CN110152008B - 一种淀粉基亲水-疏水双相运载体系的制备方法 - Google Patents

一种淀粉基亲水-疏水双相运载体系的制备方法 Download PDF

Info

Publication number
CN110152008B
CN110152008B CN201910434701.9A CN201910434701A CN110152008B CN 110152008 B CN110152008 B CN 110152008B CN 201910434701 A CN201910434701 A CN 201910434701A CN 110152008 B CN110152008 B CN 110152008B
Authority
CN
China
Prior art keywords
starch
hydrophilic
hydrophobic
phase
volume ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910434701.9A
Other languages
English (en)
Other versions
CN110152008A (zh
Inventor
魏本喜
祁红娜
邹金
王博
徐保国
任晓锋
马胜梅
胡杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910434701.9A priority Critical patent/CN110152008B/zh
Publication of CN110152008A publication Critical patent/CN110152008A/zh
Application granted granted Critical
Publication of CN110152008B publication Critical patent/CN110152008B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • A61K38/13Cyclosporins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/18Oxidised starch
    • C08B31/185Derivatives of oxidised starch, e.g. crosslinked oxidised starch
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Polymers & Plastics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种淀粉基亲水‑疏水双相运载体系的制备方法,属于淀粉开发技术领域。本发明基于淀粉分子中引入氨基后形成稳定的分散相,进而将多聚阴离子和待运载物质混合滴加至上述分散相中,通过离子凝胶法制备负载亲水性物质的纳米淀粉颗粒。通过控制其吸附至两相界面的吸附强度与吸附层厚度,可稳定疏水性性物质得到油/水型高内相皮克林乳状液,此即为亲水‑疏水两相运载体系。本发明方法制备的纳米淀粉粒度与电位可控,并可同时负载亲水性目标活性物质;将其吸附至两相界面稳定内相,进而负载疏水性活性物质,得到淀粉基亲水‑疏水双相运载体系。通过对纳米淀粉表面与界面行为的调控,可实现该两相运载体系对运载物质的控制释放。

Description

一种淀粉基亲水-疏水双相运载体系的制备方法
技术领域
一种淀粉基亲水-疏水双相运载体系的制备方法,涉及到淀粉控制水解、离子凝胶法制备纳米淀粉、亲水性物质的包埋、疏水性物质的运载和皮克林乳液的制备,属于变性淀粉开发技术领域。
背景技术
在肿瘤治疗中,目前静脉给药仍是主要的给药方式,然而口服肿瘤治疗药物正成为当前的研究热点。抗肿瘤药物吸收饱和性及结构稳定性是影响胃肠道吸收的两个主要因素;另外,肠道内P-糖蛋白(P-glycoprotein,P-gP)的广泛分布,使肠道代谢系统对药物存在首过清除作用,这也大大影响抗肿瘤药物的口服生物利用度。近年来,针对恶性肿瘤发病机制复杂、治疗环节多等特点,提出了联合性、综合性给药的策略。由于P-gP抑制剂可以显著减少药物外流,提高细胞内药物浓度,目前P-gP抑制剂作为口服化疗药的调节剂而倍受关注。
环孢素A(Cyclosporine,CyA)属第一代P-gP抑制剂,可抑制P-gP对药物的外排作用,促进药物的吸收。然而,CyA的肝肾毒性限制了其临床应用,经研究发现,造成其肝肾毒性的主要原因包括如下几方面:(1)高龄;(2)血清肌酐升高幅度过大;(3)CyA的起始剂量过大和其突释行为。其中,CyA的剂量过大和突释为主要影响因素。研究发现,其使用量为<5mg/kg/天可以将其肝肾毒性的可能性降至最低。可见,控制CyA在胃肠道内的缓慢释放可解决上述起始剂量过大和其突释的问题。
紫杉醇(Paclitaxel)作用于细胞微管,能有效抑制肿瘤细胞的有丝分裂,具有广谱抗肿瘤作用。但由于紫杉醇为水难溶性药物且为肠道P-gP底物,口服吸收差。研究表明,通过对紫杉醇的包载,可以改变紫杉醇的溶媒,降低毒性,提高给药剂量。
临床药动学研究显示,在实体瘤患者中,单纯口服紫杉醇,其口服生物利用度小于5%;若口服同样剂量的紫杉醇并联合CyA给药,紫杉醇的生物利用度可提高到50%。J.vanAsperen等对CyA对紫杉醇口服制剂的药代动力学影响进行了详细的研究发现紫杉醇与CyA联合给药,可以使紫杉醇的口服生物利用度由9.3%提高到67%,进一步证实CyA可以增强紫杉醇的口服吸收生物利用度,降低紫杉醇消除速率。组织学检查也表明CyA并不是通过对胃肠道毒性作用,而主要是通过抑制肠粘膜上P-gP对紫杉醇的外排作用而增强紫杉醇的吸收。
可见,紫杉醇与CyA共同给药会将会显著提高肿瘤细胞的抑制率,然而如何降低CyA的肝肾毒性以及提高紫杉醇的生物利用度成为构建此共载药体系的研究难点。近年来,淀粉基于其可降解、生物相容性好等优点而成为理想的药物缓释基材。若将淀粉分子内引入氨基,与目标药物共混后进而通过离子凝胶法制备载药纳米颗粒,便可达到缓慢释放的目的,并同时具有环境响应的特性,能有效解决CyA肝肾毒性的问题。进而,将所得载药纳米淀粉颗粒做为皮克林乳液稳定剂,以紫杉醇为内相,构建紫杉醇-CyA双相运载体系,可将皮克林乳液自身界面稳定性强优点与氨基修饰淀粉环境响应的特性相结合,实现紫杉醇在胃肠道内的释放并提高其生物利用度,同时降低CyA的肝肾毒性。
发明内容
本发明的目的在于提供一种可同时运载亲水相与疏水相物质的双相运载体系,并实现两相的控制释放,为药物的高效利用与靶向治疗提供新的技术手段。
本发明的技术方案为:一种淀粉基亲水-疏水双相运载体系的制备方法,以高直链玉米淀粉为原料,首先通过α-淀粉酶水解控制淀粉分子量,获得一定分子量范围的糊精,采用高碘酸钠氧化后与乙二胺反应制备氨基淀粉,选用三聚磷酸钠、三偏磷酸钠或六偏磷酸钠通过离子凝胶法制备负载亲水性物质的纳米淀粉。以此纳米淀粉为乳化剂,乳化疏水相物质制备高内相乳液,制得淀粉基双相运载体系。具体工艺步骤为:
(1)淀粉控制水解:
以pH=5~7磷酸缓冲液配制10%~30%(w/v)高直链玉米淀粉乳,于121℃条件下糊化30min,待冷却后添加中温α-淀粉酶(500~1500u/g淀粉)进行水解,控制水解液的DE值为5~15,煮沸灭酶后进而添加30~60%(v/v)乙醇至水解液中,取沉淀物,分子量为5×104~6×106
(2)氨基淀粉的制备:
将上述特定分子量的淀粉分散于蒸馏水中,控制淀粉浓度为10~30%(w/v)并以盐酸调节体系的pH=1~5,温度为20~60℃,添加0.2~0.6mol/L高碘酸钠至上述体系中,氧化反应30~120min,抽滤并以去离子水洗至中性干燥后得到双醛淀粉;以去离子水配制5~15%(w/v)双醛淀粉溶液,以盐酸调节体系的pH=5~7,温度20~40℃,添加1~4%(w/v)的乙二胺,反应30~120min后以去离子水洗涤、抽滤并干燥得到氨基淀粉;
(3)负载亲水性性物质纳米淀粉的制备:
将上述氨基淀粉与去离子水混合配制为0.1%~1%(w/v)的淀粉溶液,配制0.01%~0.1%(w/v)的三聚磷酸钠溶液,同时添加1%~5%(w/v)的环孢素A于三聚磷酸钠溶液中。在室温条件将三聚磷酸钠与环孢素A的混合溶液以1~5mL/min的流速滴加至氨基淀粉溶液中,待淀粉溶液呈现明显的乳光时停止滴加。进而将乳光溶液进行超声处理,处理功率为50~150W,温度0℃,处理2s,间隔5s,处理3~10min,测得负载亲水性活性物质的纳米淀粉的粒径为100~600nm,此纳米淀粉对模板亲水性物质环孢素A的包封率为20~60%,表面电位为20~40mV。
(4)负载亲水-疏水两相淀粉基运载体系的制备:
将上述所得负载环孢素A的纳米淀粉1~3%(w/v)分散于去离子水中,将紫杉醇(疏水性模板物)溶解于苄醇中0.1~0.4%(w/v),上述两相按1:1体积比混合,采用IKA T25digital ULTRA-TURRAX高速(10000~20000rpm)剪切2~8min,制得负载亲水性物质环孢素A的纳米淀粉稳定的紫杉醇为内相的皮克林乳液,此体系即为淀粉基亲水-疏水双相运载体系。
所述步骤(4)中获得的双相运载体系可实现对疏水性物质环孢素A的缓慢与控制释放,通过对载药纳米淀粉颗粒的表面氨基数量的调节实现对由其所稳定的皮克林乳液稳定性与释放行为的控制,实现紫杉醇的最大生物利用度。
本发明的有益效果:
(1)淀粉为一种可降解、生物相容性好的生物大分子,将其做为药物缓释基材具有高安全性;
(2)通过对氨基淀粉中氨基数量的控制,可较容易地实现对负载亲水性物质纳米淀粉的表面及界面行为的调控;
(3)负载疏水性物质的纳米淀粉吸附至相界面制备皮克林乳液,实现对第二相(疏水相)的同时载运。
具体实施方式
实施例1
以pH=7的磷酸缓冲液配制30%(w/v)高直链玉米淀粉乳,于121℃条件下糊化30min,待冷却后添加1500u/g的中温α-淀粉酶淀粉进行水解,控制水解液的DE=15,煮沸灭酶后进而添加60%(v/v)乙醇至水解液中,取沉淀物干燥后分散于蒸馏水中,控制淀粉浓度为10%(w/v)并以盐酸调节体系的pH=1,温度控制为20℃,添加0.6mol/L高碘酸钠至上述体系中,氧化反应30min,抽滤并以去离子水洗至中性干燥后得到双醛淀粉;以去离子水配制5%(w/v)的双醛淀粉溶液,以盐酸调节体系的pH=5,控制温度为20℃,添加4%(w/v)的乙二胺,反应120min后以去离子水洗涤、抽滤并干燥得到氨基淀粉。
将氨基淀粉与去离子水混合配制0.1%(w/v)的氨基淀粉溶液,同时配制0.01%(w/v)的多聚阴离子三聚磷酸钠溶液,同时添加5%(w/v)的环孢素A,在室温条件下将三聚磷酸钠与环孢素A的混合液以1mL/min的流速滴加至氨基淀粉溶液中,待淀粉溶液呈现明显的乳光时停止滴加。进而将乳光溶液进行超声处理,处理功率为50W,温度0℃,处理2s,间隔5s,处理3min,测得负载亲水性物质的纳米淀粉的粒径为150nm,此纳米淀粉对模板运载物质环孢素A的包封率为60%,表面电位为32mV。
将上述运载亲水性模板物质环孢素A的纳米淀粉分散于去离子水中3%(w/v),将紫杉醇0.4%(w/v)溶解于苄醇中,上述两相按1:1体积比混合,采用IKA T 25digitalULTRA-TURRAX高速(20000rpm)剪切2min,制得负载亲水性物质环孢素A的纳米淀粉稳定的紫杉醇为内相的皮克林乳液,此体系即为淀粉基双相运载体系,其对紫杉醇的包封率>90%,乳液中位径为26μm。
实施例2
以pH=5的磷酸缓冲液配制10%(w/v)高直链玉米淀粉乳,于121℃条件下糊化30min,待冷却后添加500u/g的中温α-淀粉酶淀粉进行水解,控制水解液的DE=5,煮沸灭酶后进而添加60%(v/v)乙醇至水解液中,取沉淀物干燥后分散于蒸馏水中,控制淀粉浓度为10%(w/v)并以盐酸调节体系的pH=1,温度为60℃,添加0.6mol/L高碘酸钠至上述体系中,氧化反应120min,抽滤并以去离子水洗至中性干燥后得到双醛淀粉;以去离子水配制15%(w/v)的双醛淀粉溶液,以盐酸调节体系的pH=5,温度20℃,添加1%(w/v)的乙二胺,反应30min后以去离子水洗涤、抽滤并干燥得到氨基淀粉。
将氨基淀粉与去离子水混合配制1%(w/v)的氨基淀粉溶液,同时配制0.1%(w/v)的三聚磷酸钠溶液,同时添加1%(w/v)的环孢素A,在室温条件下将三聚磷酸钠与环孢素A的混合溶液以5mL/min的速度滴加至氨基淀粉溶液中,待淀粉溶液呈现明显的乳光时停止滴加。进而将乳光溶液进行超声处理,处理功率为150W,温度0℃,处理2s,间隔5s,处理10min,测得负载亲水性物质的纳米淀粉的粒径为600nm,此纳米淀粉对亲水性模板运载物质环孢素A的包封率为20%,表面电位为21mV。
将上述运载亲水性模板物质环孢素A的纳米淀粉分散于去离子水中1%(w/v),将紫杉醇0.1%(w/v)溶解于苄醇中,上述两相按1:1体积比混合,采用IKA T 25digitalULTRA-TURRAX高速(10000rpm)剪切8min,制得负载亲水性物质环孢素A的纳米淀粉稳定的紫杉醇为内相的皮克林乳液,此体系即为淀粉基双相运载体系,其对紫杉醇的包封率>92%,乳液中位径为86.5μm。

Claims (1)

1.一种淀粉基亲水-疏水双相运载体系的制备方法,其特征在于,按照下述步骤进行:
(1)特定分子量范围糊精的制备:
以pH=5~7磷酸缓冲液配制以质量与体积比计为10%~30%高直链玉米淀粉乳,于121℃条件下糊化30min,冷却后添加中温α-淀粉酶进行水解,添加量为500~1500u/g淀粉,控制水解液的DE值为5~15,煮沸灭酶后进而添加体积比计30~60%的乙醇至水解液中,取沉淀物;
(2)氨基淀粉的制备:
将步骤(1)中所得的沉淀物分散于蒸馏水中,控制淀粉浓度以质量与体积比计为10~30%,以盐酸调节体系的pH=1~5,温度为20~60℃,添加0.2~0.6mol/L高碘酸钠至上述体系中,氧化反应30~120min,抽滤并以去离子水将样品洗至中性,干燥后得到双醛淀粉;以去离子水配制以质量与体积比计为5~15%双醛淀粉溶液,以盐酸调节体系的pH=5~7,温度20~40℃,添加以质量与体积比计为1~4%的乙二胺,反应30~120min后以去离子水洗涤、抽滤并干燥得到氨基淀粉;
(3)负载亲水性物质的纳米淀粉的制备:
将步骤(2)中所得的氨基淀粉与去离子水混合配制以质量与体积比计为0.1%~1%的淀粉溶液,配制以质量与体积比计为0.01%~0.1%的多聚阴离子三聚磷酸钠溶液,同时添加以质量与体积比计为1%~5%的环孢素A作为亲水性模板物与三聚磷酸钠溶液混合,在室温条件下将三聚磷酸钠与环孢素A的混合溶液以1~5mL/min的速度滴加至氨基淀粉溶液中,待淀粉溶液呈现明显的乳光时停止滴加;进而将此溶液进行超声处理,处理功率为50~150W,温度0℃,处理2s,间隔5s,处理3~10min,测得负载环孢素A的纳米淀粉粒径为100~600nm,此纳米淀粉对亲水性模板运载物质环孢素A的包封率为20~60%,表面电位为20~40mV;
(4)负载亲水-疏水物质的淀粉基运载体系的制备:
将步骤(3)中所得运载亲水性模板物质环孢素A以质量与体积比计浓度为1~3%的纳米淀粉分散于去离子水中,将紫杉醇作为疏水性模板物溶解于苄醇中,其浓度以质量与体积比计为0.1~0.4%,上述两相按1:1体积比混合,采用IKA T 25 digital ULTRA-TURRAX以10000~20000rpm的转速高速剪切2~8min,制得负载亲水性物质环孢素A的纳米淀粉稳定的紫杉醇为内相的皮克林乳液,此体系即为淀粉基亲水-疏水双相运载体系。
CN201910434701.9A 2019-05-23 2019-05-23 一种淀粉基亲水-疏水双相运载体系的制备方法 Active CN110152008B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910434701.9A CN110152008B (zh) 2019-05-23 2019-05-23 一种淀粉基亲水-疏水双相运载体系的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910434701.9A CN110152008B (zh) 2019-05-23 2019-05-23 一种淀粉基亲水-疏水双相运载体系的制备方法

Publications (2)

Publication Number Publication Date
CN110152008A CN110152008A (zh) 2019-08-23
CN110152008B true CN110152008B (zh) 2023-02-17

Family

ID=67632353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910434701.9A Active CN110152008B (zh) 2019-05-23 2019-05-23 一种淀粉基亲水-疏水双相运载体系的制备方法

Country Status (1)

Country Link
CN (1) CN110152008B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116941B (zh) * 2019-12-31 2022-07-01 镇江市智农食品有限公司 一种纳米淀粉基Pickering乳液的制备方法
CN113087811B (zh) * 2021-04-16 2023-03-17 齐鲁工业大学 一种线性糊精纳米颗粒的制备方法及应用
CN115530367B (zh) * 2021-06-29 2023-09-26 华南理工大学 一种含β-胡萝卜素的氧化高直链淀粉乳液及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423659A (zh) * 2011-10-09 2012-04-25 江南大学 微纳淀粉颗粒乳化剂的制备及应用
EP2740532A1 (en) * 2012-12-06 2014-06-11 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Method of producing a starch-containing material
CN108017799A (zh) * 2017-11-07 2018-05-11 江苏大学 一种淀粉基吸油性材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423659A (zh) * 2011-10-09 2012-04-25 江南大学 微纳淀粉颗粒乳化剂的制备及应用
EP2740532A1 (en) * 2012-12-06 2014-06-11 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Method of producing a starch-containing material
CN108017799A (zh) * 2017-11-07 2018-05-11 江苏大学 一种淀粉基吸油性材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
交联氨基淀粉吸附水中镉离子的影响因素研究;董爱琴等;《江西农业大学学报》;20181231;第40卷(第4期);第856-865页,尤其是第857页第3段,第857-858页"1.2 实验方法" *
交联淀粉研究进展;倪海明等;《大众科技》;20150331;第17卷(第3期);第71-76页,尤其是第72页左栏第2段,第74页"4.2.3交联淀粉在生物医用材料领域的应用" *
淀粉在Pickering乳液中的应用研究;刘灿灿等;《食品工业》;20181231;第39卷(第8期);第272-276页,尤其是第275页第1段 *

Also Published As

Publication number Publication date
CN110152008A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN110152008B (zh) 一种淀粉基亲水-疏水双相运载体系的制备方法
CN103920153A (zh) 一种壳聚糖修饰的pH响应性载药缓控释材料及其制备方法
CA2371912A1 (en) Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
KR20060123384A (ko) 약물을 함유하는 나노 입자 및 그 제조 방법, 그리고 당해나노 입자로 이루어지는 비경구 투여용 제제
CN103393632A (zh) 一种卡巴他赛药物组合物及其制备方法
Gong et al. Drug-interactive mPEG-b-PLA-Phe (Boc) micelles enhance the tolerance and anti-tumor efficacy of docetaxel
WO2006075881A1 (en) Cholanic acid-chitosan complex forming self-aggregates and preparation method thereof
CN105727303A (zh) 一种高载卡巴他赛药物的白蛋白组合物及其制剂和制备方法
Moghaddam et al. Fabrication of carboxymethyl chitosan nanoparticles to deliver paclitaxel for melanoma treatment
CN107281494B (zh) 一种氧化石墨烯-鱼精蛋白/海藻酸钠复合物的制备方法及应用
CA2492995A1 (en) Nanoparticles for the administration of active ingredients, method of producing said particles and composition containing same
Wu et al. Amorphous silibinin nanoparticles loaded into porous starch to enhance remarkably its solubility and bioavailability in vivo
CN102688200A (zh) 植物类抗癌靶向纳米制剂及其制备方法
Li et al. Satellite‐Type Sulfur Atom Distribution in Trithiocarbonate Bond‐Bridged Dimeric Prodrug Nanoassemblies: Achieving Both Stability and Activatability
Xia et al. Advances in stimuli‐responsive chitosan hydrogels for drug delivery systems
CN112451542B (zh) 一种白蛋白/透明质酸纳米复合物-铂类前药及制备方法和应用
CN101953797B (zh) 一种载药缓控释纳米材料的制备方法和应用
Cui et al. Exploring the potential of redispersible nanocomplex-in-microparticles for enhanced oral insulin delivery
CN107126564A (zh) 一种白蛋白结合型索拉非尼纳米制剂及其制备方法
CN106983734A (zh) 一种布洛芬缓释胶囊及其制备方法
CN114748644B (zh) 一种以zif-8为基质的藻蓝蛋白分子印迹药物载体的制备方法
Casey-Power et al. NAD+-associated-hyaluronic acid and poly (L-lysine) polyelectrolyte complexes: An evaluation of their potential for ocular drug delivery
CN114948880A (zh) 一种咖啡酸苯乙酯纳米稳定缓释剂型的制备方法
CN112274495B (zh) 一种h2o2自供型过氧化钙负载姜黄素纳米粒的制备方法及其应用
WO2009078804A1 (en) Drug delivery system for administration of a water soluble, cationic and amphiphilic pharmaceutically active substance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant