiment, the thickness of the first functional layer 17 is 5 nm or 7 nm or 9 nm.

进一步的,基于本发明上述实施例,所述第二功能层18为InyGa(1-y)N层,其中,0.05<y<0.4,包括端点值;Further, based on the above embodiment of the present invention, the second functional layer 18 is an In y Ga (1-y) N layer, where 0.05<y<0.4, including endpoint values;

所述第二功能层18的厚度为5nm-15nm,包括端点值。The thickness of the second functional layer 18 is 5 nm-15 nm, inclusive.

在该实施例中,所述第二功能层18中In的组分和所述衬底中In的组分相同,所述第二功能层18的厚度为8nm或10nm或12nm。In this embodiment, the composition of In in the second functional layer 18 is the same as the composition of In in the substrate, and the thickness of the second functional layer 18 is 8 nm, 10 nm, or 12 nm.

需要说明的是,所述第二功能层18可以掺杂Si也可以不掺杂Si,当掺杂Si时,Si的掺杂浓度为2×1018/cm3-9×1018/cm3,包括端点值。It should be noted that the second functional layer 18 may be doped with Si or not. When doped with Si, the doping concentration of Si is 2×10 18 /cm 3 -9×10 18 /cm 3 , including endpoint values.

进一步的,基于本发明上述实施例,所述第三功能层19为InxGa(1-x)N层,其中,0.10<x<0.3,包括端点值;Further, based on the above embodiment of the present invention, the third functional layer 19 is an In x Ga (1-x) N layer, where 0.10<x<0.3, including endpoint values;

所述第三功能层19的厚度为3nm-10nm,包括端点值。The thickness of the third functional layer 19 is 3 nm-10 nm, inclusive.

在该实施例中,所述第三功能层19的厚度为5nm或7nm或9nm。In this embodiment, the thickness of the third functional layer 19 is 5 nm or 7 nm or 9 nm.

进一步的,基于本发明上述实施例,所述第四功能层20为InyGa(1-y)N层,其中,0.05<y<0.4,包括端点值;Further, based on the above embodiments of the present invention, the fourth functional layer 20 is an In y Ga (1-y) N layer, where 0.05<y<0.4, including endpoint values;

所述第四功能层20的厚度为5nm-15nm,包括端点值。The thickness of the fourth functional layer 20 is 5 nm-15 nm, inclusive.

在该实施例中,所述第四功能层20中In的组分和所述衬底中In的组分相同,所述第四功能层20的厚度为8nm或10nm或12nm。In this embodiment, the composition of In in the fourth functional layer 20 is the same as the composition of In in the substrate, and the thickness of the fourth functional layer 20 is 8 nm, 10 nm, or 12 nm.

需要说明的是,所述第四功能层20可以掺杂Si也可以不掺杂Si,当掺杂Si时,Si的掺杂浓度为2×1018/cm3-9×1018/cm3,包括端点值。It should be noted that the fourth functional layer 20 may be doped with Si or not. When doped with Si, the doping concentration of Si is 2×10 18 /cm 3 -9×10 18 /cm 3 , including endpoint values.

进一步的,基于本发明上述实施例,所述极高垒层插入层21的层数为1层-5层,包括端点值;Further, based on the above embodiments of the present invention, the number of layers of the extremely high barrier layer insertion layer 21 is 1-5 layers, including endpoint values;

所述极高垒层插入层21的厚度为0.5nm-2nm,包括端点值;The thickness of the extremely high barrier layer insertion layer 21 is 0.5nm-2nm, including endpoint values;

所述极高垒层插入层21为AlGaN极高垒层插入层或AlInGaN极高垒层插入层或AlN极高垒层插入层或N-AlGaN极高垒层插入层,其中,Al组分为0.005-0.04,In组分为0.05-0.4。The extremely high barrier layer insertion layer 21 is an AlGaN extremely high barrier layer insertion layer or an AlInGaN extremely high barrier layer insertion layer or an AlN extremely high barrier layer insertion layer or an N-AlGaN extremely high barrier layer insertion layer, wherein the Al component is 0.005-0.04, In component is 0.05-0.4.

在该实施例中,所述极高垒层插入层21中In的组分和所述衬底中In的组分相同,所述极高垒层插入层21的厚度为0.7nm或1nm或1.3nm。In this embodiment, the composition of In in the extremely high barrier layer insertion layer 21 is the same as the composition of In in the substrate, and the thickness of the extremely high barrier layer insertion layer 21 is 0.7nm or 1nm or 1.3 nm.

进一步的,基于本发明上述实施例,所述P型层14为InxGa(1-x)N层,其中,0.05<x<0.4,包括端点值;Further, based on the above embodiments of the present invention, the P-type layer 14 is an In x Ga (1-x) N layer, where 0.05<x<0.4, including endpoint values;

所述P型层14的掺杂元素为Mg和In,其中,Si的掺杂浓度为1×1018/cm3-8×1018/cm3,包括端点值;The doping elements of the P-type layer 14 are Mg and In, wherein the doping concentration of Si is 1×10 18 /cm 3 -8×10 18 /cm 3 , including endpoint values;

所述P型层14的厚度为0.2μm-1μm,包括端点值。The thickness of the P-type layer 14 is 0.2 μm-1 μm, inclusive.

在该实施例中,所述P型层14中In的组分和所述衬底11中In的组分相同,所述P型层14的厚度为0.4μm或0.6μm或0.8μm。In this embodiment, the composition of In in the P-type layer 14 is the same as the composition of In in the substrate 11 , and the thickness of the P-type layer 14 is 0.4 μm, 0.6 μm, or 0.8 μm.

基于本发明上述全部实施例,下面以具体实施例为举例的形式进行阐释。Based on all the above-mentioned embodiments of the present invention, specific embodiments will be explained below in the form of examples.

实施例一Embodiment 1

参考图2,图2为本发明实施例提供的另一种带有极高垒层插入层的白光LED结构的结构示意图。Referring to Figure 2, Figure 2 is a schematic structural diagram of another white light LED structure with an extremely high barrier layer insertion layer provided by an embodiment of the present invention.

步骤1:采用设备MOCVD,以三甲基镓TMGa、三乙基镓TEGa、氨气NH3为Ga源、N源,N2为载气,N型和P型掺杂源分别是硅烷SiH4和二茂镁CP2Mg,使用InGaN三元衬底,In组分为0.1。Step 1: Use MOCVD equipment, use trimethylgallium TMGa, triethylgallium TEGa, ammonia NH 3 as Ga source, N source, N 2 as carrier gas, N-type and P-type doping sources are silane SiH 4 respectively and CP 2 Mg, using an InGaN ternary substrate with an In composition of 0.1.

步骤2:将InGaN衬底11放入MOCVD反应室中,通入TMGa、TMIn、SIH4、NH3生长N型层12,Si的浓度为6×1018/cm3,In组分为0.1;厚度0.5μm。Step 2: Place the InGaN substrate 11 into the MOCVD reaction chamber, pass in TMGa, TMIn, SIH 4 and NH 3 to grow the N-type layer 12. The concentration of Si is 6×10 18 /cm 3 and the In composition is 0.1; Thickness 0.5μm.

步骤3:通入TEGa、TMIn、NH3生长第一功能层17,厚度4nm,In组分0.35。Step 3: Pass TEGa, TMIn, and NH 3 to grow the first functional layer 17 with a thickness of 4 nm and an In composition of 0.35.

步骤4:通入TEGa、TMIn、NH3生长第二功能层18,厚度6nm,In组分0.1,SiH4的浓度为5×1018/cm3Step 4: Pass TEGa, TMIn, and NH 3 to grow the second functional layer 18 with a thickness of 6 nm, an In component of 0.1, and a concentration of SiH 4 of 5×10 18 /cm 3 .

步骤5:通入TEGa、TMIn、NH3生长第三功能层19,厚度4nm,In组分0.2。Step 5: Pass TEGa, TMIn, and NH 3 to grow the third functional layer 19 with a thickness of 4 nm and an In composition of 0.2.

步骤6:通入TEGa、TMIn、NH3、SIH4生长第四功能层20,厚度2nm,In组分0.1,SiH4的浓度为5×1018/cm3Step 6: Pass TEGa, TMIn, NH 3 and SIH 4 to grow the fourth functional layer 20, with a thickness of 2 nm, an In component of 0.1, and a concentration of SiH 4 of 5×10 18 /cm 3 .

步骤7:通入TEGa、TMIn、NH3、TMAl生长极高垒层插入层AlInGaN结构21,厚度为1nm,Al组分为0.1。Step 7: Pass TEGa, TMIn, NH 3 and TMAl to grow an extremely high barrier layer insertion layer AlInGaN structure 21 with a thickness of 1 nm and an Al composition of 0.1.

步骤8:重复步骤6和步骤7。Step 8: Repeat steps 6 and 7.

步骤9:通入TEGa、TMIn、NH3生长第三功能层19,厚度4nm,In组分0.2。Step 9: Pass TEGa, TMIn, and NH 3 to grow the third functional layer 19 with a thickness of 4 nm and an In composition of 0.2.

步骤10:通入TEGa、TMIn、NH3、SIH4生长第四功能层20,厚度2nm,In组分0.1,SiH4的浓度为5×1018/cm3Step 10: Pass TEGa, TMIn, NH 3 and SIH 4 to grow the fourth functional layer 20, with a thickness of 2 nm, an In component of 0.1, and a concentration of SiH 4 of 5×10 18 /cm 3 .

步骤11:通入TEGa、TMIn、NH3、TMAl生长极高垒层插入层AlInGaN结构21,厚度为1nm,Al组分为0.1。Step 11: Pass TEGa, TMIn, NH 3 and TMAl to grow an extremely high barrier layer insertion layer AlInGaN structure 21 with a thickness of 1 nm and an Al composition of 0.1.

步骤12:重复步骤10和步骤11。Step 12: Repeat steps 10 and 11.

步骤13:通入TEGa、TMIn、NH3、TMAl生长电流阻挡层22,厚度为0.02nm,Al组分为0.3。Step 13: Pass TEGa, TMIn, NH 3 and TMAl to grow the current blocking layer 22 with a thickness of 0.02nm and an Al composition of 0.3.

步骤14:通入TEGa、TMIn、NH3、Mg生长P型层14,其结构为P-InGaN,Mg的浓度为5×1018/cm3,In的浓度0.1,厚度0.6μm。Step 14: Pass in TEGa, TMIn, NH 3 and Mg to grow the P-type layer 14. Its structure is P-InGaN, the concentration of Mg is 5×10 18 /cm 3 , the concentration of In is 0.1, and the thickness is 0.6 μm.

实施例二Embodiment 2

参考图3,图3为本发明实施例提供的又一种带有极高垒层插入层的白光LED结构的结构示意图。Referring to FIG. 3 , FIG. 3 is a schematic structural diagram of another white light LED structure with an extremely high barrier layer insertion layer provided by an embodiment of the present invention.

步骤1:采用设备MOCVD,以三甲基镓TMGa、三乙基镓TEGa、氨气NH3为Ga源、N源,N2为载气,N型和P型掺杂源分别是硅烷SiH4和二茂镁CP2Mg,使用InGaN三元衬底,In组分为0.1。Step 1: Use MOCVD equipment, use trimethylgallium TMGa, triethylgallium TEGa, ammonia NH 3 as Ga source, N source, N 2 as carrier gas, N-type and P-type doping sources are silane SiH 4 respectively and CP 2 Mg, using an InGaN ternary substrate with an In composition of 0.1.

步骤2:将InGaN衬底11放入MOCVD反应室中,通入TMGa、TMIn、SIH4、NH3生长N型层12,Si的浓度为6×1018/cm3,In组分为0.1;厚度0.5μm。Step 2: Put the InGaN substrate 11 into the MOCVD reaction chamber, pass in TMGa, TMIn, SIH4, and NH 3 to grow the N-type layer 12. The concentration of Si is 6×10 18 /cm 3 and the In composition is 0.1; thickness 0.5μm.

步骤3:通入TEGa、TMIn、NH3生长第一功能层17,厚度4nm,In组分0.35。Step 3: Pass TEGa, TMIn, and NH 3 to grow the first functional layer 17 with a thickness of 4 nm and an In composition of 0.35.

步骤4:通入TEGa、TMIn、NH3生长第二功能层18,厚度6nm,In组分0.1,SiH4的浓度为5×1018/cm3Step 4: Pass TEGa, TMIn, and NH 3 to grow the second functional layer 18 with a thickness of 6 nm, an In composition of 0.1, and a concentration of SiH 4 of 5×10 18 /cm 3 .

步骤5:通入TEGa、TMIn、NH3,生长第三功能层19,厚度4nm,In组分0.2。Step 5: Pass in TEGa, TMIn, and NH 3 to grow the third functional layer 19 with a thickness of 4 nm and an In composition of 0.2.

步骤6:通入TEGa、TMIn、NH3、SIH4生长第四功能层20,厚度2nm,In组分0.1,SiH4的浓度为5×1018/cm3Step 6: Pass TEGa, TMIn, NH 3 and SIH 4 to grow the fourth functional layer 20, with a thickness of 2 nm, an In composition of 0.1, and a concentration of SiH 4 of 5×10 18 /cm 3 .

步骤7:通入TEGa、TMIn、NH3、TMAl生长极高垒层插入层AlN结构21,厚度为1nm,Al组分为0.1。Step 7: Pass TEGa, TMIn, NH 3 and TMAl to grow an extremely high barrier layer insertion layer AlN structure 21 with a thickness of 1 nm and an Al composition of 0.1.

步骤8:重复步骤6和步骤7。Step 8: Repeat steps 6 and 7.

步骤9:通入TEGa、TMIn、NH3生长第三功能层19,厚度4nm,In组分0.2。Step 9: Pass TEGa, TMIn, and NH 3 to grow the third functional layer 19 with a thickness of 4 nm and an In composition of 0.2.

步骤10:通入TEGa、TMIn、NH3、SIH4生长第四功能层20,厚度2nm,In组分0.1,SiH4的浓度为5×1018/cm3Step 10: Pass TEGa, TMIn, NH 3 and SIH 4 to grow the fourth functional layer 20, with a thickness of 2 nm, an In component of 0.1, and a concentration of SiH 4 of 5×10 18 /cm 3 .

步骤11:通入TEGa、TMIn、NH3、TMAl生长1nm的极高垒层插入层AlN结构21,厚度为1nm,Al组分为0.1。Step 11: Pass TEGa, TMIn, NH 3 and TMAl to grow a 1 nm extremely high barrier layer insertion layer AlN structure 21 with a thickness of 1 nm and an Al composition of 0.1.

步骤12:重复步骤10和步骤11。Step 12: Repeat steps 10 and 11.

步骤13:通入TEGa、TMIn、NH3、TMAl生长电流阻挡层22,厚度为0.02nm,Al组分为0.3。Step 13: Pass TEGa, TMIn, NH3, and TMAl to grow the current blocking layer 22 with a thickness of 0.02 nm and an Al composition of 0.3.

步骤14:通入TEGa、TMIn、NH3、Mg生长P型层14,其结构为P-InGaN,Mg的浓度为5×1018/cm3,In的浓度0.1,厚度0.6μm。Step 14: Pass in TEGa, TMIn, NH 3 and Mg to grow the P-type layer 14. Its structure is P-InGaN, the concentration of Mg is 5×10 18 /cm 3 , the concentration of In is 0.1, and the thickness is 0.6 μm.

通过实施例一和实施例二的对比可知,其极高垒层插入层不同,但目的都是在蓝光垒处,通过掺杂Al的方式使蓝光的阱垒能级差提高,以提高载流子的限制作用,增加蓝光的发光概率。From the comparison between Embodiment 1 and Embodiment 2, it can be seen that the extremely high barrier layer insertion layer is different, but the purpose is to increase the well barrier energy level difference of blue light by doping Al at the blue light barrier to increase carriers. The limiting effect increases the probability of blue light emission.

实施例三Embodiment 3

参考图4,图4为本发明实施例提供的又一种带有极高垒层插入层的白光LED结构的结构示意图。Referring to FIG. 4 , FIG. 4 is a schematic structural diagram of another white light LED structure with an extremely high barrier layer insertion layer provided by an embodiment of the present invention.

步骤1:采用设备MOCVD,以三甲基镓TMGa、三乙基镓TEGa、氨气NH3为Ga源、N源,N2为载气,N型和P型掺杂源分别是硅烷SiH4和二茂镁CP2Mg,使用InGaN三元衬底,In组分为0.1。Step 1: Use MOCVD equipment, use trimethylgallium TMGa, triethylgallium TEGa, ammonia NH 3 as Ga source, N source, N 2 as carrier gas, N-type and P-type doping sources are silane SiH 4 respectively and CP 2 Mg, using an InGaN ternary substrate with an In composition of 0.1.

步骤2:将InGaN衬底11放入MOCVD反应室中,通入TMGa、TMIn、SIH4、NH3生长N型层12,Si的浓度为6×1018/cm3,In组分为0.1;厚度0.5μm。Step 2: Place the InGaN substrate 11 into the MOCVD reaction chamber, pass in TMGa, TMIn, SIH 4 and NH 3 to grow the N-type layer 12. The concentration of Si is 6×10 18 /cm 3 and the In composition is 0.1; Thickness 0.5μm.

步骤3:通入TEGa、TMIn、NH3生长第一功能层17,厚度4nm,In组分0.35。Step 3: Pass TEGa, TMIn, and NH 3 to grow the first functional layer 17 with a thickness of 4 nm and an In composition of 0.35.

步骤4:通入TEGa、TMIn、NH3生长第二功能层18,厚度6nm,In组分0.1,SiH4的浓度为5×1018/cm3Step 4: Pass TEGa, TMIn, and NH 3 to grow the second functional layer 18 with a thickness of 6 nm, an In component of 0.1, and a concentration of SiH 4 of 5×10 18 /cm 3 .

步骤5:通入TEGa、TMIn、NH3生长第三功能层19,厚度4nm,In组分0.2。Step 5: Pass TEGa, TMIn, and NH 3 to grow the third functional layer 19 with a thickness of 4 nm and an In composition of 0.2.

步骤6:通入TEGa、TMIn、NH3、TMAl生长极高垒层插入层AlInGaN结构21,厚度为8nm,Al组分为0.1。Step 6: Pass TEGa, TMIn, NH 3 and TMAl to grow an extremely high barrier layer insertion layer AlInGaN structure 21 with a thickness of 8 nm and an Al composition of 0.1.

步骤7:通入TEGa、TMIn、NH3生长第三功能层19,厚度4nm,In组分0.2。Step 7: Pass TEGa, TMIn, and NH 3 to grow the third functional layer 19 with a thickness of 4 nm and an In composition of 0.2.

步骤8:通入TEGa、TMIn、NH3、TMAl生长极高垒层插入层AlInGaN结构21,厚度为8nm,Al组分为0.1。Step 8: Pass TEGa, TMIn, NH 3 and TMAl to grow an extremely high barrier layer insertion layer AlInGaN structure 21 with a thickness of 8 nm and an Al composition of 0.1.

步骤9:通入TEGa、TMIn、NH3、TMAl生长电流阻挡层22,厚度为0.02nm,Al组分为0.3。Step 9: Pass TEGa, TMIn, NH 3 and TMAl to grow the current blocking layer 22 with a thickness of 0.02nm and an Al composition of 0.3.

步骤10:通入TEGa、TMIn、NH3、Mg生长P型层14,其结构为P-InGaN,Mg的浓度为5×1018/cm3,In的浓度0.1,厚度0.6μm。Step 10: Pass in TEGa, TMIn, NH 3 and Mg to grow the P-type layer 14. Its structure is P-InGaN, the concentration of Mg is 5×10 18 /cm 3 , the concentration of In is 0.1, and the thickness is 0.6 μm.

通过实施例三和实施例一的对比可知,极高垒层插入层的厚度不同,实施例三中的极高垒层插入层较厚,虽然可以起到提高蓝光发光概率的作用,但是由于极高垒层插入层较厚,可能会导致电压偏高和电性偏差。From the comparison between Embodiment 3 and Embodiment 1, it can be seen that the thickness of the extremely high barrier layer insertion layer is different. The extremely high barrier layer insertion layer in Embodiment 3 is thicker. Although it can increase the probability of blue light emission, due to the extremely high barrier layer insertion layer, The high barrier layer insertion layer is thicker, which may lead to higher voltage and electrical deviation.

实施例四Embodiment 4

参考图5,图5为本发明实施例提供的又一种带有极高垒层插入层的白光LED结构的结构示意图。Referring to FIG. 5 , FIG. 5 is a schematic structural diagram of another white light LED structure with an extremely high barrier layer insertion layer provided by an embodiment of the present invention.

步骤1:采用设备MOCVD,以三甲基镓TMGa、三乙基镓TEGa、氨气NH3为Ga源、N源,N2为载气,N型和P型掺杂源分别是硅烷SiH4和二茂镁CP2Mg,使用InGaN三元衬底,In组分为0.1。Step 1: Use MOCVD equipment, use trimethylgallium TMGa, triethylgallium TEGa, ammonia NH 3 as Ga source, N source, N 2 as carrier gas, N-type and P-type doping sources are silane SiH 4 respectively and CP 2 Mg, using an InGaN ternary substrate with an In composition of 0.1.

步骤2:将InGaN衬底11放入MOCVD反应室中,通入TMGa、TMIn、SIH4、NH3生长N型层12,Si的浓度为6×1018/cm3,In组分为0.1;厚度0.5μm。Step 2: Place the InGaN substrate 11 into the MOCVD reaction chamber, pass in TMGa, TMIn, SIH 4 and NH 3 to grow the N-type layer 12. The concentration of Si is 6×10 18 /cm 3 and the In composition is 0.1; Thickness 0.5μm.

步骤3:通入TEGa、TMIn、NH3生长第一功能层17,厚度4nm,In组分0.35。Step 3: Pass TEGa, TMIn, and NH 3 to grow the first functional layer 17 with a thickness of 4 nm and an In composition of 0.35.

步骤4:通入TEGa、TMIn、NH3、SIH4生长第二功能层18,厚度2nm,In组分0.1,SiH4的浓度为5×1018/cm3Step 4: Pass TEGa, TMIn, NH 3 and SIH 4 to grow the second functional layer 18, with a thickness of 2 nm, an In composition of 0.1, and a concentration of SiH 4 of 5×10 18 /cm 3 .

步骤5:通入TEGa、TMIn、NH3生长第三功能层19,厚度4nm,In组分0.2。Step 5: Pass TEGa, TMIn, and NH 3 to grow the third functional layer 19 with a thickness of 4 nm and an In composition of 0.2.

步骤6:通入TEGa、TMIn、NH3生长第四功能层20,厚度6nm,In组分0.1,SiH4的浓度为5×1018/cm3Step 6: Pass TEGa, TMIn, and NH 3 to grow the fourth functional layer 20 with a thickness of 6 nm, an In composition of 0.1, and a concentration of SiH 4 of 5×10 18 /cm 3 .

步骤7:重复步骤5和步骤6。Step 7: Repeat steps 5 and 6.

步骤8:通入TEGa、TMIn、NH3、TMAl生长电流阻挡层22,厚度为0.02nm,Al组分为0.3。Step 8: Pass in TEGa, TMIn, NH 3 and TMAl to grow the current blocking layer 22 with a thickness of 0.02nm and an Al composition of 0.3.

步骤9:通入TEGa、TMIn、NH3、Mg生长P型层14,其结构为P-InGaN,Mg的浓度为5×1018/cm3,In的浓度0.1,厚度0.6μm。Step 9: Pass in TEGa, TMIn, NH 3 and Mg to grow the P-type layer 14. Its structure is P-InGaN, the concentration of Mg is 5×10 18 /cm 3 , the concentration of In is 0.1, and the thickness is 0.6 μm.

通过实施例三和实施例一的对比可知,实施例四中蓝光波段MQW层中没有极高垒层插入层,该结构可能导致蓝光不能激发,进而导致没有白光的产生;黄光波段MQW的纳米线可加可不加,因为黄光波段MQW的In组分足够多,能级差足够。From the comparison between Example 3 and Example 1, it can be seen that in Example 4, there is no extremely high barrier layer insertion layer in the blue light band MQW layer. This structure may cause the blue light to be unable to be excited, thereby leading to no generation of white light; the nanometer yellow light band MQW Lines can be added or not, because the In component of MQW in the yellow light band is sufficient and the energy level difference is sufficient.

通过上述描述可知,本发明采用了蓝光波段和黄光波段混合产生白光LED的制作方法,相比现有的荧光粉激发以及多色LED芯片混合产生的白光收效颇多。It can be seen from the above description that the present invention adopts a manufacturing method of mixing blue light band and yellow light band to produce white light LED, which is more effective than the white light produced by existing phosphor excitation and mixing of multi-color LED chips.

本结构的特别之处在于在三元InGaN的衬底上生长双波段LED,三元衬底上的双波段InGaN/InGaN MQW结构的应力可以减少到传统结构的75%,于应力的显著降低导致了压电极化效应和内建电场减弱,从而抑制了空间电荷的分离效应,提高发光效率。The special feature of this structure is that dual-band LEDs are grown on a ternary InGaN substrate. The stress of the dual-band InGaN/InGaN MQW structure on the ternary substrate can be reduced to 75% of that of the traditional structure. The significant reduction in stress leads to The piezoelectric polarization effect and the built-in electric field are weakened, thereby suppressing the separation effect of space charge and improving the luminous efficiency.

但是由黄光波段MQW的In组分较高,因此阱垒能级差较大,可以限制更多的载流子,而蓝光阱垒的能级差较小,限制载流子的能力较小,几乎没有载流子,这就导致了蓝光不易被激发,而不能产生白光。However, the In component of MQW in the yellow light band is higher, so the energy level difference of the well barrier is larger, which can confine more carriers, while the energy level difference of the blue light well barrier is smaller, and the ability to confine carriers is smaller, almost Without carriers, blue light is difficult to be excited and cannot produce white light.

因此本发明提供了一种极高垒层插入层的结构,该结构生长在至少最后一个靠近P型层蓝光阱的两侧或一侧,其目的是为了缩短空穴迁移到蓝光阱的距离,从能带角度讲其可以提高导带阱垒能级差,有效控制载流子迁移速率,使其可以被限制在蓝光阱内,从而复合发射出蓝光。此极高垒层插入层是产生白光的关键因素。Therefore, the present invention provides a structure of an extremely high barrier layer insertion layer, which is grown on both sides or one side of at least the last blue light well close to the P-type layer. The purpose is to shorten the distance for holes to migrate to the blue light well. From an energy band perspective, it can increase the conduction band well barrier energy level difference, effectively control the carrier migration rate, so that it can be confined in the blue light well, thereby recombinantly emitting blue light. This extremely high barrier intercalation layer is a key factor in producing white light.

以上对本发明所提供的一种带有极高垒层插入层的白光LED结构进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The white light LED structure with an extremely high barrier layer insertion layer provided by the present invention has been introduced in detail above. Specific examples are used in this article to illustrate the principles and implementation methods of the present invention. The description of the above embodiments is only for reference. To help understand the method and its core idea of the present invention; at the same time, for those of ordinary skill in the field, there will be changes in the specific implementation and application scope based on the idea of the present invention. In summary, this specification The contents should not be construed as limitations of the invention.

需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。It should be noted that each embodiment in this specification is described in a progressive manner. Each embodiment focuses on its differences from other embodiments. The same and similar parts between the various embodiments are referred to each other. Can. As for the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple. For relevant details, please refer to the description in the method section.

还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素,或者是还包括为这些过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should also be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations There is no such actual relationship or sequence between them. Furthermore, the terms "comprises," "comprises," or any other variation thereof are intended to cover a non-exclusive inclusion such that a list of elements inherent in, or otherwise included in, a process, method, article, or apparatus includes , elements inherent in a method, article or device. Without further limitation, an element defined by the statement "comprises a..." does not exclude the presence of additional identical elements in a process, method, article, or apparatus that includes the stated element.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables those skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be practiced in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (7)

1.一种带有极高垒层插入层的白光LED结构,其特征在于,所述白光LED结构包括:1. A white light LED structure with an extremely high barrier layer insertion layer, characterized in that the white light LED structure includes: 衬底;substrate; 依次设置在所述衬底上的N型层、双波段MQW层和P型层;An N-type layer, a dual-band MQW layer and a P-type layer are arranged on the substrate in sequence; 其中,所述双波段MQW层包括:相邻所述衬底的依次堆叠设置的至少一层黄光波段MQW层,以及相邻所述P型层的依次堆叠设置的至少一层蓝光波段MQW层;Wherein, the dual-band MQW layer includes: at least one yellow-band MQW layer that is stacked in sequence adjacent to the substrate, and at least one blue-band MQW layer that is stacked in sequence adjacent to the P-type layer. ; 所述黄光波段MQW层包括在第一方向上依次设置的第一功能层和第二功能层,所述蓝光波段MQW层包括在所述第一方向上依次设置的第三功能层和第四功能层,所述第一方向垂直于所述衬底,且由所述衬底指向所述P型层;The yellow light band MQW layer includes a first functional layer and a second functional layer arranged sequentially in the first direction, and the blue light band MQW layer includes a third functional layer and a fourth functional layer arranged sequentially in the first direction. Functional layer, the first direction is perpendicular to the substrate and directed from the substrate to the P-type layer; 与所述第四功能层依次交叠设置极高垒层插入层;An extremely high barrier layer insertion layer is provided sequentially overlapping with the fourth functional layer; 其中,所述第三功能层为InxGa(1-x)N层,其中,0.10<x<0.3,包括端点值;所述第三功能层的厚度为3nm-10nm,包括端点值;Wherein, the third functional layer is an In x Ga (1-x) N layer, where 0.10<x<0.3, including endpoint values; the thickness of the third functional layer is 3nm-10nm, including endpoint values; 所述第四功能层为InyGa(1-y)N层,其中,0.05<y<0.4,包括端点值;所述第四功能层的厚度为5nm-15nm,包括端点值;The fourth functional layer is an In y Ga (1-y) N layer, where 0.05<y<0.4, including endpoint values; the thickness of the fourth functional layer is 5nm-15nm, including endpoint values; 所述极高垒层插入层的层数为1层-5层,包括端点值;所述极高垒层插入层的厚度为0.5nm-2nm,包括端点值;所述极高垒层插入层为AlInGaN极高垒层插入层,其中,Al组分为0.005-0.04,In组分为0.05-0.4。The number of layers of the extremely high barrier layer insertion layer is 1-5 layers, including endpoint values; the thickness of the extremely high barrier layer insertion layer is 0.5nm-2nm, including endpoint values; the extremely high barrier layer insertion layer It is an AlInGaN extremely high barrier layer insertion layer, in which the Al component is 0.005-0.04 and the In component is 0.05-0.4. 2.根据权利要求1所述的白光LED结构,其特征在于,所述衬底为三元InxGa(1-x)N衬底,其中,0.05<x<0.4,包括端点值。2. The white light LED structure according to claim 1, wherein the substrate is a ternary InxGa (1-x) N substrate, wherein 0.05<x<0.4, including endpoint values. 3.根据权利要求1所述的白光LED结构,其特征在于,所述N型层为InxGa(1-x)N层,其中,0.05<x<0.4,包括端点值;3. The white light LED structure according to claim 1, wherein the N-type layer is an In x Ga (1-x) N layer, wherein 0.05<x<0.4, including endpoint values; 所述N型层的掺杂元素为Si和In,其中,Si的掺杂浓度为2×1018/cm3-9×1018/cm3,包括端点值;The doping elements of the N-type layer are Si and In, where the doping concentration of Si is 2×10 18 /cm 3 -9×10 18 /cm 3 , including endpoint values; 所述N型层的厚度为0.2μm-1μm,包括端点值。The thickness of the N-type layer is 0.2 μm-1 μm, inclusive. 4.根据权利要求1所述的白光LED结构,其特征在于,所述双波段MQW层的层数为2层-8层,包括端点值;4. The white light LED structure according to claim 1, wherein the number of layers of the dual-band MQW layer is 2-8 layers, including endpoint values; 其中,所述黄光波段MQW层的层数为1层-7层,包括端点值;Wherein, the number of layers of the yellow light band MQW layer is 1-7 layers, including endpoint values; 所述蓝光波段MQW层的层数为1层-7层;包括端点值。The number of layers of the blue-light band MQW layer ranges from 1 to 7, including endpoint values. 5.根据权利要求1所述的白光LED结构,其特征在于,所述第一功能层为InxGa(1-x)N层,其中,0.2<x<0.4,包括端点值;5. The white light LED structure according to claim 1, wherein the first functional layer is an InxGa (1-x) N layer, where 0.2<x<0.4, including endpoint values; 所述第一功能层的厚度为3nm-10nm,包括端点值。The thickness of the first functional layer is 3nm-10nm, inclusive. 6.根据权利要求1所述的白光LED结构,其特征在于,所述第二功能层为InyGa(1-y)N层,其中,0.05<y<0.4,包括端点值;6. The white light LED structure according to claim 1, wherein the second functional layer is an In y Ga (1-y) N layer, wherein 0.05<y<0.4, including endpoint values; 所述第二功能层的厚度为5nm-15nm,包括端点值。The thickness of the second functional layer is 5nm-15nm, inclusive. 7.根据权利要求1所述的白光LED结构,其特征在于,所述P型层为InxGa(1-x)N层,其中,0.05<x<0.4,包括端点值;7. The white light LED structure according to claim 1, wherein the P-type layer is an InxGa (1-x) N layer, where 0.05<x<0.4, including endpoint values; 所述P型层的掺杂元素为Mg和In,其中,Si的掺杂浓度为1×1018/cm3-8×1018/cm3,包括端点值;The doping elements of the P-type layer are Mg and In, wherein the doping concentration of Si is 1×10 18 /cm 3 -8×10 18 /cm 3 , including endpoint values; 所述P型层的厚度为0.2μm-1μm,包括端点值。The thickness of the P-type layer is 0.2 μm-1 μm, inclusive.
CN201910507115.2A 2019-06-12 2019-06-12 A white LED structure with extremely high barrier layer insertion layers Active CN110176526B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910507115.2A CN110176526B (en) 2019-06-12 2019-06-12 A white LED structure with extremely high barrier layer insertion layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910507115.2A CN110176526B (en) 2019-06-12 2019-06-12 A white LED structure with extremely high barrier layer insertion layers

Publications (2)

Publication Number Publication Date
CN110176526A CN110176526A (en) 2019-08-27
CN110176526B true CN110176526B (en) 2024-01-30

Family

ID=67698298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910507115.2A Active CN110176526B (en) 2019-06-12 2019-06-12 A white LED structure with extremely high barrier layer insertion layers

Country Status (1)

Country Link
CN (1) CN110176526B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394313B (en) * 2020-03-13 2022-12-27 华为技术有限公司 LED chip, manufacturing method thereof, display module and terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163038A (en) * 1997-10-20 2000-12-19 Industrial Technology Research Institute White light-emitting diode and method of manufacturing the same
CN210224058U (en) * 2019-06-12 2020-03-31 江西乾照光电有限公司 White light LED structure with high barrier layer insertion layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352098A (en) * 2000-06-07 2001-12-21 Sanyo Electric Co Ltd Semiconductor light emitting device and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163038A (en) * 1997-10-20 2000-12-19 Industrial Technology Research Institute White light-emitting diode and method of manufacturing the same
CN210224058U (en) * 2019-06-12 2020-03-31 江西乾照光电有限公司 White light LED structure with high barrier layer insertion layer

Also Published As

Publication number Publication date
CN110176526A (en) 2019-08-27

Similar Documents

Publication Publication Date Title
JP4116260B2 (en) Semiconductor light emitting device
CN100490199C (en) Group III nitride semiconductor light emitting element
US10559718B2 (en) Light-emitting device having plural recesses in layers
US20080210958A1 (en) Semiconductor white light emitting device and method for manufacturing the same
US8294178B2 (en) Light emitting device using compound semiconductor
WO2009041237A1 (en) Iii nitride semiconductor light emitting element
CN101821861A (en) Fabrication of phosphor free red and white nitride-based leds
JP2002368267A (en) Semiconductor light emitting device
JP2007088270A (en) Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element
JP2001028458A (en) Light emitting device
CN102347408B (en) GaN-base double-blue-light wavelength luminescent device and preparation method thereof
CN110176526B (en) A white LED structure with extremely high barrier layer insertion layers
JPH11121806A (en) Semiconductor light emitting device
CN210224058U (en) White light LED structure with high barrier layer insertion layer
JP2002261324A (en) Semiconductor light emitting device
CN102290508A (en) Fluorescent-powder-free white light-emitting diode (LED)
CN104218125A (en) A growth method of white light LED and white light LED prepared by using the growth method
JP2007088269A (en) Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element
CN105742429A (en) Ultraviolet GaN-based LED epitaxy structure and manufacturing method thereof
CN205406553U (en) Ultraviolet gan base led epitaxial structure
CN113140657B (en) Ultraviolet LED epitaxial structure and preparation method thereof
JP4458870B2 (en) Fluorescent light emitting device, fluorescent light emitting element, and phosphor
JP2000196142A (en) Light emitting element
JP2002305327A (en) Nitride-based semiconductor light emitting device
CN110010731A (en) A kind of long wavelength LED extension base chip, chip and preparation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant