CN110159299B - 3d打印钢纤维混凝土隧道初支格栅拱架及其施工方法 - Google Patents

3d打印钢纤维混凝土隧道初支格栅拱架及其施工方法 Download PDF

Info

Publication number
CN110159299B
CN110159299B CN201910233746.XA CN201910233746A CN110159299B CN 110159299 B CN110159299 B CN 110159299B CN 201910233746 A CN201910233746 A CN 201910233746A CN 110159299 B CN110159299 B CN 110159299B
Authority
CN
China
Prior art keywords
printing
arch
steel fiber
support
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910233746.XA
Other languages
English (en)
Other versions
CN110159299A (zh
Inventor
郭建涛
油新华
孙立柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China State Construction Engineering Corp Ltd CSCEC
China State Construction Academy Corp Ltd
Original Assignee
China State Construction Engineering Corp Ltd CSCEC
China State Construction Academy Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China State Construction Engineering Corp Ltd CSCEC, China State Construction Academy Corp Ltd filed Critical China State Construction Engineering Corp Ltd CSCEC
Priority to CN201910233746.XA priority Critical patent/CN110159299B/zh
Publication of CN110159299A publication Critical patent/CN110159299A/zh
Application granted granted Critical
Publication of CN110159299B publication Critical patent/CN110159299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • E21D11/083Methods or devices for joining adjacent concrete segments
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • E21D11/086Methods of making concrete lining segments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00181Mixtures specially adapted for three-dimensional printing (3DP), stereo-lithography or prototyping

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

一种3D打印钢纤维混凝土隧道初支格栅拱架及其施工方法,沿拱架延伸方向分成若干单元节,每个单元节由3D打印设备整体打印形成;单元节包括3D打印外支护板、3D打印加强撑、3D打印内侧支撑和3D打印螺栓连接板;3D打印螺栓连接板设于每个单元节的首尾两端,相邻两个单元节同侧的两个L形板的横板互相连接,形成整体拱架。本发明钢纤维混凝土外支护板,受力面积大,比格栅钢架主筋能更有效承受围岩压力,可有效保证初期支护构件的受力性能;采用3D打印机打印的形式整体制作,相对于格栅钢拱架初期支护构件自重较轻,故便于吊装及安装可有效降低吊装成本,同时避免传统初期支护现场人工焊接及加工格栅钢架,降低人工费用及工期。

Description

3D打印钢纤维混凝土隧道初支格栅拱架及其施工方法
技术领域
本发明涉及隧道施工技术领域,具体涉及一种可以用于暗挖隧道施工的3D打印钢纤维混凝土隧道初支格栅拱架及其施工方法,适用于各类需要采用初期支护的暗挖隧道施工。
背景技术
随着经济的飞速发展和城市化水平的不断提高,地下空间的开发成为目前城市空间开发的主要方向之一,暗挖结构也越来越多,暗挖隧道作为城市地下空间开发的主要组成部分,占据了重要地位,目前暗挖隧道初期支护大部分均采用格栅钢架施工,存在如下问题:
一、格栅钢架施工精度差,钢筋强度损失严重:目前格栅钢架均在施工现场进行加工制作,施工精度难以保证,经常出现格栅钢架两部分连接板错位,导致螺栓难以拧进去的情况,同时在加工格栅钢架内部支撑筋时,现场直接采用压弯成型,钢筋强度降低严重,从而增加了施工风险;
二、格栅钢架自重大,工人施工困难:架设格栅钢架时,由于每榀格栅钢架分节重量较大,工人调整架设困难,施工速度降低;近期出现了一种分段设置的钢格栅,虽然搬运方便,但增加了施工的繁琐性;
三、格栅钢架均采用钢筋加工而成,工程造价高:由于格栅钢架主筋、之字筋、螺栓连接板等材料均采用钢筋及钢材,导致工程造价较高。
同时,国内目前也进行了大量的初期支护工厂预制的研究,但是初期支护预制只能预制成混凝土板,自重大,吊装运输及安装均很困难。
发明内容
本发明目的在于提供一种3D打印钢纤维混凝土隧道初支格栅拱架及其施工方法,目的在于解决格栅钢架作为隧道初期支护拱架施工精度差、钢筋强度损失严重、自重大、工人施工困难、造价高的技术难题,以及现有混凝土预制拱架只能预制成板、自重大、吊装运输及安装均很困难的技术问题。
随着3D打印技术也在建筑工程中的广泛应用,与传统建筑行业相比,3D打印的建筑可节约建筑材料30%-60%、缩短工期50%-70%、减少人工50%-80%,但目前3D打印混凝土结构存在抗裂性能差,耐久性差等缺陷,不适用于结构外墙等永久性构件,不过隧道初期支护拱架作为临时构件,对抗裂性能要求低,造型复杂,虽然难以在工厂完成预制,但3D打印技术可完美打印成型,规避3D打印的缺陷。
为实现上述技术目的,本发明采用如下技术方案:
一种3D打印钢纤维混凝土隧道初支格栅拱架,其特征在于:
沿拱架延伸方向分成若干单元节,每个单元节由3D打印设备整体打印形成;
所述单元节包括3D打印外支护板、3D打印加强撑、3D打印内侧支撑和3D打印螺栓连接板;
所述3D打印外支护板为板条结构,设于最外侧;
所述3D打印内侧支撑包括两根平行设置的支撑杆,设于内侧,两根支撑杆形成的面与3D打印外支护板的板面平行;
所述3D打印加强撑也包括并行设置的两条,内侧分别与3D打印外支护板的两侧边沿一体连接,外侧分别与两根3D打印内侧支撑一体连接,所在两个平行平面均与3D打印外支护板的板面垂直;
所述3D打印螺栓连接板设于每个单元节的首尾两端,包括对应设置在两侧的两个L形板,相邻两个单元节同侧的两个L形板的横板互相连接,形成整体拱架。
作为本发明的优选技术方案,所述整体拱架中,3D打印外支护板形成闭合门拱形框板结构,包括底部平面板和顶部拱形板,所述底部平面板长度与隧道底面宽度相适应,所述顶部拱形板的板面与隧道内表面平行。
进一步的,所述整体拱架中,3D打印内侧支撑形成两根平行设置的闭合门拱形杆,包括底部内侧支撑杆和顶部内侧支撑杆,所述底部内侧支撑杆为直线杆,所述顶部内侧支撑杆为拱形杆,两3D打印内侧支撑形成的弧面始终与对应位置的3D打印外支护板的板面平行。
进一步的,所述底部内侧支撑杆和底部平面板之间的距离与顶部内侧支撑杆和顶部拱形板之间的距离相等。
进一步的,所述 L形板的横板上开设有螺栓预留孔,两个L形板的横板通过螺栓连接。
更进一步的,所述3D打印加强撑为平面内的S形支撑或Z形支撑。
此外,本发明还提供一种上述的3D打印钢纤维混凝土隧道初支格栅拱架的施工方法,其特征在于,包括如下步骤:
步骤一、材料准备:准备3D打印设备和钢纤维混凝土打印材料;
步骤二、确定尺寸和分节方式:依据待支护隧道的尺寸,确定3D打印拱架各构件的尺寸,同时确定分节方式;
步骤三、确定打印模型:依据步骤二确定的尺寸和分节方式,确定施工图纸,建立打印模型;
步骤三、打印各个单元节:启动3D打印设备,分别整体打印各个单元节并进行养护;
步骤四、单元节运输:将步骤三打印完成的单元节运输到施工现场;
步骤五、整体组装就位:将各个单元节放入开挖好的槽段中,安装的同时进行组装,用螺栓将相邻单元节固定连接;
步骤六、进行后续施工:喷射混凝土并进行土体开挖,至此3D打印钢纤维混凝土隧道初支格栅拱架施工完成。
其中,所述步骤一中,钢纤维混凝土打印材料包括自密实混凝土和钢纤维材料,为避免钢纤维成团,所述钢纤维材料不参与自密实混凝土的搅拌过程,先进行自密实混凝土的配制及搅拌,然后自密实混凝土与钢纤维材料同时进入3D打印设备进行打印。
进一步的,所述钢纤维材料的直径范围为0.1~20mm,长度范围为0.5~500mm;所述自密实混凝土由42.5 级水泥355~367份、细度模数2.85的中砂724~748份、粒径5~16mm的碎石885~915份、II 级粉煤灰77~87份、矿粉103~119份、硅灰26~32份、高效聚羧酸减水剂14~20份、水157~171份组成。
最后,所述步骤三中,采用分层打印、迭加成形的方式逐层增加材料来生成单元节。
与现有技术相比,本发明的技术优势在于:
1、施工精度高、无强度损失:本发明采用3D打印形式整体制作,各个单元节尺寸规格控制精准,依靠3D打印螺栓连接板进行单元节的精准连接,施工精度高,避免了格栅钢架在施工现场进行加工制作、施工精度难以保证的问题,以及钢筋制作时采用压弯成型、钢筋强度降低严重的情况,可根据工程打印各种尺寸的初期支护构件,打印精度高,相对于格栅钢拱架初期支护施工质量易于保证,构件链接能精确定位,利于隧道开挖支护的稳定性;
2、自重小、造价低:本发明采用3D打印形式整体制作,相对于格栅钢拱架初期支护构件自重较轻,约轻60%,便于吊装及安装,可有效降低吊装成本,相对于格栅钢拱架初期支护,具有更好的经济效益;避免了传统格栅钢架采用钢筋加工而成、造价较高的问题;
3、分节组装,施工运输方便:分节打印,分节运输,安装的同时进行组装施工,施工速度快,节省人工成本,避免了传统初期支护现场人工焊接及加工格栅钢架,降低人工费用及工期;相对于格栅钢拱架初期支护易于运输及安装定位,易于微调;
4、强度高、受力性能好:本发明钢纤维混凝土材料的外支护板受力面积大,比格栅钢架主筋能更有效承受围岩压力,可有效保证初期支护构件的受力性能。
综上,本发明有利于3D打印技术在地下工程中的推广应用,为地下工程的工业化和产业化起到促进作用。
附图说明
通过结合以下附图所作的详细描述,本发明的上述和/或其他方面和优点将变得更清楚和更容易理解,这些附图只是示意性的,并不限制本发明,其中:
图1是本发明的3D打印钢纤维混凝土隧道初支格栅拱架的等轴测视图;
图2是图1的正视图;
图3是图1的侧视图;
图4是本发明涉及的两单元节连接部位的局部放大示意图。
附图标记:1-3D打印外支护板、1.1-底部平面板、1.2-顶部拱形板、2-3D打印Z型内支撑、3-3D打印内侧支撑、3.1-底部内侧支撑杆、3.2-顶部内侧支撑杆、4-3D打印螺栓连接板、4.1-L形板、4.2-螺栓预留孔。
具体实施方式
在下文中,将参照附图描述本发明的3D打印钢纤维混凝土隧道初支格栅拱架及其施工方法的实施例。在此记载的实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案。
本说明书的附图为示意图,辅助说明本发明的构思,示意性地表示各部分的形状及其相互关系。请注意,为了便于清楚地表现出本发明实施例的各部件的结构,各附图之间并未按照相同的比例绘制。相同的参考标记用于表示相同的部分。
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。如图1-4所示,一种3D打印钢纤维混凝土隧道初支格栅拱架,沿拱架延伸方向分成若干单元节,每个单元节由3D打印设备整体打印形成;单元节包括3D打印外支护板1、3D打印加强撑2、3D打印内侧支撑3和3D打印螺栓连接板4;3D打印外支护板1为板条结构,设于最外侧;3D打印内侧支撑3包括两根平行设置的支撑杆,设于内侧,两根支撑杆形成的面与3D打印外支护板1的板面平行;3D打印加强撑2也包括并行设置的两条,内侧分别与3D打印外支护板1的两侧边沿一体连接,外侧分别与两根3D打印内侧支撑3一体连接,所在两个平行平面均与3D打印外支护板1的板面垂直;如图4,3D打印螺栓连接板4设于每个单元节的首尾两端,包括对应设置在两侧的两个L形板4.1,相邻两个单元节同侧的两个L形板4.1的横板互相连接,形成整体拱架。L形板4.1的横板上开设有螺栓预留孔4.2,两个L形板4.1的横板通过螺栓连接。3D打印加强撑2为平面内的S形支撑或Z形支撑。
整体拱架中,3D打印外支护板1形成闭合门拱形框板结构,包括底部平面板1.1和顶部拱形板1.2,底部平面板1.1长度与隧道底面宽度相适应,顶部拱形板1.2的板面与隧道内表面平行;D打印内侧支撑3形成两根平行设置的闭合门拱形杆,包括底部内侧支撑杆3.1和顶部内侧支撑杆3.2,两根3D打印内侧支撑3形成的弧面始终与对应位置的3D打印外支护板1的板面平行;底部内侧支撑杆3.1和底部平面板1.1之间的距离与顶部内侧支撑杆3.2和顶部拱形板1.2之间的距离相等。
上述3D打印钢纤维混凝土隧道初支格栅拱架的施工方法包括如下步骤:
步骤一、材料准备:准备3D打印设备和钢纤维混凝土打印材料;钢纤维混凝土打印材料包括自密实混凝土和钢纤维材料,为避免钢纤维成团,钢纤维材料不参与自密实混凝土的搅拌过程,先进行自密实混凝土的配制及搅拌,然后自密实混凝土与钢纤维材料同时进入3D打印设备进行打印。钢纤维材料的直径范围为0.1~20mm,长度范围为0.5~500mm;自密实混凝土由42.5 级水泥355~367份、细度模数2.85的中砂724~748份、粒径5~16mm的碎石885~915份、II 级粉煤灰77~87份、矿粉103~119份、硅灰26~32份、高效聚羧酸减水剂14~20份、水157~171份组成。
步骤二、确定尺寸和分节方式:依据待支护隧道的尺寸,确定3D打印拱架各构件的尺寸,同时确定分节方式;
步骤三、确定打印模型:依据步骤二确定的尺寸和分节方式,确定施工图纸,建立打印模型;
步骤三、打印各个单元节:启动3D打印设备,分别整体打印各个单元节并进行养护;
步骤四、单元节运输:将步骤三打印完成的单元节运输到施工现场;采用分层打印、迭加成形的方式逐层增加材料来生成单元节;
步骤五、整体组装就位:将各个单元节放入开挖好的槽段中,安装的同时进行组装,用螺栓将相邻单元节固定连接;
步骤六、进行后续施工:喷射混凝土并进行土体开挖,至此3D打印钢纤维混凝土隧道初支格栅拱架施工完成。
本说明书实施例所述的内容仅仅是对发明构思的实现型式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (8)

1.一种3D打印钢纤维混凝土隧道初支格栅拱架,其特征在于:
沿拱架延伸方向分成若干单元节,每个单元节由3D打印设备整体打印形成;
所述单元节包括3D打印外支护板(1)、3D打印加强撑(2)、3D打印内侧支撑(3)和3D打印螺栓连接板(4);
所述3D打印外支护板(1)为板条结构,设于最外侧;
所述3D打印内侧支撑(3)包括两根平行设置的支撑杆,设于内侧,两根支撑杆形成的面与3D打印外支护板(1)的板面平行;
所述3D打印加强撑(2)也包括并行设置的两条,内侧分别与3D打印外支护板(1)的两侧边沿一体连接,外侧分别与两根3D打印内侧支撑(3)一体连接,所在两个平行平面均与3D打印外支护板(1)的板面垂直;
所述3D打印螺栓连接板(4)设于每个单元节的首尾两端,包括对应设置在两侧的两个L形板(4.1),相邻两个单元节同侧的两个L形板(4.1)的横板互相连接,形成整体拱架;
所述整体拱架中,3D打印外支护板(1)形成闭合门拱形框板结构,包括底部平面板(1.1)和顶部拱形板(1.2),所述底部平面板(1.1)长度与隧道底面宽度相适应,所述顶部拱形板(1.2)的板面与隧道内表面平行;
所述 L形板(4.1)的横板上开设有螺栓预留孔(4.2),两个L形板(4.1)的横板通过螺栓连接。
2.根据权利要求1所述的一种3D打印钢纤维混凝土隧道初支格栅拱架,其特征在于:所述整体拱架中,3D打印内侧支撑(3)形成两根平行设置的闭合门拱形杆,包括底部内侧支撑杆(3.1)和顶部内侧支撑杆(3.2),所述底部内侧支撑杆(3.1)为直线杆,所述顶部内侧支撑杆(3.2)为拱形杆,两根3D打印内侧支撑(3)形成的弧面始终与对应位置的3D打印外支护板(1)的板面平行。
3.根据权利要求2所述的一种3D打印钢纤维混凝土隧道初支格栅拱架,其特征在于:所述底部内侧支撑杆(3.1)和底部平面板(1.1)之间的距离与顶部内侧支撑杆(3.2)和顶部拱形板(1.2)之间的距离相等。
4.根据权利要求1所述的一种3D打印钢纤维混凝土隧道初支格栅拱架,其特征在于:所述3D打印加强撑(2)为平面内的S形支撑或Z形支撑。
5.一种权利要求1-4任意一项所述的3D打印钢纤维混凝土隧道初支格栅拱架的施工方法,其特征在于,包括如下步骤:
步骤一、材料准备:准备3D打印设备和钢纤维混凝土打印材料;
步骤二、确定尺寸和分节方式:依据待支护隧道的尺寸,确定3D打印拱架各构件的尺寸,同时确定分节方式;
步骤三、确定打印模型:依据步骤二确定的尺寸和分节方式,确定施工图纸,建立打印模型;
步骤三、打印各个单元节:启动3D打印设备,分别整体打印各个单元节并进行养护;
步骤四、单元节运输:将步骤三打印完成的单元节运输到施工现场;
步骤五、整体组装就位:将各个单元节放入开挖好的槽段中,安装的同时进行组装,用螺栓将相邻单元节固定连接;
步骤六、进行后续施工:喷射混凝土并进行土体开挖,至此,3D打印钢纤维混凝土隧道初支格栅拱架施工完成。
6.根据权利要求5所述的3D打印钢纤维混凝土隧道初支格栅拱架的施工方法,其特征在于:所述步骤一中,钢纤维混凝土打印材料包括自密实混凝土和钢纤维材料,为避免钢纤维成团,所述钢纤维材料不参与自密实混凝土的搅拌过程,先进行自密实混凝土的配制及搅拌,然后自密实混凝土与钢纤维材料同时进入3D打印设备进行打印。
7. 根据权利要求6所述的3D打印钢纤维混凝土隧道初支格栅拱架的施工方法,其特征在于:所述钢纤维材料直径范围为0.1~20mm,长度范围为0.5~500mm;所述自密实混凝土由42.5 级水泥355~367份、细度模数2.85的中砂724~748份、粒径5~16mm的碎石885~915份、II 级粉煤灰77~87份、矿粉103~119份、硅灰26~32份、高效聚羧酸减水剂14~20份、水157~171份组成。
8.根据权利要求5所述的3D打印钢纤维混凝土隧道初支格栅拱架的施工方法,其特征在于:所述步骤三中,采用分层打印、迭加成形的方式逐层增加材料来生成单元节。
CN201910233746.XA 2019-03-26 2019-03-26 3d打印钢纤维混凝土隧道初支格栅拱架及其施工方法 Active CN110159299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910233746.XA CN110159299B (zh) 2019-03-26 2019-03-26 3d打印钢纤维混凝土隧道初支格栅拱架及其施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910233746.XA CN110159299B (zh) 2019-03-26 2019-03-26 3d打印钢纤维混凝土隧道初支格栅拱架及其施工方法

Publications (2)

Publication Number Publication Date
CN110159299A CN110159299A (zh) 2019-08-23
CN110159299B true CN110159299B (zh) 2024-04-09

Family

ID=67638418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910233746.XA Active CN110159299B (zh) 2019-03-26 2019-03-26 3d打印钢纤维混凝土隧道初支格栅拱架及其施工方法

Country Status (1)

Country Link
CN (1) CN110159299B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111456767A (zh) * 2019-10-29 2020-07-28 中国建筑股份有限公司 一种分节一体化铸造隧道钢拱架结构及其支护方法
CN110863844B (zh) * 2019-11-13 2021-03-02 浙江海洋大学 用于隧道施工的支撑设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010356B1 (ja) * 1998-11-19 2000-02-21 鹿島建設株式会社 トンネルの構築方法
US6401405B1 (en) * 1999-01-20 2002-06-11 C. Lorin Hicks Monolithic pre-formed header and arched opening for standard concrete block and wood frame building construction
CN203822325U (zh) * 2014-02-17 2014-09-10 山东大学 用于膨胀性土层隧道初期的钢格栅钢拱架联合支护
CN107130983A (zh) * 2017-06-19 2017-09-05 贵州开磷建设集团有限公司 一种大断面隧道掘进施工格栅拱架加强支护方法
CN210598989U (zh) * 2019-03-26 2020-05-22 中国建筑股份有限公司 一种3d打印钢纤维混凝土隧道初支格栅拱架

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010356B1 (ja) * 1998-11-19 2000-02-21 鹿島建設株式会社 トンネルの構築方法
US6401405B1 (en) * 1999-01-20 2002-06-11 C. Lorin Hicks Monolithic pre-formed header and arched opening for standard concrete block and wood frame building construction
CN203822325U (zh) * 2014-02-17 2014-09-10 山东大学 用于膨胀性土层隧道初期的钢格栅钢拱架联合支护
CN107130983A (zh) * 2017-06-19 2017-09-05 贵州开磷建设集团有限公司 一种大断面隧道掘进施工格栅拱架加强支护方法
CN210598989U (zh) * 2019-03-26 2020-05-22 中国建筑股份有限公司 一种3d打印钢纤维混凝土隧道初支格栅拱架

Also Published As

Publication number Publication date
CN110159299A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN206053131U (zh) 预制楼板钢筋笼构件和楼板
CN110159299B (zh) 3d打印钢纤维混凝土隧道初支格栅拱架及其施工方法
CN210164056U (zh) 一种装配式钢混组合结构建筑系统
CN105952060A (zh) 一种预制梁钢筋笼构件及装配方法
CN102877646A (zh) 灌芯叠合装配式钢筋混凝土剪力墙结构的建造方法
CN219527957U (zh) 一种混凝土模块箱体
CN104805960A (zh) 一种免拆模混凝土梁及其施工方法
CN113719029A (zh) 一种基于暗牛腿的装配式梁柱连接节点及其施工方法
CN210598989U (zh) 一种3d打印钢纤维混凝土隧道初支格栅拱架
CN212224168U (zh) 一种双面叠合导流墙
CN206090815U (zh) 预制装配式筒体结构公共建筑
CN111411693A (zh) 装配浇注一体化剪力墙结构建筑体系
CN207003719U (zh) 一种具有钢筋桁架的预制钢板组合墙
CN213978596U (zh) 一种薄壁钢箱混凝土组合桥塔
CN206053132U (zh) 预制钢筋笼构件、剪力墙和地下连续墙
CN214738804U (zh) 一种预制装配式混凝土墙和板的节点连接结构
CN212453063U (zh) 装配浇注一体化剪力墙结构建筑体系
CN211114260U (zh) 装配式免拆金属模板网及钢筋骨架构成的建筑结构体系
CN212562150U (zh) 一种适合地下室外墙的单面页板叠合剪力墙
CN209760525U (zh) 装配式建筑施工用便于堆砌的隔断内墙
CN107762071B (zh) 一种预制钢筋笼结构、浇筑结构体及结构体施工方法
CN207597652U (zh) 一种现浇夹心保温剪力墙结构和装配式建筑
CN111456767A (zh) 一种分节一体化铸造隧道钢拱架结构及其支护方法
CN220203007U (zh) 一种rcs结构多标高钢梁组合结构
CN109826316A (zh) 一种装配式钢筋混凝土结构中基于型钢的梁-梁节点

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant