CN103762262A - 一种氮化物宽势垒多量子阱红外探测器及其制备方法 - Google Patents
一种氮化物宽势垒多量子阱红外探测器及其制备方法 Download PDFInfo
- Publication number
- CN103762262A CN103762262A CN201410010267.9A CN201410010267A CN103762262A CN 103762262 A CN103762262 A CN 103762262A CN 201410010267 A CN201410010267 A CN 201410010267A CN 103762262 A CN103762262 A CN 103762262A
- Authority
- CN
- China
- Prior art keywords
- multiple quantum
- quantum well
- potential
- barrier
- infrared detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005036 potential barrier Methods 0.000 title claims abstract description 57
- 150000004767 nitrides Chemical class 0.000 title abstract description 19
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- 239000000463 material Substances 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 238000001228 spectrum Methods 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims description 25
- 238000002360 preparation method Methods 0.000 claims description 15
- 238000002161 passivation Methods 0.000 claims description 14
- 230000012010 growth Effects 0.000 claims description 12
- 230000004888 barrier function Effects 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 238000002441 X-ray diffraction Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 6
- 239000000523 sample Substances 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 5
- 238000012876 topography Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000012512 characterization method Methods 0.000 claims description 3
- 238000011982 device technology Methods 0.000 claims description 3
- 208000035126 Facies Diseases 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 238000002329 infrared spectrum Methods 0.000 abstract description 4
- 238000009826 distribution Methods 0.000 abstract description 3
- 238000003780 insertion Methods 0.000 abstract 1
- 230000037431 insertion Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 50
- 239000004065 semiconductor Substances 0.000 description 8
- 230000007704 transition Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001451 molecular beam epitaxy Methods 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000005283 ground state Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000007773 growth pattern Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 241000218202 Coptis Species 0.000 description 1
- 235000002991 Coptis groenlandica Nutrition 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- -1 InGaN Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 238000002017 high-resolution X-ray diffraction Methods 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L31/03046—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
- H01L31/03048—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035236—Superlattices; Multiple quantum well structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1844—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
- H01L31/1848—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种氮化物宽势垒多量子阱红外探测器及其制备方法。本发明宽势垒多量子阱红外探测器,多量子阱中的每个量子阱为宽势垒,以阻挡暗电流通过;并且多量子阱的总宽度能够让光电流通过;多量子阱的势垒或者势阱中为重掺杂。本发明通过增厚势垒宽度,有效地降低了探测器的暗电流并实现了光电流的探测,增大了光谱探测范围;采用III族氮化物材料,可以实现全红外光谱窗口的光子探测;利用插入层调节有源区的应力分布,消除样品开裂现象,尽可能地降低应力组态对光电探测的影响;采用宽势垒,子带的数量增多,增加了光电流的通路。本发明的探测器在2.5K~80K的温度范围内均可测到光电流信号,具有广阔的应用前景。
Description
技术领域
本发明涉及红外探测器技术,尤其涉及一种基于氮化物半导体的宽势垒多量子阱红外探测器及其制备方法。
背景技术
量子阱红外探测器是利用半导体多量子阱或者超晶格材料制成的,利用量子阱导带内子能带间或子能带到扩展态间的电子跃迁制成的探测器。具有响应速度快、稳定性好、抗辐射、材料均匀和易于制做大面积焦平面列阵等优点。传统的量子阱红外探测器及其大规模阵列已经在第一代半导体(Si、Ge)以及第二代半导体(III-V族半导体)中实现,在精确制导、红外成像、热成像等军用和民用领域具有极其广泛的应用。但由于其禁带宽度覆盖范围的限制,现有的多量子阱红外探测器只能满足波长大于2.3μm红外波段的探测,不能探测如850nm,1310nm以及1550nm的光通信波段,限制了其在超快光通信领域的应用。
III族氮化物属第三代半导体材料,以GaN、AlN、InN二元合金,InGaN、AlGaN、InAlN三元合金以及InAlGaN四元合金为主要成员。其连续可调的禁带宽度范围达到0.7eV-6.2eV,并且具有极高的击穿电场,高热导率,高电子饱和迁移速度、更强的抗辐射能力以及更短的弛豫时间(~fs)。III族氮化物半导体材料制备的多量子阱红外探测器,可以实现从1μm(300THz)到亚毫米波(THz)波段的全红外光谱探测覆盖,并将传统的多量子阱红外探测器的响应时间进一步提高两个数量级,在超快光通信和光调制领域有着广阔的前景。同时,通过进一步利用III族氮化物紫外扩展的特性,制备出单片多色集成的探测器,可以实现超低虚警率、超快响应时间、更小元器件体积以及更高分辨率面阵的探测。
由于III族氮化物同质衬底制备困难并且成本极高,现阶段大面积的同质衬底还很难获得,因此,制备III族氮化物材料利用分子束外延(MBE)和金属有机物化学气相沉积(MOCVD)等手段,在蓝宝石、碳化硅以及单晶硅等衬底上实现异质外延生长。由于外延膜与衬底之间存在较大的晶格失配和热失配,异质外延制备的III族氮化物薄膜晶体质量较差,位错密度可达107-1010cm-2,形成了高密度的暗电流通道;同时,传统多量子阱红外探测器,一般液氦温区下暗电流密度达到A/cm-2的量级,远远大于光电流密度,因此探测器很难提取到光电流信号。
发明内容
针对以上现有技术存在的问题,本发明提出了一种通过增加势垒宽度来降低暗电流的隧穿效应,同时增加有效光响应的探测范围的探测器,从而实现光电流探测。
本发明的一个目的在于提供一种基于氮化物半导体的宽势垒多量子阱红外探测器。
本发明的宽势垒多量子阱红外探测器包括:衬底、底电极接触层、多量子阱、顶电极接触层、顶电极和底电极以及钝化层;其中,在衬底上生长底电极接触层;在底电极接触层的一部分上依次为多量子阱、顶电极接触层和顶电极;在底电极接触层的一部分上为底电极;在多量子阱、顶电极接触层和顶电极的侧面覆盖有钝化层,以及在底电极的侧面覆盖有钝化层;多量子阱中的每个量子阱为宽势垒,以阻挡暗电流通过;并且多量子阱的总宽度满足能够让光电流通过;多量子阱的势垒或者势阱中为重掺杂。
传统的多量子阱红外探测器,由于量子阱为窄势垒,相邻量子阱之间子带相互耦合,电子可以通过隧穿作用穿过势垒,使得势垒失去了阻挡暗电流的作用,导致暗电流密度远远大于光电流,因此很难探测到光电流。由于氮化物多量子阱红外探测器处在极化场作用下,形成了低能态等效势垒宽,高能态等效势垒窄的三角形势垒结构。通过适当地加宽势垒可以有效阻挡基态隧穿暗电流,但由于跃迁子带能级仍处于阱口的位置,因此如果只是简单的将量子阱的宽度增加,又会造成对光电流的阻挡。本发明根据实际需要,通过能带理论模拟计算,对多量子阱的势垒宽度、势阱宽度以及多量子阱的材料进行模拟和优化,采用宽势垒的量子阱,相邻的量子阱之间子带不能耦合,形成独立的量子阱,从而阻挡基态隧穿暗电流通过。同时,通过精确控制势垒层的组分和宽度,使得光电流可以通过激发态子带有效通过,以提高器件信号噪声比。通常单个势垒的宽度≥10nm,多量子阱的总宽度≥30nm,以阻挡暗电流通过;并且,为了保证光电流能够顺利通过,多量子阱的厚度不能太宽,同时多量子阱的总厚度与外加偏压的大小有关,在通常外加偏压±5V的情况下,多量子阱的总厚度≤1μm,以保证光电流通过。多量子阱中,一个量子阱为一个周期,多量子阱的总厚度=量子阱宽度×周期数。多量子阱的材料采用三族氮化物。
多量子阱位于底电极接触层之上,由于晶格常数不匹配,从而在张应变下,多量子阱会发生开裂,因此,本发明在底电极接触层和多量子阱之间设置插入层,调节应力分布,以抑制多量子阱在张应变下发生开裂现象。
本发明的另一个目的在于提供一种基于氮化物半导体的宽势垒多量子阱红外探测器的制备方法。
本发明的宽势垒多量子阱红外探测器的制备方法,包括以下步骤:
1)根据实际需要,通过能带理论模拟计算,对多量子阱红外探测器的结构进行模拟和优化;
2)对衬底进行预处理,使其表面洁净;
3)利用精细外延设备在衬底上进行宽势垒多量子阱红外探测器外延生长,包括在衬底上依次生长:底电极接触层、多量子阱作为有源区和顶电极接触层;
4)利用材料表征设备对步骤1)至3)得到的晶元的晶体质量、表面形貌以及界面情况进行表征反馈,如果晶元的性能不满足需要,则优化生长条件,返回步骤1)重新制备,直到获得符合要求的晶元,进入步骤5);
5)测试晶元的光吸收特性,确定光响应波段范围,如果光响应波段不符合实际需要,则返回步骤1)重新制备,直到光响应波段符合实际需要,进入步骤6);
6)利用器件工艺设备制备探测器单元,包括台面结构刻蚀、电极蒸镀以及侧边钝化等步骤;
7)对探测器进行封装;
8)测试探测器的暗电流和光电流谱,获取探测器性能信息。
其中,在步骤1)中,根据探测范围的需要,进行模拟计算,一般采用薛定谔方程和泊松方程迭代数值求解的方法进行模拟;多量子阱红外探测器的结构包括:多量子阱的材料、势阱和势垒的能带带阶和宽度以及周期数,对多量子阱的材料、势阱和势垒的能带带阶和宽度以及周期数进行模拟和优化。
在步骤2)对衬底的预处理包括:①通过化学腐蚀和清洗,除去表面的氧化层和有机物;②在外延设备腔体中对模板进行高温烘烤,除去表面杂质原子;③预生长一层模板物质,从而使得模板的表面洁净;④一般采用氢化物气相外延HVPE或者金属有机化合物气相外延沉积MOCVD方法在衬底上生长模板。
步骤3)中,一般采用精细外延设备(例如分子束外延)进行制备,获得的有源区界面锐利度更高。具体包括以下步骤:①底电极接触层用于做底电极接触,生长时应进行掺杂降低接触电阻,考虑到刻蚀容差,厚度应不小于200nm,参考优化值电子浓度为5×1018cm-3,厚度为300nm;②多量子阱作为有源区要求在势垒或者势阱中进行重掺杂保证第一子带有足够载流子占据,通过子带跃迁和电子纵向输运实现光电流,可以通过调节多量子阱的势阱和势垒的能带带阶以及宽度来调节探测波长,本发明中采用能带带阶以及势阱宽度一致,而势垒宽度不同的样品对发明思想进行说明;③为确保顶电极和底电极接触层的功函数一致,一般顶电极接触层采用与底电极接触层相同的材料和掺杂浓度。为了应力控制以抑制表面开裂现象,在制备多量子阱之前进一步包括在底电极接触层上生长插入层,插入层应尽量薄并且尽量降低对光电流的影响。
步骤4)中,采用X射线衍射摇摆曲线半宽峰值的大小表征材料螺型分量以及刃型分量位错密度的大小,采用高精度X射线衍射相分析以及高精度透射电子显微镜来表征多量子阱的界面锐利度,采用原子力显微镜表征材料表面的粗糙度,认为半峰宽窄、衍射卫星峰级次多、界面无互扩散作用、表面原子台阶清晰的样品较为合适。
步骤5)中,根据子带跃迁原理,探测器只对量子阱垂直方向上的电磁分量(p偏振光)有响应,因此在封装之前应将两端面进行45°抛光形成波导结构或者采用表面光栅的方法增加光波矢的纵向分量,利用s偏振光作为背景光,p偏振光作为信号光,利用公式(1)得到吸收系数谱。
其中,α为吸收系数,Tp为p偏振光透射光强,Ts为s偏振光透射光强。实验证明,宽势垒结构有着更宽的波段响应范围。
步骤6)中,台面结构刻蚀的目的是露出底电极接触层的表面,以便蒸镀电极实现载流子在量子阱的纵向输运,侧边钝化的目的是防止暗电流通过台面侧边形成有效通路增加暗电流密度。
步骤7)中,封装工艺一般包括连接热沉和引线两个步骤。
通过步骤8)的测试,证明宽势垒探测器的暗电流密度远远小于窄势垒探测器,并通过优化生长条件和工艺条件,在液氮温区成功地观测到了明显的光电流信号,说明通过增厚势垒宽度可以有效地降低暗电流,从而获得信噪比较高的探测器。
本发明的优点:
(1)通过增厚势垒宽度,有效地降低了探测器的暗电流,增大了光谱探测范围,有效地实现了光电流的探测;
(2)利用高温外延设备获得高晶体质量模板,利用低温精细外延设备控制有源区界面以及各层厚度,尽可能获得高质量的晶元;
(3)采用III族氮化物材料,可以实现全红外光谱窗口的光子探测;
(4)利用插入层调节有源区的应力分布,消除样品开裂现象,尽可能地降低应力组态对光电探测的影响;
(5)采用宽势垒能带结构,参与光跃迁的子带能级数量增多,增加了光电流的通路。
附图说明
图1为本发明的宽势垒多量子阱红外探测器的一个实施例的结构示意图;
图2为本发明的宽势垒多量子阱红外探测器的一个实施例的多量子阱的单周期的能带图;
图3为本发明的宽势垒多量子阱红外探测器的一个实施例的晶元的结构示意图;
图4本发明的宽势垒多量子阱红外探测器的一个实施例的光吸收谱;
图5为本发明的宽势垒多量子阱红外探测器的一个实施例的封装结构示意图;
图6为本发明的宽势垒多量子阱红外探测器的与现有技术的室温暗电流对比图;
图7为本发明的宽势垒多量子阱红外探测器的变温光电流测试图。
具体实施方式
下面结合附图,通过实施例对本发明做进一步说明。
本实施例中,制备10周期的Al0.30Ga0.70N/GaN基多量子阱红外探测器。
如图1所示,本实施例的宽势垒多量子阱红外探测器包括:衬底1、基板2、底电极接触层3、插入层4、多量子阱5、顶电极接触层6、顶电极7和底电极8以及钝化层9;其中,在衬底1之上依次为基板2和底电极接触层3;在底电极接触层3的一部分上依次为插入层4、多量子阱5、顶电极接触层6和顶电极7;在底电极接触层3的一部分上为底电极8。
在本实施例中,衬底1采用蓝宝石;模板2采用4.5μm的GaN;底电极接触层3为600nm厚的硅掺杂GaN;插入层4为6~8nm厚的AlN;多量子阱5为10周期的Al0.35Ga0.65N/GaN,其中,势垒的宽度为25nm,势阱的宽度为5nm;顶电极接触层6为厚度50nm的硅掺杂GaN,电子浓度为5×1018cm-3;顶电极7和底电极8为Ti(20nm)/Al(175nm)/Ni(50nm)/Au(500nm)结构;以及钝化层9为厚度400nm的SiO2。
本实施例的宽势垒多量子阱红外探测器的制备方法,包括以下步骤:
1)根据实际需要,通过能带理论模拟计算,对多量子阱红外探测器结构进行模拟和优化:
利用薛定谔方程和泊松方程的自洽求解计算,得出多量子阱的单周期的能带图,如图2所示,其中,51是费米能级,52是第一子带,53是由第2~5子带组成的第一能带族,54是由6~10子带组成的第二能带族,55是由11~13子带以及之上的连续带组成的能带族;
2)首先,对衬底1进行预处理,使其表面洁净:
将蓝宝石作为衬底1置于30%的HF溶液中浸泡10分钟去除表面氧化层,用去离子水反复冲洗后吹干,再经过丙酮超声3分钟去除表面有机沾污,用酒精洗净表面残余丙酮后用清洁氮气吹干,露出洁净表面;
然后,利用外延设备在衬底1上生长高晶体质量模板2:
将已洁净的衬底1传入金属有机化合物化学气相沉淀MOCVD设备中,高温(1050℃)外延生长4.5μm的GaN厚膜外延层作为模板2,经优化,位错密度一般在107cm-2左右;
3)利用精细外延设备进行宽势垒多量子阱红外探测器结构外延生长,包括在基板上依次生长底电极接触层3、插入层4、多量子阱5作为有源区和顶电极接触层6,如图3所示:将生长好的外延模板传入分子束外延MBE设备中,精确控制生长条件,使得生长模式一直保持在台阶流生长模式,依次外延生长600nm厚的硅掺杂GaN底电极接触层3,电子浓度为5×1018cm-3,6~8nm厚的AlN插入层4,10周期的Al0.35Ga0.65N/GaN多量子阱层5(势垒的宽度为25nm,势阱的宽度为5nm),以及50nm的硅掺杂GaN顶电极接触层6,电子浓度为5×1018cm-3;
4)利用材料表征设备对由步骤1)至3)制备得到的晶元的晶体质量、表面形貌以及界面情况进行表征反馈,优化生长条件获得最优的晶元:
生长完毕后,首先利用30%的稀盐酸溶液腐蚀掉表面的金属残余,利用X射线衍射XRD(002)与(102)摇摆曲线表征材料的晶体质量,经优化,量子阱的晶体质量一般为(002)面150arcsec,(102)面500arcsec;利用高分辨X射线衍射表征量子阱的周期性和界面锐利程度,经优化所得X射线衍射谱线可以清晰地观测到14级左右的卫星峰,表明界面状况良好;利用原子力显微镜AFM观察表面形貌,经优化观测到的表面均为单层台阶流形貌,表明外延模式为层状台阶流模式,表面和界面的起伏在原子单层量级;
5)通过傅立叶红外变换谱仪FTIR测试晶元的光吸收特性,确定可能的光响应波段范围:将所得的晶元切成5mm×5mm见方,背面以及两侧端面抛光制成波导结构12,红外光源(1~10μm)13经过线偏振片形成p态和s态的偏振光,经过波导后进入InSb探测器探测透射光强,利用公式得到吸收系数谱,如图4所示,在图4中以虚线表示,由于蓝宝石衬底与模板之间存在折射率差,会形成等周期的双层膜干涉,对谱图进行拟合,可以得到除去干涉信号的吸收谱,在图4中以实线表示,所示的三个吸收峰,分别对应基态子带52到三个能带族53、54和55之间的跃迁;
6)利用器件工艺设备制备探测器单元,包括台面结构刻蚀、电极蒸镀以及侧边钝化等步骤:利用光刻以及感应耦合等离子体ICP刻蚀等工艺,将图3所示的晶元刻蚀成如图1所示的台面结构,台面大小为200μm×200μm,刻蚀深度为400nm;然后在台面上和台面下利用电子束蒸发设备蒸镀Ti(20nm)/Al(175nm)/Ni(50nm)/Au(500nm)结构,并进行800℃快速热退火形成欧姆接触的顶电极7和底电极8,为防止侧边漏电,用400nm的SiO2对器件进行侧边钝化形成钝化层9,并在顶电极7和底电极8上刻蚀出窗口方便引线;
7)对探测器进行封装:
如图5所示,将由上述方法制备得到的探测器单元抛光成波导结构,用低温胶固定在等腰直角三角形的黄铜块热沉17的斜面上,用金线20从器件的顶电极7和底电极8处引线至跳线板的电极19上,并用导线21将相应的跳线板电极接在外置偏压设备22上;
8)测试探测器的暗电流和光电流谱,获取探测器的性能信息:
将封装好的器件置入低温傅氏转换红外线光谱分析仪FTIR的杜瓦中,在暗室条件下,调节不同温度、在不同偏压条件下进行暗电流测试,如图6所示,宽势垒器件的暗电流谱(图中以虚线表示),比同组分窄势垒器件的暗电流谱(图中以实线表示),要下降了两个量级,表明通过增厚势垒确实可以阻挡暗电流的纵向输运。在加红外光的情况下测试光电流谱,如图7所示,可以测试到2~3μm范围内的光电流谱信号。通过变偏压实验证明,反向偏压时光电流强度远小于正向偏压,且光电流强度随偏压增大而增大。通过变温实验证明,在2.5K~80K的温度范围内均可测到光电流信号,预示了本发明的探测器具有广阔的应用前景。
最后需要注意的是,公布实施方式的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。
Claims (10)
1.一种宽势垒多量子阱红外探测器,其特征在于,所述探测器包括:衬底(1)、底电极接触层(3)、多量子阱(5)、顶电极接触层(6)、顶电极(7)和底电极(8)以及钝化层(9);其中,在所述衬底(1)上生长底电极接触层(3);在所述底电极接触层(3)的一部分上依次为多量子阱(5)、顶电极接触层(6)和顶电极(7);在所述底电极接触层(3)的一部分上为底电极(8);在所述多量子阱(5)、顶电极接触层(6)和顶电极(7)的侧面覆盖有钝化层(9),以及在所述底电极(8)的侧面覆盖有钝化层(9);所述多量子阱(5)中的每个量子阱为宽势垒,以阻挡暗电流通过;并且所述多量子阱(5)的总宽度满足能够让光电流通过;所述多量子阱(5)的势垒或者势阱中为重掺杂。
2.如权利要求1所述的探测器,其特征在于,单个势垒的宽度≥10nm,多量子阱(5)的总宽度≥30nm;并且,多量子阱(5)的总厚度与外加偏压的大小有关,在通常外加偏压±5V的情况下,多量子阱(5)的总厚度≤1μm。
3.如权利要求1所述的探测器,其特征在于,所述多量子阱(5)的材料采用三族氮化物。
4.如权利要求1所述的探测器,其特征在于,进一步包括插入层(4),所述插入层(4)设置在底电极接触层(3)和多量子阱(5)之间。
5.一种宽势垒多量子阱红外探测器的制备方法,其特征在于,包括以下步骤:
1)根据实际需要,通过能带理论模拟计算,对多量子阱红外探测器的结构进行模拟和优化;
2)对衬底进行预处理,使其表面洁净;
3)利用精细外延设备在衬底上进行宽势垒多量子阱红外探测器外延生长,包括在衬底上依次生长:底电极接触层、多量子阱作为有源区和顶电极接触层;
4)利用材料表征设备对步骤1)至3)得到的晶元的晶体质量、表面形貌以及界面情况进行表征反馈,如果晶元的性能不满足需要,则优化生长条件,返回步骤1)重新制备,直到获得符合要求的晶元,进入步骤5);
5)测试晶元的光吸收特性,确定光响应波段范围,如果光响应波段不符合实际需要,则返回步骤1)重新制备,直到光响应波段符合实际需要,进入步骤6);
6)利用器件工艺设备制备探测器单元,包括台面结构刻蚀、电极蒸镀以及侧边钝化;
7)对探测器进行封装;
8)测试探测器的暗电流和光电流谱,获取探测器性能信息。
6.如权利要求5所述的制备方法,其特征在于,在步骤1)中,根据探测范围的需要,进行模拟计算,采用薛定谔方程和泊松方程迭代数值求解的方法进行模拟;对多量子阱的材料、势阱和势垒的能带带阶和宽度以及周期数进行模拟和优化。
7.如权利要求5所述的制备方法,其特征在于,在步骤3)中,底电极接触层的厚度不小于200nm;对多量子阱的势垒或者势阱进行重掺杂;通过调节多量子阱的势阱和势垒的能带带阶以及宽度来调节探测波长。
8.如权利要求5所述的制备方法,其特征在于,在步骤3)中,在制备多量子阱之前进一步包括在底电极接触层上生长插入层。
9.如权利要求5所述的制备方法,其特征在于,步骤4)中,采用X射线衍射摇摆曲线半宽峰值的大小表征材料螺型分量以及刃型分量位错密度的大小,采用高精度X射线衍射相分析以及高精度透射电子显微镜来表征多量子阱的界面锐利度,采用原子力显微镜表征材料表面的粗糙度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410010267.9A CN103762262B (zh) | 2014-01-09 | 2014-01-09 | 一种氮化物宽势垒多量子阱红外探测器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410010267.9A CN103762262B (zh) | 2014-01-09 | 2014-01-09 | 一种氮化物宽势垒多量子阱红外探测器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103762262A true CN103762262A (zh) | 2014-04-30 |
CN103762262B CN103762262B (zh) | 2016-07-06 |
Family
ID=50529470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410010267.9A Expired - Fee Related CN103762262B (zh) | 2014-01-09 | 2014-01-09 | 一种氮化物宽势垒多量子阱红外探测器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103762262B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104409556A (zh) * | 2014-12-05 | 2015-03-11 | 北京大学 | 一种氮化物复合势垒量子阱红外探测器及其制备方法 |
CN104733561A (zh) * | 2015-03-23 | 2015-06-24 | 北京大学 | 一种新型氮化物量子阱红外探测器及其制备方法 |
CN108538935A (zh) * | 2018-04-16 | 2018-09-14 | 北京工业大学 | 隧道补偿超晶格红外探测器 |
CN110137279A (zh) * | 2019-05-17 | 2019-08-16 | 东南大学 | 一种具有金属和石墨烯插入层的紫外探测器 |
CN110398293A (zh) * | 2019-07-03 | 2019-11-01 | 中国科学院西安光学精密机械研究所 | 全光固体超快探测芯片、全光固体超快探测器及其探测方法 |
CN113471326A (zh) * | 2021-06-15 | 2021-10-01 | 中山大学 | 一种ⅲ族氮化物异质结光电探测器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5510627A (en) * | 1994-06-29 | 1996-04-23 | The United States Of America As Represented By The Secretary Of The Navy | Infrared-to-visible converter |
CN1953214A (zh) * | 2006-11-21 | 2007-04-25 | 北京工业大学 | 隧道补偿多有源区红外探测器 |
CN101894876A (zh) * | 2010-06-04 | 2010-11-24 | 中国科学院半导体研究所 | 量子级联探测器结构 |
-
2014
- 2014-01-09 CN CN201410010267.9A patent/CN103762262B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5510627A (en) * | 1994-06-29 | 1996-04-23 | The United States Of America As Represented By The Secretary Of The Navy | Infrared-to-visible converter |
CN1953214A (zh) * | 2006-11-21 | 2007-04-25 | 北京工业大学 | 隧道补偿多有源区红外探测器 |
CN101894876A (zh) * | 2010-06-04 | 2010-11-24 | 中国科学院半导体研究所 | 量子级联探测器结构 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104409556A (zh) * | 2014-12-05 | 2015-03-11 | 北京大学 | 一种氮化物复合势垒量子阱红外探测器及其制备方法 |
CN104409556B (zh) * | 2014-12-05 | 2017-01-04 | 北京大学 | 一种氮化物复合势垒量子阱红外探测器及其制备方法 |
CN104733561A (zh) * | 2015-03-23 | 2015-06-24 | 北京大学 | 一种新型氮化物量子阱红外探测器及其制备方法 |
CN108538935A (zh) * | 2018-04-16 | 2018-09-14 | 北京工业大学 | 隧道补偿超晶格红外探测器 |
CN110137279A (zh) * | 2019-05-17 | 2019-08-16 | 东南大学 | 一种具有金属和石墨烯插入层的紫外探测器 |
CN110137279B (zh) * | 2019-05-17 | 2021-01-12 | 东南大学 | 一种具有金属和石墨烯插入层的紫外探测器 |
CN110398293A (zh) * | 2019-07-03 | 2019-11-01 | 中国科学院西安光学精密机械研究所 | 全光固体超快探测芯片、全光固体超快探测器及其探测方法 |
CN113471326A (zh) * | 2021-06-15 | 2021-10-01 | 中山大学 | 一种ⅲ族氮化物异质结光电探测器 |
Also Published As
Publication number | Publication date |
---|---|
CN103762262B (zh) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103762262B (zh) | 一种氮化物宽势垒多量子阱红外探测器及其制备方法 | |
CN104733561B (zh) | 一种氮化物量子阱红外探测器及其制备方法 | |
CN104409556B (zh) | 一种氮化物复合势垒量子阱红外探测器及其制备方法 | |
Dror et al. | Mid-infrared GaN/AlGaN quantum cascade detector grown on silicon | |
JP5738022B2 (ja) | 半導体基板、半導体基板の製造方法、および電磁波発生装置 | |
Zhang et al. | Optimization of In0. 6Ga0. 4As/InAs electron barrier for In0. 74Ga0. 26As detectors grown by molecular beam epitaxy | |
Polyakov et al. | GaN as a detector of a-particles and neutrons | |
Shi et al. | Improved interface and dark current properties of InGaAs photodiodes by high-density N2 plasma and stoichiometric Si3N4 passivation | |
Gautam | Unipolar barrier strained layer superlattice infrared photodiodes: physics and barrier engineering | |
Yasuda et al. | Development of nuclear radiation detectors with energy discrimination capabilities based on thick CdTe layers grown by metalorganic vapor phase epitaxy | |
Lee et al. | AlGaN/GaN Schottky barrier UV photodetectors with a GaN sandwich layer | |
Papanicolaou et al. | Lattice mismatched InGaAs on silicon photodetectors grown by molecular beam epitaxy | |
Ściana et al. | Technology and characterisation of GaAsN/GaAs heterostructures for photodetector applications | |
Masnadi Shirazi Nejad | Optical and electronic properties of GaAsBi alloys for device applications | |
Jussila | Integration of GaAsP based III-V compound semiconductors to silicon technology | |
师艳辉 et al. | Improved performances of 2.6 μm In 0.83 Ga 0.17 As/InP photodetectors on digitally-graded metamorphic pseudo-substrates | |
Li | Carrier dynamics in III-V compound mid-infrared semiconductor nanowires, superlattices and quaternaries | |
Alshehri | Design, fabrication and characterization of III-nitrides-based photodiodes: application to high-speed devices | |
Zheng | Studies on plasma assisted molecular beam epitaxial growth of GaN-based multilayer heterostructures on Si for photodetector application | |
Miura et al. | Mid-infrared sensors with InAs/GaSb superlattice absorption layers grown on InP substrates | |
Farrell | Design and Performance of Near-Infrared Nanowire Photodetectors | |
Brown | Application of Mobility Spectrum Analysis to Modern Multi-layered IR Device Material | |
Baumann | Near infrared intersubband absorption and photovoltaic detection in GaN/AIN multi quantum well structures | |
Deshmukh | GaAsSb (N) Nanowires for Short Wavelength Infrared Photodetectors | |
Zuo | Defect characterization of antimonide-based type-II superlattices for infrared detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160706 Termination date: 20220109 |