CN110137279B - 一种具有金属和石墨烯插入层的紫外探测器 - Google Patents

一种具有金属和石墨烯插入层的紫外探测器 Download PDF

Info

Publication number
CN110137279B
CN110137279B CN201910411504.5A CN201910411504A CN110137279B CN 110137279 B CN110137279 B CN 110137279B CN 201910411504 A CN201910411504 A CN 201910411504A CN 110137279 B CN110137279 B CN 110137279B
Authority
CN
China
Prior art keywords
layer
graphene
metal
ultraviolet detector
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910411504.5A
Other languages
English (en)
Other versions
CN110137279A (zh
Inventor
张�雄
张瑾
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910411504.5A priority Critical patent/CN110137279B/zh
Publication of CN110137279A publication Critical patent/CN110137279A/zh
Application granted granted Critical
Publication of CN110137279B publication Critical patent/CN110137279B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种具有金属和石墨烯插入层的紫外探测器。该紫外探测器的结构自下而上包括:蓝宝石衬底、AlN缓冲层、GaN中间层、石墨烯薄膜层、金属纳米结构层、n型n‑AlxGa1‑xN层、非掺杂i‑AlyGa1‑yN倍增层、p型p‑AlzGa1‑zN层、p型p‑GaN层,在n‑AlxGa1‑xN层上引出n型欧姆电极,在p‑GaN层上引出p型欧姆电极,其中0<z<y<x<1。本发明的紫外探测器通过插入金属纳米结构和石墨烯薄膜层,使二者耦合产生表面等离子激元,从而可使更多的光子到达紫外探测器的n‑AlxGa1‑xN吸收层,因而可提高入射光的利用率。纳米金属和石墨烯之间能形成肖特基接触,可促进少数载流子电子向上扩散,有效缓解高Al组分AlGaN材料中的载流子传输困难,促进光生电流的产生,从而能显著提高紫外探测器的光响应速度和量子效率。

Description

一种具有金属和石墨烯插入层的紫外探测器
技术领域
本发明属于半导体光电子器件探测技术领域,具体涉及一种具有金属和石墨烯插入层的紫外探测器。
背景技术
紫外探测是继红外和激光探测技术之后发展起来的一种军民两用光电探测技术,其可探测到飞机、火箭和导弹等飞行目标的尾焰或羽焰中释放的大量紫外辐射,因此被广泛应用于空间防务和报警系统、火灾监控、汽车发动机监测、石油工业和环境污染等监测。
AlGaN材料为宽禁带的直接带隙半导体,随着Al组分的变化其带隙可在3.4-6.2eV之间连续变化,其对应的波长范围为365-200nm,覆盖了地球上的大气臭氧吸收太阳光谱(240-280nm,故又被称为“日盲区”)。AlGaN基紫外探测器具有日盲、紫外区高量子效率、高迁移率、低暗电流、低噪声、化学稳定性好、响应速度快等特性,但传统紫外探测器采用的背面入射方式通常伴随着入射光大量受损的问题,且高Al组分的AlGaN材料存在制备难度大、载流子输运困难的挑战,二者制约了紫外探测器件光响应速度和外量子效率的提高。
石墨烯作为二维碳纳米材料,其室温下的载流子迁移率约为200000cm2/(V·s),该数值几乎为硅材料的200倍。因此,石墨烯优秀的导电性能、透明、可柔性使得其在光电器件领域具有较广阔的应用前景。且当石墨烯与金属接触时可使石墨烯费米能级产生漂移:当金属的功函数大于石墨烯的功函数时,对石墨烯进行空穴掺杂,可使其费米能级向下漂移,呈p型特性。特别是当金属Au与石墨烯接触时可呈现肖特基接触性质,此时在外电场作用下,会产生由金属Au指向石墨烯方向的内建电场,可促进耗尽区外载流子的扩散,对AlGaN基紫外探测器性能的提高具有重要意义。
发明内容
发明目的:针对上述传统紫外探测器存在的问题,本发明提供了一种具有金属和石墨烯插入层的紫外探测器。通过在外延生长n型n-AlxGa1-xN吸收层之前制备金属纳米结构和石墨烯薄膜层,可以提高入射光的利用率,同时解决高Al组分AlGaN材料所存在的载流子输运困难的问题,以显著提高紫外探测器的光响应速度和量子效率。
技术方案:为实现上述目的,本发明采用下述技术方案:
一种具有金属和石墨烯插入层的紫外探测器,其结构从下至上依次为:蓝宝石衬底(101)、AlN缓冲层(102)、GaN中间层(103)、石墨烯薄膜层(104)、金属纳米结构层(105)、n型n-AlxGa1-xN层(106)、非掺杂i-AlyGa1-yN倍增层(107)、p型p-AlzGa1-zN层(108)、p型p-GaN层(109),在n-AlxGa1-xN层(106)上引出n型欧姆电极(110),在p-GaN层(109)上引出p型欧姆电极(111)。
优选的,所述外延制备紫外探测器的衬底材料可以为极性、半极性、非极性取向的蓝宝石。
优选的,所述AlN缓冲层(102)的厚度为10-50nm,所述GaN中间层(103)的厚度为200-500nm,所述n-AlxGa1-xN层(106)的厚度为300-600nm,所述i-AlyGa1-yN倍增层(107)的厚度为200-300nm,所述p-AlzGa1-zN层(108)的厚度为70-120nm,所述p-GaN层(109)的厚度为30-60nm。
优选的,所述石墨烯薄膜层(104)为单层、双层或多层石墨烯,当采用多层石墨烯时,其透过率T的计算公式为T=(1-αabs)n,式中αabs为单层石墨烯的非饱和吸收效率,n为石墨烯的层数。
优选的,所述金属纳米结构层(105)是由在石墨烯薄膜层(104)之上铺设的呈正六边形周期网格分布的金纳米颗粒构成,金纳米颗粒和石墨烯之间发生相互作用,耦合形成表面等离子激元。
优选的,所述n-AlxGa1-xN层(106)、i-AlyGa1-yN倍增层(107)和p-AlzGa1-zN层(108)中Al组分x,y,z之间的关系为:0<z<y<x<1。
优选的,所述n型欧姆电极(110)为Ti/Al/Au/Ni合金电极,p型欧姆电极(111)为Ni/Au合金电极。
有益效果:本发明提供的上述这种具有金属和石墨烯插入层的紫外探测器,由于在外延生长n型n-AlxGa1-xN吸收层之前制备了金属纳米结构和石墨烯薄膜层,其中的金属纳米簇结构具有表面等离子激元吸收、金反射等特性,可增加层内光传播路径和光吸收,减小入射光的损失,从而有效提高吸收层的光子利用率。同时,金属Au与石墨烯之间会形成肖特基接触,在外电场作用下,此时会产生由金属Au指向石墨烯方向的内建电场,可促进少数载流子电子向上扩散,使得光生载流子被有效地收集,从而提高光电转换效率。因此,本发明对提高AlGaN基紫外探测器的光响应速度和量子效率具有十分重要的意义。
附图说明
图1为本发明提供的一种具有金属和石墨烯插入层的紫外探测器的结构示意图;
图2为金属和石墨烯插入层俯视图。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的实施例仅用以具体解释本发明,而并不用于限定本发明权利要求的范畴。
实施例1
图1、图2所示为本发明提供的一种具有金属和石墨烯插入层的紫外探测器的具体结构示意图。其构成要素包括:蓝宝石衬底(101)、AlN缓冲层(102)、GaN中间层(103)、石墨烯薄膜层(104)、金属纳米结构层(105)、n型n-Al0.65Ga0.35N层(106)、非掺杂i-Al0.45Ga0.55N倍增层(107)、p型p-Al0.25Ga0.75N层(108)、p型p-GaN层(109),在n-Al0.65Ga0.35N层(106)上引出Ti/Al/Au/Ni合金电极(110),在p-GaN层(109)上引出Ni/Au合金电极(111)。
所述AlN缓冲层(102)的厚度为20nm,所述GaN中间层(103)的厚度为300nm,所述n-Al0.65Ga0.35N层(106)的厚度为500nm,所述i-Al0.45Ga0.55N倍增层(107)的厚度为230nm,所述p-Al0.25Ga0.75N层(108)的厚度为80nm,所述p-GaN层(109)的厚度为40nm。
所述AlN缓冲层(102)是为了减少外延材料与衬底之间由于晶格失配引起的向上延伸的位错密度,GaN中间层(103)则是为了实现对日盲紫外波段的响应。
所述石墨烯薄膜层(104)是在GaN中间层(103)之上生长的单层石墨烯,而金属纳米结构层(105)则是由在石墨烯薄膜层(104)之上铺设的呈正六边形周期网格分布的金纳米颗粒构成。
实施例2
图1、图2所示为本发明提供的一种具有金属和石墨烯插入层的紫外探测器的具体结构示意图。其构成要素包括:蓝宝石衬底(101)、AlN缓冲层(102)、GaN中间层(103)、石墨烯薄膜层(104)、金属纳米结构层(105)、n型n-Al0.65Ga0.35N层(106)、非掺杂i-Al0.45Ga0.55N倍增层(107)、p型p-Al0.25Ga0.75N层(108)、p型p-GaN层(109),在n-Al0.65Ga0.35N层(106)上引出Ti/Al/Au/Ni合金电极(110),在p-GaN层(109)上引出Ni/Au合金电极(111)。
所述AlN缓冲层(102)的厚度为10nm,所述GaN中间层(103)的厚度为200nm,所述n-Al0.65Ga0.35N层(106)的厚度为300nm,所述i-Al0.45Ga0.55N倍增层(107)的厚度为200nm,所述p-Al0.25Ga0.75N层(108)的厚度为70nm,所述p-GaN层(109)的厚度为30nm。
所述AlN缓冲层(102)是为了减少外延材料与衬底之间由于晶格失配引起的向上延伸的位错密度,GaN中间层(103)则是为了实现对日盲紫外波段的响应。
所述石墨烯薄膜层(104)是在GaN中间层(103)之上生长的双层石墨烯,而金属纳米结构层(105)则是由在石墨烯薄膜层(104)之上铺设的呈正六边形周期网格分布的金纳米颗粒构成。
实施例3
图1、图2所示为本发明提供的一种具有金属和石墨烯插入层的紫外探测器的具体结构示意图。其构成要素包括:蓝宝石衬底(101)、AlN缓冲层(102)、GaN中间层(103)、石墨烯薄膜层(104)、金属纳米结构层(105)、n型n-Al0.65Ga0.35N层(106)、非掺杂i-Al0.45Ga0.55N倍增层(107)、p型p-Al0.25Ga0.75N层(108)、p型p-GaN层(109),在n-Al0.65Ga0.35N层(106)上引出Ti/Al/Au/Ni合金电极(110),在p-GaN层(109)上引出Ni/Au合金电极(111)。
所述AlN缓冲层(102)的厚度为50nm,所述GaN中间层(103)的厚度为500nm,所述n-Al0.65Ga0.35N层(106)的厚度为600nm,所述i-Al0.45Ga0.55N倍增层(107)的厚度为300nm,所述p-Al0.25Ga0.75N层(108)的厚度为120nm,所述p-GaN层(109)的厚度为60nm。
所述AlN缓冲层(102)是为了减少外延材料与衬底之间由于晶格失配引起的向上延伸的位错密度,GaN中间层(103)则是为了实现对日盲紫外波段的响应。
所述石墨烯薄膜层(104)是在GaN中间层(103)之上生长的三层石墨烯,而金属纳米结构层(105)则是由在石墨烯薄膜层(104)之上铺设的呈正六边形周期网格分布的金纳米颗粒构成。
由于在外延生长n型n-Al0.65Ga0.35N吸收层之前制备了金属纳米结构和石墨烯薄膜层,其中的金属纳米簇结构具有表面等离子激元吸收、金反射等特性,可增加层内光传播路径和光吸收,减小入射光的损失,从而能有效提高吸收层的光子利用率。同时,金属Au与石墨烯之间会形成肖特基接触,在外电场作用下,此时会产生由金属Au指向石墨烯方向的内建电场,可促进少数载流子电子向上扩散,使得光生载流子被有效地收集,从而提高光电转换效率。因此,本发明对提高AlGaN基紫外探测器的光响应速度和量子效率具有十分重要的意义。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (5)

1.一种具有金属和石墨烯插入层的紫外探测器,其特征在于:自下而上的结构依次为蓝宝石衬底(101)、AlN缓冲层(102)、GaN中间层(103)、石墨烯薄膜层(104)、金属纳米结构层(105)、n型n-AlxGa1-xN层(106)、非掺杂i-AlyGa1-yN倍增层(107)、p型p-AlzGa1-zN层(108)、p型p-GaN层(109),在n-AlxGa1-xN层(106)上引出n型欧姆电极(110),在p-GaN层(109)上引出p型欧姆电极(111);所述n-AlxGa1-xN层(106)、i-AlyGa1-yN倍增层(107)和p-AlzGa1-zN层(108)中Al组分x, y, z之间的关系为:0<z<y<x<1。
2.如权利要求1所述的一种具有金属和石墨烯插入层的紫外探测器,其特征在于:所述紫外探测器外延制备的衬底材料为极性、半极性、非极性取向的蓝宝石。
3.如权利要求1所述的一种具有金属和石墨烯插入层的紫外探测器,其特征在于:所述AlN缓冲层(102)的厚度为10-50nm,所述GaN中间层(103)的厚度为200-500nm,所述n-AlxGa1-xN层(106)的厚度为300-600nm,所述i-AlyGa1-yN倍增层(107)的厚度为200-300nm,所述p-AlzGa1-zN层(108)的厚度为70-120nm,所述p-GaN层(109)的厚度为30-60nm。
4.如权利要求1所述的一种具有金属和石墨烯插入层的紫外探测器,其特征在于:所述石墨烯薄膜层(104)是在GaN中间层(103)之上生长的单层、双层或多层石墨烯,而金属纳米结构层(105)则是由在石墨烯薄膜层(104)之上铺设的呈正六边形周期网格分布的金纳米颗粒构成。
5.如权利要求1所述的一种具有金属和石墨烯插入层的紫外探测器,其特征在于:所述n型欧姆电极(110)为Ti/Al/Au/Ni合金电极,p型欧姆电极(111)为Ni/Au合金电极。
CN201910411504.5A 2019-05-17 2019-05-17 一种具有金属和石墨烯插入层的紫外探测器 Active CN110137279B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910411504.5A CN110137279B (zh) 2019-05-17 2019-05-17 一种具有金属和石墨烯插入层的紫外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910411504.5A CN110137279B (zh) 2019-05-17 2019-05-17 一种具有金属和石墨烯插入层的紫外探测器

Publications (2)

Publication Number Publication Date
CN110137279A CN110137279A (zh) 2019-08-16
CN110137279B true CN110137279B (zh) 2021-01-12

Family

ID=67574895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910411504.5A Active CN110137279B (zh) 2019-05-17 2019-05-17 一种具有金属和石墨烯插入层的紫外探测器

Country Status (1)

Country Link
CN (1) CN110137279B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200029B (zh) * 2020-01-13 2021-09-28 五邑大学 一种光电探测器及其制备方法与应用
CN111370509B (zh) * 2020-03-12 2020-11-24 中国科学院长春光学精密机械与物理研究所 一种具有石墨烯插入层的AlGaN基紫外探测器及其制备方法
CN115172511A (zh) * 2022-07-18 2022-10-11 西安电子科技大学 一种具有石墨烯和极性j-tmd插入层的氧化镓日盲紫外探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231364A (ja) * 2008-03-19 2009-10-08 Fujitsu Ltd 光半導体装置及び赤外線検出装置
CN103762262A (zh) * 2014-01-09 2014-04-30 北京大学 一种氮化物宽势垒多量子阱红外探测器及其制备方法
CN108878588A (zh) * 2018-06-28 2018-11-23 西安电子科技大学 基于石墨烯插入层结构的氮化镓基光电探测器的制备方法
CN109301027A (zh) * 2018-08-20 2019-02-01 西安电子科技大学 基于非极性InAlN/GaN异质结构的辐照探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231364A (ja) * 2008-03-19 2009-10-08 Fujitsu Ltd 光半導体装置及び赤外線検出装置
CN103762262A (zh) * 2014-01-09 2014-04-30 北京大学 一种氮化物宽势垒多量子阱红外探测器及其制备方法
CN108878588A (zh) * 2018-06-28 2018-11-23 西安电子科技大学 基于石墨烯插入层结构的氮化镓基光电探测器的制备方法
CN109301027A (zh) * 2018-08-20 2019-02-01 西安电子科技大学 基于非极性InAlN/GaN异质结构的辐照探测器及其制备方法

Also Published As

Publication number Publication date
CN110137279A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
Hussain et al. Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell
CN110137279B (zh) 一种具有金属和石墨烯插入层的紫外探测器
EP3611767B1 (en) Optoelectronic devices including heterojunction
Toprasertpong et al. Absorption threshold extended to 1.15 eV using InGaAs/GaAsP quantum wells for over‐50%‐efficient lattice‐matched quad‐junction solar cells
US9716196B2 (en) Self-bypass diode function for gallium arsenide photovoltaic devices
CN106960887B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
US20120305059A1 (en) Photon recycling in an optoelectronic device
CN102610472B (zh) 峰值响应在532 nm敏感的反射式GaAlAs光电阴极及其制备方法
CN111739960B (zh) 一种增益型异质结紫外光电探测器
US11121272B2 (en) Self-bypass diode function for gallium arsenide photovoltaic devices
Suvarna et al. Design and growth of visible-blind and solar-blind III-N APDs on sapphire substrates
US20180261709A1 (en) Solar battery
CN110459627B (zh) 一种紫外-可见双波段光电探测器
US8269222B2 (en) Semiconductor photodetector with transparent interface charge control layer and method thereof
Liu et al. Progress on photovoltaic AlGaN photodiodes for solar-blind ultraviolet photodetection
Zeng et al. Substantial photo-response of InGaN p–i–n homojunction solar cells
JP2014107441A (ja) 太陽電池及びその製造方法
US20150122329A1 (en) Silicon heterojunction photovoltaic device with non-crystalline wide band gap emitter
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
Liu et al. Theoretical study on photoemission of two-dimensional variable-Al composition AlxGa1-xN nanorod array photocathode
Zhang et al. Photovoltaic effects of InGaN/GaN double heterojunctions with p-GaN nanorod arrays
CN109950337B (zh) GaInP/GaAs/InGaAs三结薄膜太阳电池
Dogmus et al. High structural quality InGaN/GaN multiple quantum well solar cells
US10686091B2 (en) Semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant