CN110173487A - 一种多电液伺服执行器在切换网络下的领导同步控制方法 - Google Patents

一种多电液伺服执行器在切换网络下的领导同步控制方法 Download PDF

Info

Publication number
CN110173487A
CN110173487A CN201910444908.4A CN201910444908A CN110173487A CN 110173487 A CN110173487 A CN 110173487A CN 201910444908 A CN201910444908 A CN 201910444908A CN 110173487 A CN110173487 A CN 110173487A
Authority
CN
China
Prior art keywords
leader
electro
hydraulic
model
disturbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910444908.4A
Other languages
English (en)
Other versions
CN110173487B (zh
Inventor
郭庆
蒋丹
李小钗
石岩
许猛
郭帆
严尧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910444908.4A priority Critical patent/CN110173487B/zh
Publication of CN110173487A publication Critical patent/CN110173487A/zh
Application granted granted Critical
Publication of CN110173487B publication Critical patent/CN110173487B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/14Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
    • B25J9/144Linear actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/22Synchronisation of the movement of two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Robotics (AREA)
  • Servomotors (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种多电液伺服执行器在切换网络下的领导同步控制方法,该方法包括建立电液伺服系统非线性数学模型,非线性模型线性化并进行极点配置,实时获取电液伺服系统的反馈数据,设计分布式领导同步协议,采用扰动观测器对系统未知外负载干扰进行估计,计算系统稳定的LMI条件,根据分布式领导同步控制律对非对称电液伺服机构实时进行驱动。本发明基于邻域信息来设计分布式领导同步协议,建立扰动观测器来对未知负载干扰进行估计,实现多个电液伺服执行器分布式领导同步控制,提高多个电液伺服系统的跟踪协调能力。

Description

一种多电液伺服执行器在切换网络下的领导同步控制方法
技术领域
本发明属于多个非对称液压缸执行机构的协同控制技术领域,具体涉及一种存在未知外负载干扰的多个电液伺服执行器在切换网络下的领导同步控制方法。
背景技术
电液伺服系统是指以伺服元件(伺服阀或伺服泵)为控制核心的液压控制系统,主要由电信号处理装置和液压动力机构组成。典型电液伺服系统组成元件如下:(1)给定元件。它可以是机械装置,如凸轮、连杆等,提供位移信号;也可是电气元件,如电位计等,提供电压信号;(2)反馈检测元件。用来检测执行元件的实际输出量,并转换成反馈信号。它可以是机械装置,如齿轮副、连杆等;也可是电气元件,如电位计、测速发电机等;(3)比较元件。用来比较指令信号和反馈信号,并得出误差信号。实际中一般没有专门的比较元件,而是由某一结构元件兼职完成;(4)放大、转换元件。将比较元件所得的误差信号放大,并转换成电信号或液压信号(压力、流量)。它可以是电放大器、电液伺服阀等;(5)执行元件。将液压能转变为机械能,产生直线运动或旋转运动,并直接控制被控对象。一般指液压缸或液压马达;(6)被控制对象。指系统的负载,如工作台等。
电液伺服系统的基本原理是:反馈信号与输入信号相比较得出偏差信号,利用该偏差信号控制液压能源输入到系统的能量,使系统向着减小偏差的方向变化,直至偏差等于零或足够小,从而使系统的实际输出与希望值相符。
随着电液伺服系统在工程领域中的应用日益扩大,大型设备对于负载能力的要求不断增加,多个电液伺服系统协同作用共同驱动的需求日益增加;而现有研究大多针对单个电液伺服执行器,而缺少对多个非对称液压缸执行机构的协同控制的研究。
发明内容
本发明的主要目的在于提供一种多电液伺服执行器在切换网络下的领导同步控制方法,实现含有未知外负载干扰的多个电液伺服执行器在切换网络下的领导同步控制,并提高多电液伺服控制系统的领导同步控制性能。
为实现上述目的,本发明提供一种多电液伺服执行器在切换网络下的领导同步控制方法,包括以下步骤:
S1、建立电液伺服系统非线性数学模型;
S2、将步骤S1中非线性数学模型进行线性化处理,并对线性模型进行极点配置;
S3、驱动电液伺服系统,实时获取电液伺服系统的反馈数据;
S4、设计多电液伺服执行器在切换拓扑下基于扰动补偿的分布式领导同步协议;
S5、采用扰动观测器对系统未知外负载干扰进行估计;
S6、基于李雅普洛夫能量函数,并结合分布式领导同步协议、反馈数据、一致性误差和扰动估计值,得到系统稳定的LMI条件;
S7、根据分布式领导同步控制律对非对称电液伺服机构实时进行驱动。
优选地,所述步骤S1中,建立的第i个非对称电液伺服执行器模型表示为:
其中,xij为第i个模型状态变量,yi为液压缸输出位移,m为负载质量,Ctl为液压缸总泄漏系数,ps为供油压力,βe为液压油有效体积弹性模量,Cd为伺服阀流量系数,w为伺服阀面积梯度,ρ为液压油密度,K为负载刚度系数,b为液压油阻尼系数,FLi为外负载压力,Ksv为伺服阀放大系数,Vt为液压动力机构的总容积,ui为伺服阀控制电压,sgn(·)为符号函数;
非对称电液伺服执行器模型的状态空间模型表示为:
其中,C1=[1,0,0],θ1=K/m,θ2=b/m,θ3=1/m,θ5=4βeCtl/VtdLi=-FLi(t)/m,,
优选地,所述步骤S2中,将步骤S1中非线性数学模型进行线性化处理,并对线性模型进行极点配置,具体为:
利用状态变量z和反馈控制变量ui对步骤S1中状态空间模型进行线性化处理,得到状态空间模型的线性模型,表示为:
其中,
利用状态反馈向量对线性模型进行极点配置,得到n个跟随者模型,表示为:
其中,A=A2+B2Kp,B=B2,Kp为极点配置的状态反馈向量;
领导者模型表示为:
其中,z0为领导者状态,r为有界输入。
优选地,所述步骤S3中,获取的电液伺服系统的反馈数据包括:
液压缸输出位移、液压缸输出位移变化率、液压缸无杆腔和有杆腔的压力、伺服阀阀芯位移。
优选地,所述步骤S4中,多电液伺服执行器在切换拓扑下基于扰动补偿的分布式领导同步协议表示为:
其中,为第i个节点的控制律,zi,zk分别为第i,k个节点状态,为扰动估计值,K为增益向量,P为正定对称矩阵,qi为扰动补偿增益,ai0(t)为第i个节点在时刻t接收领导者信息情况,aik(t)表示第i,k个节点在时刻t的通信情况;
定义状态误差,n个系统的一致性协议向量形式表示为:
其中,v=[v1,...,vn]T,L(t)为n个节点在时刻t通信拓扑图的拉普拉斯矩阵,Q=diag{q1,...,qn}。
优选地,所述步骤S5中,采用扰动观测器对系统未知外负载干扰进行估计表示为:
其中,M为对角增益矩阵。
优选地,所述步骤S6中,基于李雅普洛夫能量函数,并结合分布式一致性协议、反馈数据、一致性误差和扰动估计值,得到系统稳定的LMI条件,具体为:
设定李雅普洛夫能量函数,表示为
结合分布式领导同步协议、反馈数据、一致性误差和扰动估计值,得到系统稳定的LMI条件表示为
AP+PAT-2δminBBT+2αI3<-δminP
其中,α是正常数,δmin是所有切换拓扑图的H矩阵的最小非零特征值,I3是3阶单位矩阵。
本发明的有益效果是:本发明基于邻域信息来设计分布式领导同步协议,建立扰动观测器来对未知负载干扰进行估计,实现多个电液伺服执行器分布式领导同步控制,提高多个电液伺服系统的跟踪协调能力。
附图说明
图1是本发明的多电液伺服执行器在切换网络下的领导同步控制方法流程示意图;
图2是本发明实施例中二自由度机械臂机构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,是本发明的多电液伺服执行器在切换网络下的领导同步控制方法流程示意图;一种多电液伺服执行器在切换网络下的领导同步控制方法,包括以下步骤:
S1、建立电液伺服系统非线性数学模型;
S2、将步骤S1中非线性数学模型进行线性化处理,并对线性模型进行极点配置;
S3、驱动电液伺服系统,实时获取电液伺服系统的反馈数据;
S4、设计多电液伺服执行器在切换拓扑下基于扰动补偿的分布式领导同步协议;
S5、采用扰动观测器对系统未知外负载干扰进行估计;
S6、基于李雅普洛夫能量函数,并结合分布式领导同步协议、反馈数据、一致性误差和扰动估计值,得到系统稳定的LMI条件;
S7、根据分布式领导同步控制律对非对称电液伺服机构实时进行驱动。
如图2所示,本发明以存在未知负载干扰情况下两个电液伺服执行器驱动二自由度机械臂实现跟踪同步为例,对本发明的多电液伺服执行器在切换网络下的领导同步控制方法作进一步详细说明。
上述机械臂包括:3个机械连杆,包括:第一连杆、第二连杆、第三连杆,2个电液伺服阀,2个双作用液压缸,1个伺服电机,1个定量柱塞泵,1个油箱;其中第一连杆与第二连杆之间铰接称作为肩关节,第二连杆与第三连杆铰接称作为肘关节;肩关节与肘关节处分别设置一个电液伺服阀与双作用液压缸;整个机械臂设置1个伺服电机、1个定量柱塞泵和1个油箱;第二连杆与第三连杆上分别设置一光电编码器,用于测量两个关节的运动角度和角速度;在两个液压缸进油口和出油口各设置1个压力传感器,测量液压缸的负载力,在定量柱塞泵出口安装1个压力表,监测系统的供油压力。
非对称电液伺服执行器的模型为3阶模型,不考虑机械臂机构运动的模型,机械臂运动所需要的关节力矩作为电液伺服执行器的负载干扰考虑。
在本发明的一个可选实施例中,上述步骤S1采用三阶模型描述伺服阀驱动液压缸回路的电液伺服执行器模型,建立第i个非对称电液伺服执行器模型,表示为:
其中,xij为第i个电液伺服系统的第j个状态变量,j=1,2,3,分别表示输出位置、速度、压力,yi为液压缸输出位移,为输出位移变化率,m为负载质量,Ctl为液压缸总泄漏系数,ps为供油压力,βe为液压油有效体积弹性模量,Cd为伺服阀流量系数,w为伺服阀面积梯度,ρ为液压油密度,K为负载刚度系数,b为液压油阻尼系数,FLi为外负载压力,Ksv为伺服阀放大系数,Vt为液压动力机构的总容积,ui为伺服阀控制电压,sgn(·)为符号函数;
非对称电液伺服执行器模型的状态空间模型表示为:
其中,
分别表示输出位置、输出位置导数即速度、液压缸两缸压差。
在本发明的一个可选实施例中,上述步骤S2将步骤S1中非线性数学模型进行线性化处理,并对线性模型进行极点配置,具体为:
利用状态变量z线性变换
z=[xi1 xi21xi12xi23xi3]T
和反馈控制变量ui
ui=α(Xi)+γ-1(Xi)vi
对步骤S1中状态空间模型进行线性化处理,得到状态空间模型的线性模型,表示为:
其中,
利用控制输入的状态反馈向量对线性模型进行极点配置,得到n个跟随者模型,表示为:
其中,A=A2+B2Kp,B=B2,Kp为极点配置的状态反馈向量;
领导者模型表示为:
其中,z0为领导者状态,r为有界输入。
在本发明的一个可选实施例中,上述步骤S3驱动电液伺服系统,实时获取电液伺服系统的反馈数据,包括:液压缸输出位移、液压缸输出位移变化率、液压缸无杆腔和有杆腔的压力、伺服阀阀芯位移。
在本发明的一个可选实施例中,上述步骤S4设计多电液伺服执行器在切换拓扑下基于扰动补偿的分布式领导同步协议,表示为:
其中,为第i个节点的控制律,zi,zk分别为第i,k个节点状态,z0为领导者状态,为扰动估计值,为1×3的增益向量,P为正定对称矩阵,qi为扰动补偿增益,ai0(t)为第i个节点在时刻t接收领导者信息情况,第i个节点在时刻t能接收到领导者信息时ai0(t)=1,否则ai0(t)=0,aik(t)表示第i,k个节点在时刻t的通信情况,第i,k个节点在时间t能相互传递信息时aik(t)=1,否则aik(t)=0。
定义状态误差ei=zi-z0,n个系统的一致性协议向量形式表示为:
其中,v=[v1,...,vn]T,L(t)为n个节点在时刻t通信拓扑图的拉普拉斯矩阵,Q=diag{q1,...,qn}。
在本发明的一个可选实施例中,上述步骤S5采用扰动观测器对系统未知外负载干扰进行估计表示为:
其中,M为对角增益矩阵。
在本发明的一个可选实施例中,上述步骤S6基于李雅普洛夫能量函数,并结合分布式一致性协议、反馈数据、一致性误差和扰动估计值,得到系统稳定的LMI(linearmatrix inequality,线性矩阵不等式)条件,具体为:
设定李雅普洛夫能量函数,表示为
结合分布式一致性协议、反馈数据、一致性误差和扰动估计值,得到系统稳定的LMI条件表示为
AP+PAT-2δminBBT+2αI3<-δminP
其中,α是正常数,δmin是所有切换拓扑图的H矩阵的最小非零特征值,I3是3阶单位矩阵。
根据系统稳定的LMI条件求解得到正定对称矩阵P,并代入到一致性协议向量及扰动观测器模型中,从而完成统稳定的分布式控制协议和扰动观测器设计。
本发明针对在切换拓扑下多个电液伺服执行器分布式领导同步控制问题,采用分布式领导同步协议与扰动观测器相结合的方法来提高存在未知外负载干扰条件下非对称电液伺服执行器驱动2-DOF机械臂的分布式领导同步控制性能。
本发明首先通过输入输出反馈线性化,将电液伺服执行器非线性模型转变为线性模型,并采用极点配置提高系统的稳定裕度,模型中的未知外部负载采用扰动观测器进行估计,基于邻域信息设计分布式领导同步协议,同时基于状态误差、观测器估计误差设计李亚普洛夫能量函数,并得到系统稳定的LMI条件,完成分布式领导同步协议和扰动观测器的设计。两个电液伺服执行器分别驱动2-DOF机械臂的大臂和前臂,在分布式协同控制律下,实现2-DOF机械臂两个臂跟踪领导者期望状态轨迹,提高了2-DOF机械臂关节运动的跟踪同步控制性能。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (7)

1.一种多电液伺服执行器在切换网络下的领导同步控制方法,其特征在于,包括以下步骤:
S1、建立电液伺服系统非线性数学模型;
S2、将步骤S1中非线性数学模型进行线性化处理,并对线性模型进行极点配置;
S3、驱动电液伺服系统,实时获取电液伺服系统的反馈数据;
S4、设计多电液伺服执行器在切换拓扑下基于扰动补偿的分布式领导同步协议;
S5、采用扰动观测器对系统未知外负载干扰进行估计;
S6、基于李雅普洛夫能量函数,并结合分布式一致性协议、反馈数据、一致性误差和扰动估计值,得到系统稳定的LMI条件;
S7、根据分布式领导同步控制律对非对称电液伺服机构实时进行驱动。
2.如权利要求1所述的多电液伺服执行器在切换网络下的领导同步控制方法,其特征在于,所述步骤S1中,建立的第i个非对称电液伺服执行器模型表示为:
其中,xij为第i个模型状态变量,yi为液压缸输出位移,m为负载质量,Ctl为液压缸总泄漏系数,ps为供油压力,βe为液压油有效体积弹性模量,Cd为伺服阀流量系数,w为伺服阀面积梯度,ρ为液压油密度,K为负载刚度系数,b为液压油阻尼系数,FLi为外负载压力,Ksv为伺服阀放大系数,Vt为液压动力机构的总容积,ui为伺服阀控制电压,sgn(·)为符号函数;
非对称电液伺服执行器模型的状态空间模型表示为:
其中,C1=[1,0,0],θ1=K/m,θ2=b/m,θ3=1/m,θ5=4βeCtl/VtdLi=-FLi(t)/m,,
3.如权利要求2所述的多电液伺服执行器在切换网络下的领导同步控制方法,其特征在于,所述步骤S2中,将步骤S1中非线性数学模型进行线性化处理,并对线性模型进行极点配置,具体为:
利用状态变量z和反馈控制变量ui对步骤S1中状态空间模型进行线性化处理,得到状态空间模型的线性模型,表示为:
其中,
利用状态反馈向量对线性模型进行极点配置,得到n个跟随者模型,表示为:
其中,A=A2+B2Kp,B=B2,Kp为极点配置的状态反馈向量;
领导者模型表示为:
其中,z0为领导者状态,r为有界输入。
4.如权利要求3所述的多电液伺服执行器在切换网络下的领导同步控制方法,其特征在于,所述步骤S3中,获取的电液伺服系统的反馈数据包括:
液压缸输出位移、液压缸输出位移变化率、液压缸无杆腔和有杆腔的压力、伺服阀阀芯位移。
5.如权利要求4所述的多电液伺服执行器在切换网络下的领导同步控制方法,其特征在于,所述步骤S4中,多电液伺服执行器在切换拓扑下基于扰动补偿的分布式领导同步协议表示为:
其中,为第i个节点的控制律,zi,zk分别为第i,k个节点状态,为扰动估计值,K为增益向量,P为正定对称矩阵,qi为扰动补偿增益,ai0(t)为第i个节点在时刻t接收领导者信息情况,aik(t)表示第i,k个节点在时刻t的通信情况;
定义状态误差,n个系统的一致性协议向量形式表示为:
其中,v=[v1,...,vn]T,L(t)为n个节点在时刻t通信拓扑图的拉普拉斯矩阵,Q=diag{q1,...,qn}。
6.如权利要求5所述的多电液伺服执行器在切换网络下的领导同步控制方法,其特征在于,所述步骤S5中,采用扰动观测器对系统未知外负载干扰进行估计表示为:
其中,M为对角增益矩阵。
7.如权利要求6所述的多电液伺服执行器在切换网络下的领导同步控制方法,其特征在于,所述步骤S6中,基于李雅普洛夫能量函数,并结合分布式一致性协议、反馈数据、一致性误差和扰动估计值,得到系统稳定的LMI条件,具体为:
设定李雅普洛夫能量函数,表示为
结合分布式一致性协议、反馈数据、一致性误差和扰动估计值,得到系统稳定的LMI条件表示为AP+PAT-2δminBBT+2αI3<-δminP
其中,α是正常数,δmin是所有切换拓扑图的H矩阵的最小非零特征值,I3是3阶单位矩阵。
CN201910444908.4A 2019-05-27 2019-05-27 一种多电液伺服执行器在切换网络下的领导同步控制方法 Expired - Fee Related CN110173487B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910444908.4A CN110173487B (zh) 2019-05-27 2019-05-27 一种多电液伺服执行器在切换网络下的领导同步控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910444908.4A CN110173487B (zh) 2019-05-27 2019-05-27 一种多电液伺服执行器在切换网络下的领导同步控制方法

Publications (2)

Publication Number Publication Date
CN110173487A true CN110173487A (zh) 2019-08-27
CN110173487B CN110173487B (zh) 2020-07-31

Family

ID=67695765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910444908.4A Expired - Fee Related CN110173487B (zh) 2019-05-27 2019-05-27 一种多电液伺服执行器在切换网络下的领导同步控制方法

Country Status (1)

Country Link
CN (1) CN110173487B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112207824A (zh) * 2020-09-22 2021-01-12 慧灵科技(深圳)有限公司 多个单轴模组的控制方法、系统、装置及存储介质
CN113431814A (zh) * 2021-06-17 2021-09-24 江苏科技大学 一种基于升沉补偿平台多液压缸并联运动的同步控制方法
CN115324970A (zh) * 2022-10-13 2022-11-11 保定北奥石油物探特种车辆制造有限公司 交变电液伺服系统零位特性外置控制方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136129A1 (en) * 2002-01-24 2003-07-24 Hispano-Suiza Actuator assembly with synchronized hydraulic actuators
CN103728972A (zh) * 2014-01-06 2014-04-16 中国石油大学(华东) 多机械臂同步控制实验平台及实验方法
CN104267716A (zh) * 2014-09-15 2015-01-07 南京航空航天大学 一种基于多智能体技术的分布式飞行控制系统故障诊断设计方法
CN105912009A (zh) * 2016-06-16 2016-08-31 浙江工业大学 基于极点配置和模糊自抗扰控制技术的四旋翼飞行器控制方法
CN106402089A (zh) * 2016-10-24 2017-02-15 电子科技大学 一种基于耦合干扰观测器的级联电液伺服系统控制方法及系统
CN106406097A (zh) * 2016-11-08 2017-02-15 长春工业大学 多机械臂系统的分布式自适应协调控制方法
CN106438593A (zh) * 2016-10-21 2017-02-22 电子科技大学 一种存在参数不确定性和负载干扰的电液伺服控制方法及机械臂
CN106444719A (zh) * 2016-10-28 2017-02-22 南京航空航天大学 一种切换拓扑下的多机协同故障诊断方法
CN106527134A (zh) * 2016-11-23 2017-03-22 北京交通大学 大规模液压系统的分布式协同控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136129A1 (en) * 2002-01-24 2003-07-24 Hispano-Suiza Actuator assembly with synchronized hydraulic actuators
CN103728972A (zh) * 2014-01-06 2014-04-16 中国石油大学(华东) 多机械臂同步控制实验平台及实验方法
CN104267716A (zh) * 2014-09-15 2015-01-07 南京航空航天大学 一种基于多智能体技术的分布式飞行控制系统故障诊断设计方法
CN105912009A (zh) * 2016-06-16 2016-08-31 浙江工业大学 基于极点配置和模糊自抗扰控制技术的四旋翼飞行器控制方法
CN106438593A (zh) * 2016-10-21 2017-02-22 电子科技大学 一种存在参数不确定性和负载干扰的电液伺服控制方法及机械臂
CN106402089A (zh) * 2016-10-24 2017-02-15 电子科技大学 一种基于耦合干扰观测器的级联电液伺服系统控制方法及系统
CN106444719A (zh) * 2016-10-28 2017-02-22 南京航空航天大学 一种切换拓扑下的多机协同故障诊断方法
CN106406097A (zh) * 2016-11-08 2017-02-15 长春工业大学 多机械臂系统的分布式自适应协调控制方法
CN106527134A (zh) * 2016-11-23 2017-03-22 北京交通大学 大规模液压系统的分布式协同控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112207824A (zh) * 2020-09-22 2021-01-12 慧灵科技(深圳)有限公司 多个单轴模组的控制方法、系统、装置及存储介质
CN112207824B (zh) * 2020-09-22 2022-07-01 慧灵科技(深圳)有限公司 多个单轴模组的控制方法、系统、装置及存储介质
CN113431814A (zh) * 2021-06-17 2021-09-24 江苏科技大学 一种基于升沉补偿平台多液压缸并联运动的同步控制方法
CN113431814B (zh) * 2021-06-17 2022-12-30 江苏科技大学 一种基于升沉补偿平台多液压缸并联运动的同步控制方法
CN115324970A (zh) * 2022-10-13 2022-11-11 保定北奥石油物探特种车辆制造有限公司 交变电液伺服系统零位特性外置控制方法及系统

Also Published As

Publication number Publication date
CN110173487B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
CN110173487A (zh) 一种多电液伺服执行器在切换网络下的领导同步控制方法
CN110081046A (zh) 一种基于反步控制的多电液伺服执行器跟踪同步控制方法
Guo et al. Cascade control of a hydraulically driven 6-DOF parallel robot manipulator based on a sliding mode
Yin et al. Adaptive back-stepping pitch angle control for wind turbine based on a new electro-hydraulic pitch system
CN110107563A (zh) 存在负载干扰情况下多电液伺服执行器分布协同控制方法
CN106054594B (zh) 基于控制输入饱和的无模型自适应控制方法
CN100444059C (zh) 永磁同步电机的速度环的简化自抗扰控制器的构造方法
CN104345638A (zh) 一种液压马达位置伺服系统的自抗扰自适应控制方法
CN106402089B (zh) 一种基于耦合干扰观测器的级联电液伺服系统控制方法及系统
CN106246986A (zh) 集成式颤振信号自适应比例阀放大器
CN107015476A (zh) 一种对电液伺服系统的位置和力信号的协同控制方法
Wang et al. Output feedback control of electro-hydraulic asymmetric cylinder system with disturbances rejection
CN106527134B (zh) 大规模液压系统的分布式协同控制方法
Li et al. Synchronized control of multiple electrohydraulic systems with terminal sliding mode observer under parametric uncertainty and external load
CN116466588A (zh) 多智能体系统的有限时间时变编队跟踪控制方法及系统
Li et al. Review of research and development of hydraulic synchronous control system
Guo et al. Synchronous control for multiple electrohydraulic actuators with feedback linearization
CN112196856B (zh) 一种电传动设备的液压系统及其控制方法
Xia et al. Implications of the degree of controllability of controlled plants in the sense of LQR optimal control
CN110701187B (zh) 一种五自由度磁轴承的智能双积分滑模控制方法及设备
CN104022701A (zh) 一种永磁同步直线电机牛顿法内模速度控制方法
Qi et al. Research on new intelligent pump control based on sliding mode variable structure control
Zhang et al. Velocity Feedback Control of Swing Phase for 2-DoF Robotic Leg Driven by Electro-hydraulic Servo System.
Jiang et al. Research on manipulator trajectory tracking with model approximation RBF neural network adaptive control
Du et al. Cylinder position control driven by pneumatic digital bridge circuit using a fuzzy algorithm under large stroke and varying load conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200731

Termination date: 20210527