CN110165000A - 一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法 - Google Patents

一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN110165000A
CN110165000A CN201910618965.XA CN201910618965A CN110165000A CN 110165000 A CN110165000 A CN 110165000A CN 201910618965 A CN201910618965 A CN 201910618965A CN 110165000 A CN110165000 A CN 110165000A
Authority
CN
China
Prior art keywords
ultraviolet light
deep ultraviolet
light electric
electric explorer
microcrystalline film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910618965.XA
Other languages
English (en)
Other versions
CN110165000B (zh
Inventor
罗林保
张致翔
黄瑞
童小伟
鲁玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201910618965.XA priority Critical patent/CN110165000B/zh
Publication of CN110165000A publication Critical patent/CN110165000A/zh
Application granted granted Critical
Publication of CN110165000B publication Critical patent/CN110165000B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法,是在电极图案化的ITO表面生长有Cs3Cu2I5微晶薄膜,Cs3Cu2I5微晶薄膜与ITO形成肖特基势垒,从而构成具有自驱动效应的深紫外光电探测器。本发明的器件具有开关比高、响应度高、制备简单的优势。

Description

一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探 测器及其制备方法
技术领域
本发明属于光电探测器技术领域,具体涉及一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法。
背景技术
光电探测器是将一种将光信号装换为电信号的器件,广泛应用于光学通讯、化学分析、光学成像以及生物传感的过程中。光电探测器主要是利用半导体材料的光电效应,当入射光子的能量大于材料的禁带宽度的时候,它就可以吸收并且产生电子空穴,在电场的作用之下,电子和空穴被分离,从而产生光电流。在众多的光电探测技术当中,紫外探测技术是在红外激光探测技术之后发展的又一军事和民间两用型的光电探测技术,尤其是近年来在国外技术垄断封锁的条件之下,更是成为亟待突破的又一关键技术。而突破这项关键技术的基础就是找到一个非常适用于做紫外光电探测器的半导体材料。
钙钛矿材料是一种十分优良的半导体材料,由于其载流子寿命长、吸收系数大、载流子扩散长度比较长、制备成本低廉、载流子迁移率高等优点而受到广大科研工作者的欢迎。钙钛矿材料的化学结构式为ABX3,其中A、B、X分别代表一价的有机或者无机阳离子(铯,甲脒)、二价的金属离子(铅,铜)、卤素原子(溴,氯,碘)。最近几年以来,各种各样的钙钛矿材料被发现,包括一维钙钛矿纳米线、二维钙钛矿单晶薄膜和三维钙钛矿单晶都取得了突飞猛进的发展。除了新型高效率太阳能电池的应用,钙钛矿材料在新型发光二极管、新型钙钛矿纳米压电材料以及新型钙钛矿光电探测器上也展现出了巨大的商业应用前景。
铯铜碘作为一个新型的无毒钙钛矿材料,有着~3.8eV的超宽禁带宽度,对深紫外光有较强的响应,且在空气中比较稳定。因此探索基于铯铜碘的深紫外探测器具有重要的研究价值。
发明内容
本发明提供了一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法,旨在将铯铜碘材料应用于深紫外探测领域,合理设置材料的制备方法、器件的结构,从而获得高开关比、高响应度、制备简单的深紫外光电探测器。
本发明为解决技术问题,采用如下技术方案:
本发明首先公开了一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器,其特点在于:所述深紫外光电探测器是在电极图案化的ITO表面生长有Cs3Cu2I5微晶薄膜,所述Cs3Cu2I5微晶薄膜与ITO形成肖特基势垒,从而构成具有自驱动效应的深紫外光电探测器。
进一步地,所述电极图案化的ITO为源、漏对电极形式,Cs3Cu2I5微晶薄膜覆盖两电极之间的沟道,且与两电极形成肖特基接触。
进一步地,所述的Cs3Cu2I5微晶薄膜是由直径大小在10~80μm之间的Cs3Cu2I5微晶颗粒构成。所述的Cs3Cu2I5微晶薄膜是以CuI和CsI溶于二甲基亚砜DMSO和N,N-二甲基甲酰胺DMF中形成前驱体饱和溶液,然后通过反溶剂饱和蒸发结晶法在ITO表面直接生长获得。
更进一步地,在所述前驱体饱和溶液中,CuI、CsI、DMSO和DMF的质量体积比为1.56g:0.76g:1~1.2mL:1~1.2mL。
本发明所得Cs3Cu2I5微晶是一种本征半导体,具有非常大的禁带宽度,基于其所制备的光电探测器对265nm的光灵敏度较高。
本发明还公开了所述深紫外光电探测器的制备方法,是按如下步骤进行:
步骤1、将电极图案化的ITO玻璃依次通过酒精、丙酮、去离子水超声清洗并吹干,再用等离子体清洗机清洗10~30分钟;
步骤2、将1.56g CuI和0.76g CsI加入到1~1.2mL DMSO和1~1.2mL DMF的混合溶液中,加热到60~70℃,搅拌2~3小时,获得Cs3Cu2I5前驱体饱和溶液;
步骤3、将清洗后的ITO玻璃和一个磁力搅拌子放入烧杯A中,并加入所述Cs3Cu2I5前驱体饱和溶液,用塑料膜进行密封,再用镊子开若干个透气孔;
步骤4、将经步骤3处理后的烧杯A放入装有甲醇的烧杯B中,再将烧杯B密封,以防止甲醇挥发;
步骤5、将经步骤4处理后的整个烧杯B放在旋转加热台上,设置温度为60~70℃、转速保持在600~800r/m,保温30~48个小时之后,将ITO玻璃取出,即在电极图案化的ITO表面形成Cs3Cu2I5微晶薄膜;
步骤6、将生长完Cs3Cu2I5微晶薄膜的ITO玻璃在60~70℃退火10~20分钟,从而获得基于宽禁带无铅钙钛矿Cs3Cu2I5微晶薄膜的深紫外光电探测器。
与已有技术相比,本发明的有益效果体现在:
1、本发明的深紫外光电探测器是以Cs3Cu2I5与ITO形成的肖特基结为核心,利用Cs3Cu2I5本身带隙决定对光的吸收峰,波长大约在320nm,使器件对深紫外光有较好的吸收能力,从而使器件展现出高灵敏度的优势。
2、本发明的深紫外光电探测器可以在零偏压下工作,进一步使得该器件工作时的响应速度比较快,同时也降低了该光电探测器的功耗。
3、本发明Cs3Cu2I5微晶薄膜的制备方法,提升了该钙钛矿的吸光面积,大大增加了钙钛矿对深紫外光的吸收能力。且相比于其它的深紫外探测材料,本发明采用的Cs3Cu2I5钙钛矿制备工艺简单、成本低廉,很适合大面积投入生产。
4、本发明的探测器基于无毒、全无机的钙钛矿所制备,器件的商用价值与稳定性较好。本发明利用简单的方法,即达到了提高器件性能的目的,给未来制备光电子器件开了十分理想的通道。
附图说明
图1为本发明基于宽禁带无铅钙钛矿Cs3Cu2I5微晶薄膜的深紫外光电探测器的结构示意图,图中标号:1为电极图案化的ITO,2为Cs3Cu2I5微晶薄膜。
图2为本发明实施例1制得的Cs3Cu2I5微晶薄膜的SEM图(图2(a))和XRD图(图2(b));
图3为本发明实施例1制得的深紫外光电探测器在黑暗条件下的电流-电压特性曲线。
图4为本发明实施例1制得的深紫外光电探测器的吸收光谱曲线(图4(a))和荧光强度曲线(图4(b))
图5为本发明实施例1制得的深紫外光电探测器的光谱响应曲线。
图6(a)为本实施例制得的深紫外光电探测器在零工作电压下,在波长为265nm、强度为111μW/cm2至2.74mW/cm2光照下(依次为111μW/cm2、435μW/cm2、1.76mW/cm2、2.74mW/cm2)的电流电压曲线;图6(b)为本实施例制得的深紫外光电探测器在2.74mW/cm2的光照下的时间响应曲线。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
参见图1,本实施例的深紫外光电探测器是在电极图案化的ITO表面生长有Cs3Cu2I5微晶薄膜,Cs3Cu2I5微晶薄膜与ITO形成肖特基势垒,从而构成具有自驱动效应的深紫外光电探测器。其中,电极图案化的ITO为源、漏对电极形式,Cs3Cu2I5微晶薄膜覆盖两电极之间的沟道,且与两电极形成肖特基接触。
本实施例深紫外光电探测器的制备方法如下:
步骤1、将电极图案化的ITO玻璃依次通过酒精、丙酮、去离子水超声清洗并吹干,再用等离子体清洗机清洗30分钟;
步骤2、将1.56g CuI和0.76g CsI加入到1mL DMSO和1mL DMF的混合溶液中,加热到60℃,搅拌3小时,获得Cs3Cu2I5前驱体饱和溶液;
步骤3、将清洗后的ITO玻璃和一个磁力搅拌子放入小烧杯A中,并加入Cs3Cu2I5前驱体饱和溶液,用塑料膜进行密封,再用镊子开若干个透气孔;
步骤4、将经步骤3处理后的小烧杯A放入装有甲醇的大烧杯B中,再将大烧杯B密封,以防止甲醇挥发;
步骤5、将经步骤4处理后的整个大烧杯B放在旋转加热台上,设置温度为60℃、转速保持在600r/m,保温48个小时之后,将ITO玻璃取出,即在电极图案化的ITO表面形成Cs3Cu2I5微晶薄膜;
步骤6、将生长完Cs3Cu2I5微晶薄膜的ITO玻璃在70℃退火10分钟,从而获得基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器。
图2(a)为本实施例所得Cs3Cu2I5微晶薄膜的SEM图,可以看出Cs3Cu2I5微晶薄膜是由Cs3Cu2I5微晶颗粒构成,颗粒直径在10~80μm之间。图2(b)为本实施例所得Cs3Cu2I5微晶薄膜的XRD图,可以看出该钙钛矿是正交晶相。
图3为本实施例制得的深紫外光电探测器在黑暗条件下的电流-电压特性曲线。
图4为本实施例制得的深紫外光电探测器的吸收光谱曲线(图4(a))和荧光强度曲线(图4(b))。图4(a)中320nm左右的吸收峰为Cs3Cu2I5微晶的吸收峰。图4(b)可以看出荧光强度的峰值较吸收的峰值偏移了150nm左右,这归因于该Cs3Cu2I5钙钛矿特别的零维结构以及它本身存在的斯托克斯位移。
图5为本实施例制得的深紫外光电探测器的光谱响应曲线,可以看出该器件在265nm的光照射下有着良好的响应。
图6(a)为本实施例制得的深紫外光电探测器在波长为265nm、强度为111μW/cm2至2.74mW/cm2光照下(分别为111μW/cm2、435μW/cm2、1.76mW/cm2、2.74mW/cm2)的电流电压曲线,可以看出该器件的光电流随着入射光强度的增加而增加。图6(b)为本实施例制得的深紫外光电探测器在2.74mW/cm2的光照下的时间响应曲线,可以看出该器件的暗电流为1.2pA,在265nm的光照射下的光电流可以达到152pA。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器,其特征在于:所述深紫外光电探测器是在电极图案化的ITO表面生长有Cs3Cu2I5微晶薄膜,所述Cs3Cu2I5微晶薄膜与ITO形成肖特基势垒,从而构成深紫外光电探测器。
2.根据权利要求1所述的深紫外光电探测器,其特征在于:所述的Cs3Cu2I5微晶薄膜是由直径在10~80μm之间的Cs3Cu2I5微晶颗粒构成。
3.根据权利要求1所述的深紫外光电探测器,其特征在于:所述的Cs3Cu2I5微晶薄膜是以CuI和CsI溶于二甲基亚砜DMSO和N,N-二甲基甲酰胺DMF中形成前驱体饱和溶液,然后通过反溶剂饱和蒸发结晶法在ITO表面直接生长获得。
4.根据权利要求3所述的深紫外光电探测器,其特征在于:在所述前驱体饱和溶液中,CuI、CsI、DMSO和DMF的质量体积比为1.56g:0.76g:1~1.2mL:1~1.2mL。
5.一种权利要求1~4中任意一项所述的深紫外光电探测器的制备方法,其特征在于,按如下步骤进行:
步骤1、将电极图案化的ITO玻璃依次通过酒精、丙酮、去离子水超声清洗并吹干,再用等离子体清洗机清洗10~30分钟;
步骤2、将1.56g CuI和0.76g CsI加入到1~1.2mL DMSO和1~1.2mL DMF的混合溶液中,加热到60~70℃,搅拌2~3小时,获得Cs3Cu2I5前驱体饱和溶液;
步骤3、将清洗后的ITO玻璃和一个磁力搅拌子放入烧杯A中,并加入所述Cs3Cu2I5前驱体饱和溶液,用塑料膜进行密封,再用镊子开若干个透气孔;
步骤4、将经步骤3处理后的烧杯A放入装有甲醇的烧杯B中,再将烧杯B密封,以防止甲醇挥发;
步骤5、将经步骤4处理后的整个烧杯B放在旋转加热台上,设置温度为60~70℃、转速保持在600~800r/m,保温30~48个小时之后,将ITO玻璃取出,即在电极图案化的ITO表面形成Cs3Cu2I5微晶薄膜;
步骤6、将生长完Cs3Cu2I5微晶薄膜的ITO玻璃在60~70℃退火10~20分钟,从而获得基于宽禁带无铅钙钛矿Cs3Cu2I5微晶薄膜的深紫外光电探测器。
CN201910618965.XA 2019-07-10 2019-07-10 一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法 Active CN110165000B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910618965.XA CN110165000B (zh) 2019-07-10 2019-07-10 一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910618965.XA CN110165000B (zh) 2019-07-10 2019-07-10 一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110165000A true CN110165000A (zh) 2019-08-23
CN110165000B CN110165000B (zh) 2021-03-09

Family

ID=67638035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910618965.XA Active CN110165000B (zh) 2019-07-10 2019-07-10 一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110165000B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611014A (zh) * 2019-09-19 2019-12-24 深圳第三代半导体研究院 一种Cs3Cu2I5紫外探测器及其薄膜制备方法
CN111341860A (zh) * 2020-03-23 2020-06-26 郑州大学 一种基于一维CsCu2I3微米线的偏振紫外光探测器及其制备方法
CN112048764A (zh) * 2020-08-17 2020-12-08 南京航空航天大学 一种零维Cs3Cu2I5钙钛矿闪烁晶体及其应用
CN112408464A (zh) * 2020-11-23 2021-02-26 苏州大学 可逆转化铯铜卤素钙钛矿纳米晶体及其制备方法
CN113054067A (zh) * 2021-03-15 2021-06-29 南京邮电大学 一种钙钛矿发光二级管及其钙钛矿薄膜平滑取向的方法
CN113178523A (zh) * 2021-04-22 2021-07-27 河南大学 一种无铅准二维锡基钙钛矿薄膜及其制备的光电探测器
CN113964232A (zh) * 2021-05-08 2022-01-21 鲁东大学 一种铋掺杂钙钛矿紫外探测器的制备方法
CN114592239A (zh) * 2022-03-04 2022-06-07 广州大学 一种提高深紫外光电探测器性能的方法
US11591516B2 (en) * 2019-10-04 2023-02-28 The Board Of Regents Of The University Of Oklahoma Luminescent group 1A copper halides and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130015357A1 (en) * 2011-07-12 2013-01-17 Canon Kabushiki Kaisha Scintillator having phase separation structure and radiation detector using the same
JP2015045636A (ja) * 2013-07-30 2015-03-12 キヤノン株式会社 シンチレータプレート及び放射線検出器
US20170205514A1 (en) * 2013-03-05 2017-07-20 Canon Kabushiki Kaisha Scintillator and radiation detector
CN109980037A (zh) * 2019-03-07 2019-07-05 武汉大学 全无机钙钛矿微米片、肖特基型紫外光电探测器及制法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130015357A1 (en) * 2011-07-12 2013-01-17 Canon Kabushiki Kaisha Scintillator having phase separation structure and radiation detector using the same
US20170205514A1 (en) * 2013-03-05 2017-07-20 Canon Kabushiki Kaisha Scintillator and radiation detector
JP2015045636A (ja) * 2013-07-30 2015-03-12 キヤノン株式会社 シンチレータプレート及び放射線検出器
CN109980037A (zh) * 2019-03-07 2019-07-05 武汉大学 全无机钙钛矿微米片、肖特基型紫外光电探测器及制法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAEHWAN JUN等: "Lead‐Free Highly Efficient Blue‐Emitting Cs3Cu2I5 with 0D Electronic Structure", 《ADVANCED MATERIALS》 *
刘艳珍 等: "钙钛矿光电探测器的研究进展", 《激光与光电子学进展》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611014B (zh) * 2019-09-19 2021-10-29 深圳第三代半导体研究院 一种Cs3Cu2I5紫外探测器及其薄膜制备方法
CN110611014A (zh) * 2019-09-19 2019-12-24 深圳第三代半导体研究院 一种Cs3Cu2I5紫外探测器及其薄膜制备方法
US11591516B2 (en) * 2019-10-04 2023-02-28 The Board Of Regents Of The University Of Oklahoma Luminescent group 1A copper halides and uses thereof
CN111341860B (zh) * 2020-03-23 2022-02-08 郑州大学 一种基于一维CsCu2I3微米线的偏振紫外光探测器及其制备方法
CN111341860A (zh) * 2020-03-23 2020-06-26 郑州大学 一种基于一维CsCu2I3微米线的偏振紫外光探测器及其制备方法
CN112048764B (zh) * 2020-08-17 2021-12-07 南京航空航天大学 一种零维Cs3Cu2I5钙钛矿闪烁晶体及其应用
CN112048764A (zh) * 2020-08-17 2020-12-08 南京航空航天大学 一种零维Cs3Cu2I5钙钛矿闪烁晶体及其应用
CN112408464A (zh) * 2020-11-23 2021-02-26 苏州大学 可逆转化铯铜卤素钙钛矿纳米晶体及其制备方法
CN112408464B (zh) * 2020-11-23 2024-03-19 苏州大学 可逆转化铯铜卤素钙钛矿纳米晶体及其制备方法
CN113054067A (zh) * 2021-03-15 2021-06-29 南京邮电大学 一种钙钛矿发光二级管及其钙钛矿薄膜平滑取向的方法
CN113178523A (zh) * 2021-04-22 2021-07-27 河南大学 一种无铅准二维锡基钙钛矿薄膜及其制备的光电探测器
CN113964232A (zh) * 2021-05-08 2022-01-21 鲁东大学 一种铋掺杂钙钛矿紫外探测器的制备方法
CN114592239A (zh) * 2022-03-04 2022-06-07 广州大学 一种提高深紫外光电探测器性能的方法

Also Published As

Publication number Publication date
CN110165000B (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN110165000A (zh) 一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法
Bie et al. Self‐powered, ultrafast, visible‐blind UV detection and optical logical operation based on ZnO/GaN nanoscale p‐n junctions
Alsultany et al. A high-sensitivity, fast-response, rapid-recovery UV photodetector fabricated based on catalyst-free growth of ZnO nanowire networks on glass substrate
Mahdi et al. Growth and characterization of CdS single-crystalline micro-rod photodetector
CN110047957A (zh) 一种中红外光探测器及其制备方法
Yakuphanoglu et al. Novel organic doped inorganic photosensors
Tsai et al. Preparation of p-SnO/n-ZnO heterojunction nanowire arrays and their optoelectronic characteristics under UV illumination
Belhaj et al. The improvement of UV photodetection based on polymer/ZnO nanorod heterojunctions
US3978510A (en) Heterojunction photovoltaic devices employing i-iii-vi compounds
Xie et al. Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction
Qiao et al. The nanowire length dependence of the photoresponse and Pyro-phototronic response in the ZnO-based heterojunctions
CN109037374A (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
Mohammadi et al. High performance n-ZnO/p-metal-oxides UV detector grown in low-temperature aqueous solution bath
Tang et al. Fast response CdS-CdSxTe1− x-CdTe core-shell nanobelt photodetector
Sun et al. Piezo-phototronic effect enhanced photo-detector based on ZnO nano-arrays/NiO structure
Zhang et al. n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays
Li et al. Tuning the properties of a self-powered UV photodetector based on ZnO and poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) by hydrogen annealing of ZnO nanorod arrays
Tang et al. Enhancing UV photodetection performance of an individual ZnO microwire p–n homojunction via interfacial engineering
CN103500776A (zh) 一种硅基CdZnTe薄膜紫外光探测器的制备方法
Zhao et al. Photo-diodes based on CH3NH3PbCl3 perovskite single crystals by epitaxial growth for ultraviolet photo-detection
CN106684201B (zh) 一种氧化锌纳米棒/黑硅异质结纳米光电探测器及其制备方法
Zhang et al. Construction of n-SnO2 microwire/p-InGaN heterojunction for self-powered and broadband photodetector
Nguyen et al. High-performing UV photodetectors by thermal-coupling transparent photovoltaics
Cheng et al. An extreme high-performance ultraviolet photovoltaic detector based on a ZnO nanorods/phenanthrene heterojunction
CN110491966B (zh) 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant