CN110137305A - 一种p型多晶硅选择性发射极双面电池的制备方法 - Google Patents

一种p型多晶硅选择性发射极双面电池的制备方法 Download PDF

Info

Publication number
CN110137305A
CN110137305A CN201910371278.2A CN201910371278A CN110137305A CN 110137305 A CN110137305 A CN 110137305A CN 201910371278 A CN201910371278 A CN 201910371278A CN 110137305 A CN110137305 A CN 110137305A
Authority
CN
China
Prior art keywords
silicon wafer
preparation
type polysilicon
silicon
selective emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910371278.2A
Other languages
English (en)
Inventor
杨乾彭
张松
杨林
康海晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI SHENZHOU NEW ENERGY DEVELOPMENT Co Ltd
Original Assignee
SHANGHAI SHENZHOU NEW ENERGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI SHENZHOU NEW ENERGY DEVELOPMENT Co Ltd filed Critical SHANGHAI SHENZHOU NEW ENERGY DEVELOPMENT Co Ltd
Priority to CN201910371278.2A priority Critical patent/CN110137305A/zh
Publication of CN110137305A publication Critical patent/CN110137305A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明一种P型多晶硅选择性发射极双面电池的制备方法,采用以下步骤:(1)将硅片依次经过碱溶液及H2O2溶液处理,然后再进过AgNO3溶液处理并形成绒面;(2)对硅片正面高温磷扩散形成浅PN结;(3)以磷源进行激光掺杂处理;(4)利用HF溶液去除磷硅玻璃PSG层,进行边绝缘和背面抛光;(5)经清洗处理过的硅片进行高温退火;(6)对硅片背面沉积一层三氧化二铝Al2O3;(7)将硅片进行退火;(8)采用等离子体增强化学气相沉积法在硅片表面沉积氢化非晶氮化硅钝化减反射层;(9)使用激光器在硅片背表面打线,得到类点型槽;(10)采用丝网印刷的方法在硅片的正面印刷Ag浆料,再进行高温烧结,这样确保电池片的双面都形成良好的接触。

Description

一种P型多晶硅选择性发射极双面电池的制备方法
技术领域
本发明涉及一种高效晶硅电池的制作方法,主要是涉及一种P型多晶硅选择性发射极双面太阳能电池的制作方法。
背景技术
为了提高硅基太阳能电池的转换效率以及背面的利用率,双面电池的正背面均可受光发电,对提高电池的发电功率提升有一定优势,同时背面由常规的全铝背场变成铝栅线,可以降低铝浆的成本,具有优良的双玻封装可靠性。
对于钝化的发射极,要求具有低的表面掺杂浓度,同时为了保持低的发射极饱和电流,发射极必须浅。但是对于非钝化区域,为了形成良好的欧姆接触,发射极必须相对较深。所以常规的均匀发射极需要高的表面浓度和厚的发射极厚度,但是这样使得钝化效果变差。
因此本发明的目的是在充分利用双面发电优势的同时优化正面发射极技术,极大的提高了多晶太阳电池的电性能参数。
发明内容
针对现有技术的不足,本发明的一种P型多晶硅选择性发射极双面电池的制备方法能极大地提升开路电压及转换效率。
为了实现上述技术方案,本发明的目的可以通过以下技术方案来实现:
一种P型多晶硅选择性发射极双面电池的制备方法,采用以下步骤:
(1)将硅片依次经过碱溶液及H2O2溶液处理,完成清洗并去除损伤层;然后再进过AgNO3溶液处理并形成绒面;
(2)对硅片正面高温磷扩散形成浅PN结,扩散后表面方块电阻为 120-140Ω/sq;
(3)以磷源进行激光掺杂处理,形成分布不均匀的发射极,激光掺杂过的区域形成相应的N++层,得到激光掺杂的副栅线;
(4)利用HF溶液去除磷硅玻璃PSG层,用HNO3和HF的混合溶液进行边绝缘和背面抛光;
(5)经清洗处理过的硅片进行高温退火,激活掺杂杂质并且缺陷修复,同时改善发射极,退火过程在氮气中进行;
(6)采取原子层沉积ALD或PECVD技术对硅片背面沉积一层三氧化二铝 Al2O3厚度为10-20nm;
(7)将硅片进行退火,进一步改善Al2O3层结构及性能,退火工艺是在 PECVD管式炉沉积背面氮化硅之前进行,退火过程在氮气中进行;
(8)采用等离子体增强化学气相沉积法在硅片表面沉积氢化非晶氮化硅钝化减反射层,在正面沉积不同折射率的三层氮化硅膜层结构,厚度为75-85nm,温度控制420-500℃;
(9)使用激光器在硅片背表面打线,使背面的氧化铝/氮化硅叠层钝化薄膜从硅片背面剥离,得到类点型槽;
(10)采用丝网印刷的方法在硅片的正面印刷Ag浆料,副栅线与激光掺杂区域对准;背面印刷金属Ag/Al栅电极与激光开槽处对准,用烘干炉进行烘干,温度控制在200-300℃,再进行高温烧结,这样确保电池片的双面都形成良好的接触。
与现有技术相比,本发明方法中的电池结构(与传统的PERC高效电池相比较),正面采用选择性发射极技术,降低串联电阻提高了填充因子、浅发射极减少了载流子复合同时改善短波光谱响应,大大提高电池片的开路电压Voc和短路电流Isc,也会增加填充因子FF,工艺可行性比较强,也比较容易与现有的产线的设备及工艺兼容,最主要的是能极大地提升开路电压及转换效率,是一种低成本高效率单晶硅电池的产品。
具体实施方式
为能进一步了解本发明的发明内容、特点及使用效果,兹例举以下实施例,详细说明如下:一种P型多晶硅选择性发射极双面电池的制备方法,采用以下步骤:
(1)将硅片依次经过KOH或NaOH等碱溶液及H2O2溶液处理,完成清洗并去除损伤层;然后再进过AgNO3溶液处理并形成绒面;
(2)对硅片正面高温磷扩散形成浅PN结,扩散温度为800-830℃,扩散时间为1.5-2小时,扩散后表面方块电阻为120-140Ω/sq;
(3)以正面磷硅玻璃作为磷源进行激光掺杂处理,形成分布不均匀的发射极,激光掺杂过的区域形成相应的N++层,得到激光掺杂的副栅线,激光功率 30-40W,脉冲宽度20-30ns;
(4)利用HF溶液去除磷硅玻璃PSG层,用HNO3和HF的混合溶液进行边绝缘和背面抛光;
(5)经清洗处理过的硅片进行高温退火,激活掺杂杂质并且缺陷修复,同时改善发射极,退火温度为700-800℃,时间为20-50min,退火过程在氮气中进行。
(6)采取原子层沉积(ALD)或PECVD技术对硅片背面沉积一层三氧化二铝(Al2O3)厚度为10-20nm,此时沉积温度控制在140-180℃,所用的气源为高纯Al(CH)3
(7)将硅片进行退火,进一步改善Al2O3层结构及性能,退火工艺是在 PECVD管式炉沉积背面氮化硅之前进行,退火温度为500-550℃,时间为 10~30min,退火过程在氮气中进行;
(8)采用等离子体增强化学气相沉积法在硅片表面沉积氢化非晶氮化硅钝化减反射层,所述的硅片表面包括沉积氧化铝的背面和二氧化硅的正面,其中包括背面在氧化铝层上沉积不同折射率的双层氮化硅膜层结构,厚度为 80-100nm,温度控制450-500℃。在正面沉积不同折射率的三层氮化硅膜层结构,厚度为75-85nm,温度控制420-500℃。
(9)使用激光器在硅片背表面打线,使背面的氧化铝/氮化硅叠层钝化薄膜从硅片背面剥离,得到类点型槽;
(10)采用丝网印刷的方法在硅片的正面印刷Ag浆料,副栅线与激光掺杂区域对准;背面印刷金属Ag/Al栅电极与激光开槽处对准,用烘干炉进行烘干,温度控制在200-300℃,再进行高温烧结,这样确保电池片的双面都形成良好的接触。

Claims (9)

1.一种P型多晶硅选择性发射极双面电池的制备方法,其特征在于,采用以下步骤:
(1)将硅片依次经过碱溶液及H2O2溶液处理,完成清洗并去除损伤层;然后再进过AgNO3溶液处理并形成绒面;
(2)对硅片正面高温磷扩散形成浅PN结,扩散后表面方块电阻为120-140Ω/sq;
(3)以磷源进行激光掺杂处理,形成分布不均匀的发射极,激光掺杂过的区域形成相应的N++层,得到激光掺杂的副栅线;
(4)利用HF溶液去除磷硅玻璃PSG层,用HNO3和HF的混合溶液进行边绝缘和背面抛光;
(5)经清洗处理过的硅片进行高温退火,激活掺杂杂质并且缺陷修复,同时改善发射极,退火过程在氮气中进行;
(6)采取原子层沉积ALD或PECVD技术对硅片背面沉积一层三氧化二铝Al2O3厚度为10-20nm;
(7)将硅片进行退火,进一步改善Al2O3层结构及性能,退火工艺是在PECVD管式炉沉积背面氮化硅之前进行,退火过程在氮气中进行;
(8)采用等离子体增强化学气相沉积法在硅片表面沉积氢化非晶氮化硅钝化减反射层,在正面沉积不同折射率的三层氮化硅膜层结构,厚度为75-85nm,温度控制420-500℃;
(9)使用激光器在硅片背表面打线,使背面的氧化铝/氮化硅叠层钝化薄膜从硅片背面剥离,得到类点型槽;
(10)采用丝网印刷的方法在硅片的正面印刷Ag浆料,副栅线与激光掺杂区域对准;背面印刷金属Ag/Al栅电极与激光开槽处对准,用烘干炉进行烘干,温度控制在200-300℃,再进行高温烧结,这样确保电池片的双面都形成良好的接触。
2.如权利要求1所述的一种P型多晶硅选择性发射极双面电池的制备方法,其特征在于,所述步骤(1)将硅片依次经过KOH或NaOH溶液及H2O2溶液处理。
3.如权利要求1所述的一种P型多晶硅选择性发射极双面电池的制备方法,其特征在于,所述步骤(2)扩散温度为800-830℃,扩散时间为1.5-2小时。
4.如权利要求1所述的一种P型多晶硅选择性发射极双面电池的制备方法,其特征在于,所述步骤(3)激光功率30-40W,脉冲宽度20-30ns。
5.如权利要求1所述的一种P型多晶硅选择性发射极双面电池的制备方法,其特征在于,所述步骤(5)退火温度为700-800℃,时间为20-50min。
6.如权利要求1所述的一种P型多晶硅选择性发射极双面电池的制备方法,其特征在于,所述步骤(6)沉积温度控制在140-180℃,所用的气源为高纯Al(CH)3
7.如权利要求1所述的一种P型多晶硅选择性发射极双面电池的制备方法,其特征在于,所述步骤(7)退火温度为500-550℃,时间为10~30min。
8.如权利要求1所述的一种P型多晶硅选择性发射极双面电池的制备方法,其特征在于,所述步骤(8)硅片表面包括沉积氧化铝的背面和二氧化硅的正面,其中包括背面在氧化铝层上沉积不同折射率的双层氮化硅膜层结构,厚度为80-100nm,温度控制450-500℃。
9.如权利要求1所述的一种P型多晶硅选择性发射极双面电池的制备方法,其特征在于,所述步骤(10)烘干温度控制在200-300℃。
CN201910371278.2A 2019-05-06 2019-05-06 一种p型多晶硅选择性发射极双面电池的制备方法 Pending CN110137305A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910371278.2A CN110137305A (zh) 2019-05-06 2019-05-06 一种p型多晶硅选择性发射极双面电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910371278.2A CN110137305A (zh) 2019-05-06 2019-05-06 一种p型多晶硅选择性发射极双面电池的制备方法

Publications (1)

Publication Number Publication Date
CN110137305A true CN110137305A (zh) 2019-08-16

Family

ID=67576342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910371278.2A Pending CN110137305A (zh) 2019-05-06 2019-05-06 一种p型多晶硅选择性发射极双面电池的制备方法

Country Status (1)

Country Link
CN (1) CN110137305A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931598A (zh) * 2019-11-12 2020-03-27 浙江爱旭太阳能科技有限公司 一种二次退火的单晶硅se-perc电池的制造方法
CN111430507A (zh) * 2020-04-28 2020-07-17 江阴友阳光伏有限公司 用于黑色光伏组件的电池片生产工艺
CN112853496A (zh) * 2019-11-12 2021-05-28 洛阳阿特斯光伏科技有限公司 一种硅棒的表面处理方法及金刚线硅片切割方法
CN115588700A (zh) * 2022-10-19 2023-01-10 通威太阳能(眉山)有限公司 一种perc电池片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179100A (zh) * 2007-01-17 2008-05-14 江苏林洋新能源有限公司 一种大面积低弯曲超薄型双面照光太阳能电池制作方法
TW201222851A (en) * 2010-11-16 2012-06-01 Mosel Vitelic Inc Manufacturing method of bifacial solar cells
KR20130048948A (ko) * 2011-11-03 2013-05-13 현대중공업 주식회사 양면수광형 태양전지 및 그 제조방법
JP2017535975A (ja) * 2014-11-19 2017-11-30 上海神舟新能源▲発▼展有限公司 高効率n型両面太陽電池
CN107863419A (zh) * 2017-11-02 2018-03-30 国家电投集团西安太阳能电力有限公司 一种双面perc晶体硅太阳能电池的制备方法
CN109065658A (zh) * 2018-07-12 2018-12-21 浙江爱旭太阳能科技有限公司 一种p型se-perc双面太阳能电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179100A (zh) * 2007-01-17 2008-05-14 江苏林洋新能源有限公司 一种大面积低弯曲超薄型双面照光太阳能电池制作方法
TW201222851A (en) * 2010-11-16 2012-06-01 Mosel Vitelic Inc Manufacturing method of bifacial solar cells
KR20130048948A (ko) * 2011-11-03 2013-05-13 현대중공업 주식회사 양면수광형 태양전지 및 그 제조방법
JP2017535975A (ja) * 2014-11-19 2017-11-30 上海神舟新能源▲発▼展有限公司 高効率n型両面太陽電池
CN107863419A (zh) * 2017-11-02 2018-03-30 国家电投集团西安太阳能电力有限公司 一种双面perc晶体硅太阳能电池的制备方法
CN109065658A (zh) * 2018-07-12 2018-12-21 浙江爱旭太阳能科技有限公司 一种p型se-perc双面太阳能电池及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931598A (zh) * 2019-11-12 2020-03-27 浙江爱旭太阳能科技有限公司 一种二次退火的单晶硅se-perc电池的制造方法
CN112853496A (zh) * 2019-11-12 2021-05-28 洛阳阿特斯光伏科技有限公司 一种硅棒的表面处理方法及金刚线硅片切割方法
CN112853496B (zh) * 2019-11-12 2022-11-11 洛阳阿特斯光伏科技有限公司 一种硅棒的表面处理方法及金刚线硅片切割方法
CN111430507A (zh) * 2020-04-28 2020-07-17 江阴友阳光伏有限公司 用于黑色光伏组件的电池片生产工艺
CN115588700A (zh) * 2022-10-19 2023-01-10 通威太阳能(眉山)有限公司 一种perc电池片及其制备方法

Similar Documents

Publication Publication Date Title
CN110137305A (zh) 一种p型多晶硅选择性发射极双面电池的制备方法
CN101783374B (zh) 一种硅太阳能电池的制备方法
CN109980022A (zh) 一种p型隧穿氧化物钝化接触太阳能电池及其制备方法
CN101916787A (zh) 一种黑硅太阳能电池及其制备方法
CN105322043A (zh) 一种可双面进光的晶硅太阳电池及其制备方法
CN103050568A (zh) 制造光电器件的方法
CN109616528B (zh) 一种太阳能电池选择性发射极的制备方法
CN105576083A (zh) 一种基于apcvd技术的n型双面太阳能电池及其制备方法
CN102800745A (zh) 一种背面钝化双面太阳电池的生产方法
CN102956723B (zh) 一种太阳能电池及其制备方法
CN108039374A (zh) n型双面太阳电池的制备方法
CN103956410A (zh) 一种n型背结太阳能电池的制备方法
JP2013165160A (ja) 太陽電池の製造方法及び太陽電池
WO2023077787A1 (zh) 一种perc电池的se激光掺杂图形和perc电池制备方法
CN109285897A (zh) 一种高效钝化接触晶体硅太阳电池及其制备方法
CN115498057A (zh) 联合钝化背接触太阳能电池及其基于激光扩散的制备方法
CN210349847U (zh) 一种p型隧穿氧化物钝化接触太阳能电池
CN104538485A (zh) 一种双面电池的制备方法
CN102709389B (zh) 一种双面背接触太阳能电池的制备方法
CN103618025B (zh) 一种晶体硅背结太阳能电池制备方法
US20150206990A1 (en) Solar cell production method, and solar cell produced by same production method
KR20120062224A (ko) 태양전지의 제조방법
JP2012038852A (ja) 太陽電池及びその製造方法
CN101499502A (zh) 一种晶体硅太阳能电池及其钝化方法
CN104009121B (zh) P型晶体硅双面刻槽埋栅电池制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190816

RJ01 Rejection of invention patent application after publication