CN110133125B - 一种磁性固相萃取检测果蔬中植物生长调节剂的方法 - Google Patents

一种磁性固相萃取检测果蔬中植物生长调节剂的方法 Download PDF

Info

Publication number
CN110133125B
CN110133125B CN201910374049.6A CN201910374049A CN110133125B CN 110133125 B CN110133125 B CN 110133125B CN 201910374049 A CN201910374049 A CN 201910374049A CN 110133125 B CN110133125 B CN 110133125B
Authority
CN
China
Prior art keywords
cof
tpda
pgrs
plant growth
fruits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910374049.6A
Other languages
English (en)
Other versions
CN110133125A (zh
Inventor
李国梁
吴頔
吴永宁
李宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qufu Normal University
Original Assignee
Qufu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qufu Normal University filed Critical Qufu Normal University
Priority to CN201910374049.6A priority Critical patent/CN110133125B/zh
Publication of CN110133125A publication Critical patent/CN110133125A/zh
Application granted granted Critical
Publication of CN110133125B publication Critical patent/CN110133125B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material

Abstract

本发明公开了一种磁性固相萃取检测果蔬中植物生长调节剂的方法,该方法以磁性共价有机骨架材料Fe3O4@COF(TpDA)作为磁性固相萃取的吸附剂,对果蔬中的植物生长调节剂进行萃取。本发明采用MSPE技术检测果蔬中的PGRs,选择Fe3O4@COF(TpDA)作为吸附剂,该吸附剂使用方便,表面存在许多羰基和芳香环,可以通过疏水相互作用、π‑π相互作用和氢键实现PGRs的富集和萃取,萃取效果好、结构稳定性好、可以重复使用,能够灵敏的检测出果蔬中存在的多种微量PGRs。本发明首次将Fe3O4@COF(TpDA)的MSPE与HPLC‑DAD结合用于测定PGRs,为PGRs的检测提供了新的思路。

Description

一种磁性固相萃取检测果蔬中植物生长调节剂的方法
技术领域
本发明涉及一种检测果蔬中植物生长调节剂的方法,具体涉及一种采用磁性固相萃取法检测果蔬中植物生长调节剂的方法。
背景技术
植物生长调节剂(PGRs)是一类包括人工合成的具有天然植物激素相似作用的化合物和从生物中提取的天然植物激素,广泛应用于加速植物的生长,提高农作物的产量等。但是,过量使用PGRs给人类带来一些潜在的威胁,如早熟、生殖器官受损、致癌、急性毒性和神经毒性等。人类主要是通过水果和蔬菜接触植物生长调节剂,目前,如何有效地检测在植物中处于微量浓度水平的PGRs仍然是分析化学领域的一个挑战,因此开发有效、灵敏PGRs测定方法是非常必要的。
植物中PGRs的浓度处于微量水平(0.1-50μg/kg,鲜重),因此,前处理在样品分析中起着至关重要的作用,特别是对于复杂的样品基质。磁性固相萃取(MSPE)是一种新型的固相萃取技术,将萃取和浓缩一起完成,因其操作方便、易分离、省时的特点而受到极大关注。在MSPE过程中,吸附剂对于实现高效和优异的萃取性能是重要的。目前,有一些具有磁芯和功能壳复合结构的磁性材料已被用作萃取PGRs的吸附剂,功能壳的结构为吸附提供更多的活性位点并且可以保护磁芯。例如,Fe3O4@P(MA-L-Phe-OMe)纳米颗粒已经成功被合成并应用于富集豆芽中的2,4-二氯苯氧乙酸(2,4-D)和4-氯苯氧乙酸(4-CPA)。Chen课题组成功制备了具有抗氧化、超顺磁性、高表面积和高超分子识别等特点的Fe3O4@SiO2/GO/β-CD,并将其用作9种PGRs的MSPE吸附剂。但是,目前报道的磁芯和功能壳复合结构的磁性材料具有吸附剂用量大、萃取时间长、灵敏度不高等不足,随着对检测灵敏度需求的不断增加,合成一种合适的化合物作为MSPE吸附剂仍然具有一定的挑战性。
发明内容
本发明的目的是提供一种磁性固相萃取(MSPE)检测果蔬中植物生长调节剂(PGRs)的方法,本方法采用MSPE对果蔬中的PGRs进行富集和萃取,选择磁性共价有机骨架材料Fe3O4@COF(TpDA)作为吸附剂,具有萃取效果好、可重复使用、灵敏度高、耗时短和操作方便等优点。
共价有机骨架材料(COFs)是一种新型的结晶多孔聚合物,由有机结构单元通过共价键构建而成。由于其具有低密度、大比表面积、高稳定性和永久孔隙率的特点而引起了人们的浓厚兴趣,这些特性使它们可以应用于分离科学领域。本发明通过使用Fe3O4纳米粒子作为磁芯、使用COF(TpDA)作为外壳,得到了具有核-壳结构的磁性COFs(Fe3O4@COF(TpDA)),并将Fe3O4@COF(TpDA)用作萃取水果和蔬菜中PGRs的吸附剂,使用高效液相色谱法(HPLC)来检测所提取的PGRs。由于Fe3O4@COF(TpDA)具有芳香环和大量羰基,可以通过π-π和氢键作用来富集PGRs,且COF(TpDA)稳定性好、不易破坏、可以重复使用。
本发明具体技术方案如下:
一种磁性固相萃取(MSPE)检测果蔬中植物生长调节剂(PGRs)的方法,该方法以磁性共价有机骨架材料Fe3O4@COF(TpDA)作为磁性固相萃取的吸附剂,对果蔬中的植物生长调节剂进行萃取。Fe3O4@COF(TpDA)作为磁性固相萃取技术的吸附剂,对果蔬中的PGRs进行吸附,然后采用HPLC进行检测,能够提高PGRs的检测灵敏度。
进一步的,上述方法中,所述果蔬为水果和蔬菜。
进一步的,上述方法中,所述PGRs为吲哚-3-乙酸(IAA)、吲哚-3-丙酸(IPA)、吲哚-3-丁酸(IBA)、1-萘乙酸(1-NAA)、2-萘乙酸(2-NAA)、1-萘氧乙酸(1-NOA)或2-萘氧乙酸(2-NOA)。
进一步的,上述方法中,所述Fe3O4@COF(TpDA)是1,3,5-三醛基间苯三酚(Tp)和2,6-二氨基蒽醌(DA)在Fe3O4纳米粒子表面进行席夫碱反应得到的。经试验验证,该Fe3O4@COF(TpDA)吸附剂对于上述PGRs的萃取富集效果更佳,能够更灵敏的检测出果蔬中的PGRs。Fe3O4@COF(TpDA)的具体制备过程是:将1,3,5-三醛基间苯三酚、2,6-二氨基蒽醌和Fe3O4纳米粒子按照1:1-2:1-2的摩尔比分散在二恶烷中,用液氮快速冷冻后抽真空密封,待温度自然升至室温后将混合物置于115-125℃下反应3-4天,反应后冷却至室温,收集产物,洗涤、干燥,得Fe3O4@COF(TpDA)。
进一步的,本发明的检测方法包括以下具体步骤:
(1)将果蔬样品切成小块并搅碎,将5g样品加入5-8mL甲醇中超声提取35-45min,然后离心取上清液,离心后剩余的样品再按照此方法用甲醇提取3次,合并所得上清液,得萃取液;
(2)将上述萃取液用氮气干燥,除去大部分溶剂后用水稀释至10mL,即为样品溶液;
(3)向上述10mL样品溶液中加入12-18mg Fe3O4@COF(TpDA),涡旋使Fe3O4@COF(TpDA)充分吸附样品中的PGRs,然后收集Fe3O4@COF(TpDA);
(4)将吸附PGRs后的Fe3O4@COF(TpDA)加入1-2mL 0.5-2wt%的甲酸的乙腈溶液中,超声处理将PGRs从Fe3O4@COF(TpDA)中解吸出来,然后过滤收集洗脱液;
(5)将上述洗脱液进行HPLC分析,检测PGRs的含量。
进一步的,步骤(2)中,干燥是为了将溶剂除去,但是由于分析物在水中的溶解性不好,所以干燥时仅除去大部分溶剂,不会将溶剂全部除去,而是留下少量的溶剂以保证分析物在样品溶液中是完全溶解的。
进一步的,步骤(3)中,涡旋时间为5min,步骤(4)中,解吸时间为10min。
进一步的,本发明采用HPLC分析PGRs的成分和含量,色谱条件为:
色谱柱:Hypersil GOLD C18柱;
检测器:二极管阵列检测器(DAD);
流动相A:5%的乙腈水溶液,流动相B:纯乙腈;
梯度洗脱:0-2min,流动相B的体积分数由30%增至34%;2-13min,流动相B的体积分数保持34%不变;13-15min,流动相B的体积分数由34%增至100%;
流速:1mL/min;
柱温:25℃;
进样量:10μL;
检测波长:280nm。
本发明采用MSPE技术检测果蔬中的PGRs,选择具有磁性的核壳结构Fe3O4@COF(TpDA)作为吸附剂,该吸附剂使用方便,表面存在许多羰基和芳香环,可以通过疏水相互作用、π-π相互作用和氢键实现PGRs的富集和萃取,萃取效果好、结构稳定性好、可以重复使用,能够灵敏的检测出果蔬中存在的多种微量PGRs。本发明首次将Fe3O4@COF(TpDA)的MSPE与HPLC-DAD结合用于测定PGRs,为PGRs的检测提供了新的思路。
附图说明
图1为实施例1制得的Fe3O4纳米粒子和Fe3O4@COF(TpDA)的TEM图,A.Fe3O4纳米粒子,B.Fe3O4@COF(TpDA)。
图2为实施例1制得的Fe3O4纳米粒子和Fe3O4@COF(TpDA)的XRD谱图。
图3为实施例1制得的Fe3O4纳米粒子和Fe3O4@COF(TpDA)的FT-IR谱图。
图4为实施例1制得的Fe3O4@COF(TpDA)的N2吸附-解吸等温线。
图5为实施例1制得的Fe3O4纳米粒子和Fe3O4@COF(TpDA)的磁滞曲线。
图6为不同洗脱剂时各分析物的峰面积。
图7为洗脱剂中甲酸不同含量时各分析物的峰面积。
图8为不同吸附剂质量时各分析物的峰面积。
图9为不同吸附时间时各分析物的峰面积。
图10为不同解吸时间时各分析物的峰面积。
图11为PGRs的标准色谱图和加标桔子样品经过MSPE之后的色谱图。
图12为对比例2所得各PGRs的色谱图。
具体实施方式
下面通过具体实施例对本发明进行进一步说明,下述说明仅是示例性的,并不对其内容进行限定。
下述实施例中,如无特别说明,各浓度均为质量百分浓度。
下述实施例中,所用1,3,5-三醛基间苯三酚(Tp)、2,6-二氨基蒽醌(DA)、吲哚-3-乙酸(IAA)、吲哚-3-丙酸(IPA)、吲哚-3-丁酸(IBA)、1-萘乙酸(1-NAA)、2-萘乙酸(2-NAA)、1-萘氧乙酸(1-NOA)和2-萘氧乙酸(2-NOA)购自美国Sigma公司。其他试剂如无特别说明,均为市购产品。
实施例1
制备Fe3O4@COF(TpDA)吸附剂,步骤如下:
1、Fe3O4纳米粒子的制备
将1.35g FeCl3·6H2O,3.85g NH4OAC和0.40g柠檬酸钠分散于70mL乙二醇中,并在室温下通过磁力搅拌混合1h以产生均匀溶液。将所得溶液转移到100mL反应釜中,然后加热至200℃保持16h。待冷却至室温后,用外部磁铁收集产物,并用乙醇和水洗涤数次,直至上清液澄清。最后,将产物在60℃下真空干燥,得Fe3O4纳米粒子。
2、Fe3O4@COF(TpDA)的制备
将63.0mg Tp,107.2mg DA和80mg Fe3O4纳米粒子分散在3mL二恶烷中。将混合物转移到一耐压管中,然后将耐压管在液氮浴中快速冷冻,将耐压管抽空至19mbar并火焰密封,待温度恢复至室温后,将悬浮液置于120℃的烘箱中保持3d。待冷却至室温后,用外部磁铁收集产物,用DMF和THF洗涤数次,直至上清液澄清。然后将产物在80℃下干燥,即为Fe3O4@COF(TpDA)。
图1为所得Fe3O4纳米粒子和Fe3O4@COF(TpDA)的透射电镜(TEM)图,从图中可以看出,Fe3O4纳米粒子为球形,表面光滑,而Fe3O4@COF(TpDA)表面粗糙,这表明在Fe3O4纳米粒子的表面上形成了COF(TpDA)壳,并且COF(TpDA)壳的厚度约为75nm。
图2为所得Fe3O4纳米粒子和Fe3O4@COF(TpDA)的X射线衍射(XRD)谱图,从图中可以看出,在30.1°,35.3°,42.9°,53.2°,57.1°和62.6°的衍射峰分别与(220),(311),(400),(402),(511)和(440)晶面对应,表明制备的Fe3O4纳米粒子具有良好的结晶度。与Fe3O4纳米粒子的XRD谱图相比,Fe3O4@COF(TpDA)在3.1°处的衍射峰可能归因于低结晶度的COF(TpDA)壳。
图3为所得Fe3O4纳米粒子和Fe3O4@COF(TpDA)的傅立叶红外光谱(FT-IR)图,从图中可以看出,在596cm-1处的强吸收带是Fe-O-Fe振动的特征,而在3449cm-1和1575cm-1处的吸收带主要是由表面吸附的水和羟基产生的。和Fe3O4纳米粒子的FT-IR谱图对比,发现Fe3O4@COF(TpDA)在1263cm-1处显示出新的吸收带,是由C-N产生的,验证了COF(TpDA)壳的形成。
图4为所得Fe3O4@COF(TpDA)的N2吸附-解吸等温线,该等温线证实了Fe3O4@COF(TpDA)的多孔结构,其为中孔结构。经检测,Fe3O4@COF(TpDA)的BET比表面积为180.2m2/g,孔体积为0.31cm3/g,平均孔径为3.5nm。Fe3O4@COF(TpDA)材料的大比表面积使其成为提取PGRs的理想吸附剂。
图5为所得Fe3O4纳米粒子和Fe3O4@COF(TpDA)的磁滞曲线。Fe3O4@COF(TpDA)的饱和磁化强度值为62.3emu/g,表明其具有超顺磁特性。尽管Fe3O4@COF(TpDA)的饱和磁化强度值低于Fe3O4纳米粒子的饱和磁化强度值,但这种高饱和磁性已经足以使Fe3O4@COF(TpDA)对外部磁体产生快速响应。如图5插图所示,Fe3O4@COF(TpDA)可以很好地分散在水中以形成棕色悬浮液,并在外部磁体的帮助下非常快速地收集,收集仅需要30s,使用方便。
实施例2
以实施例1制备的Fe3O4@COF(TpDA)为吸附剂,对检测PGRs的工艺条件进行筛选,步骤如下:
1、标准溶液配制
分别称取10mg的IAA、IPA、IBA、1-NAA、2-NAA、1-NOA和2-NOA,将它们分别溶解在10mL的乙腈中,配成浓度为1mg/mL的PGRs标准溶液,放在4℃的冰箱中避光储存,备用。
2、色谱条件
在配备二极管阵列检测器的Agilent 1260型高效液相色谱仪(安捷伦公司)上进行色谱分析。在Hypersil GOLD C18柱(150×4.6mm,3μm)上进行PGRs的分离。选择5%的乙腈水溶液(A)和纯乙腈(B)作为流动相。洗脱采用梯度洗脱,程序为(体积分数):从30%B开始,在2min内增加至34%B,保持11min。然后,在2min内增加至100%B。流速设定为1mL/min,柱温设定为25℃。检测波长设定为280nm,注入体积为10μL。在测试下一个样品之前,将色谱柱用初始流动相平衡5min。
3、磁性固相萃取
将一定量的Fe3O4@COF(TpDA)分散在10mL PGRs标准溶液中,所得悬浮液在VX-200漩涡混合器中涡旋一段时间以实现PGRs与吸附剂之间的吸附。然后,通过外部磁铁收集Fe3O4@COF(TpDA)材料并除去上清液。接着,在超声波作用下用洗脱剂将PGRs从Fe3O4@COF(TpDA)材料中解吸出来。最后,收集洗脱液并用0.22μm的尼龙膜过滤,进行HPLC分析。
3.1洗脱剂的筛选
洗脱剂是决定提取效率的重要因素之一。由于PGRs具有弱酸性,当pH改变时,PGRs将转变为中性或离子形式。因此,选择六种不同的洗脱剂进行研究,分别为(wt%):含有5%甲酸的乙腈、含有5%甲酸的甲醇、含有5%甲酸的乙醇、乙腈、甲醇和乙醇。如图6所示,当洗脱剂是含有5%甲酸的乙腈时,各PGRs的峰面积最高。此外,进一步优化了洗脱剂中甲酸的含量(图7)。结果表明,选择含1%甲酸的乙腈作为洗脱剂是合适的。
3.2吸附剂质量的筛选
吸附剂的质量在MSPE步骤中起着至关重要的作用。为了检测吸附剂质量的影响,洗脱剂(1mL含1%甲酸的乙腈),吸附时间(5min)和解吸时间(10min)是固定的,考察了吸附剂质量在3-24mg范围内的萃取性能。图8显示PGRs的峰面积随着吸附剂质量的增加而增加,直至其达到15mg,并且此后保持平衡。因此,使用的吸附剂的量选定为15mg。
3.3吸附时间的筛选
吸附时间也是影响萃取性能的一个因素。所以接下来,通过调节涡旋时间(1-15min)来探索吸附时间对萃取性能的影响,如图9。结果表明,涡旋5min就足以使吸附剂从10mL溶液中吸附PGRs。因此,使用5min作为最佳的吸附时间。
3.4解吸时间的筛选
最后,研究了解吸时间对提取性能的影响,并且从图10中发现,解吸时间对PGRs富集的影响不明显。综合考虑,选择10min作为解吸时间比较合适。
经过筛选,优选的磁性固相萃取步骤为:将15mg的Fe3O4@COF(TpDA)分散在10mLPGRs标准溶液中,所得悬浮液在VX-200漩涡混合器中涡旋5min以实现PGRs与吸附剂之间的吸附。然后,通过外部磁铁收集Fe3O4@COF(TpDA)材料并除去上清液。接着,在超声波作用下用1mL含1%甲酸的乙腈将PGRs从Fe3O4@COF(TpDA)材料中解吸出来,解吸10min。最后,收集洗脱液并用0.22μm的尼龙膜过滤,进行HPLC分析。
实施例3
上述实施例2筛选得到的优化方法步骤如下:
1、标准溶液或样品溶液的配制
分别称取10mg的IAA、IPA、IBA、1-NAA、2-NAA、1-NOA和2-NOA,将它们分别溶解在10mL的乙腈中,配成浓度为1mg/mL的PGRs标准溶液,放在4℃的冰箱中避光储存,备用。
将水果或蔬菜样品切成小块并搅碎,称取5g样品和6mL甲醇转移到10mL离心管中,将其超声处理40min,然后将离心管以4000rpm离心10min,收集上清液。使用相同的步骤将样品再提取三次,合并萃取液并用氮气干燥,除去大部分甲醇(因为PGRs在水中的溶解度小,因此要保留少量溶剂以保证分析物完全溶解)。最后,将萃取液用水稀释至10mL,即为样品溶液,备用。
2、色谱条件
在配备二极管阵列检测器的Agilent 1260型高效液相色谱仪(安捷伦公司)上进行色谱分析。在Hypersil GOLD C18柱(150×4.6mm,3μm)上进行PGRs的分离。选择5%的乙腈水溶液(A)和纯乙腈(B)作为流动相。洗脱采用梯度洗脱,程序为(体积分数):从30%B开始,在2min内增加至34%B,保持11min。然后,在2min内增加至100%B。流速设定为1mL/min,柱温设定为25℃。检测波长设定为280nm,注入体积为10μL。在测试下一个样品之前,将色谱柱用初始流动相平衡5min。
3、磁性固相萃取
将15mg的Fe3O4@COF(TpDA)分散在10mLPGRs标准溶液中,所得悬浮液在VX-200漩涡混合器中涡旋5min以实现PGRs与吸附剂之间的吸附。然后,通过外部磁铁收集Fe3O4@COF(TpDA)材料并除去上清液。接着,在超声波作用下用1mL含1%甲酸的乙腈将PGRs从Fe3O4@COF(TpDA)材料中解吸出来,解吸10min。最后,收集洗脱液并用0.22μm的尼龙膜过滤,进行HPLC分析。
对上述优化方法的线性、检测限(LOD)、定量限(LOQ)、准确度和精密度进行评价。使用外标法对PGRs进行定量。PGRs的线性检测范围为50-2000μg/L。为了获得在该浓度范围内的线性关系,使用上述方法在该范围内选取8个不同浓度的样品进行检测,并且在峰面积与每个浓度之间绘制标准曲线。LOD和LOQ分别根据在3和10的信噪比(S/N)下估算。结果如下表1所示。
表1
分析物 保留时间(min) R LOD(μg/L) LOQ(μg/L)
IAA 6.85 0.9998 5.17 17.23
IPA 7.46 0.9999 5.21 17.37
IBA 9.34 0.9999 5.00 16.67
2-NOA 11.15 0.9990 7.37 24.57
1-NAA 11.81 0.9999 4.68 15.60
2-NAA 12.17 0.9999 7.39 24.63
1-NOA 13.39 0.9995 7.51 25.03
将制备的Fe3O4@COF(TpDA)材料应用于水果和蔬菜(包括桔子、苹果、黄瓜和番茄)中微量PGRs的检测,苹果、桔子、番茄和黄瓜是从山东曲阜超市所购买。通过回收率验证上述方法的准确度,将两种浓度(10μg/kg和100μg/kg)的所有分析物加标到实际的水果或蔬菜样品中来计算回收率。根据可重复性评估其精密度,通过对两个浓度水平的加标样品和实际样品检测三次来计算相对标准偏差(RSD)。结果见下表2和3。
表2桔子和苹果样品的加标实验结果(n=3)
Figure BDA0002051034330000081
Figure BDA0002051034330000091
表3黄瓜和番茄样品的加标实验结果(n=3)
Figure BDA0002051034330000092
Figure BDA0002051034330000101
从以上数据可以看出,本发明方法显示出令人满意的线性关系,相关系数(R)≥0.9990,并且PGRs的LODs和LOQs分别在4.68-7.51μg/L和15.60-25.03μg/L范围内。此外,实际样品中7种PGRs的回收率范围为83.0-105.0%,RSD在0.7-4.5%的范围内。本发明方法准确度高、重复性好,可以使用。在上述四种实际样品中,除了在桔子样品中检测到2-NOA(4.7μg/kg)外,在其他实际样品中均未检测到PGRs的存在。桔子样品经过MSPE之后的色谱图如图11所示,从图中可以看出,各分析物峰形好、分离度好。
实施例4
为了证实本发明方法的适用性,将本发明与现有技术中的相关检测方法进行了比较(表4和5),发现本发明方法具有以下几个优点:1、本发明方法需要较少的吸附剂和萃取时间来吸附PGRs;2、本发明方法适用于较多的PGRs分析,并且操作步骤简单。此外,本发明方法的灵敏度和准确度与采用HPLC-UV检测的工作相当甚至更好。
表4不同检测方法比较
Figure BDA0002051034330000102
表5不同检测方法比较
Figure BDA0002051034330000103
Figure BDA0002051034330000111
参考文献1:Gupta V,Kumar M,Brahmbhatt H,et al.Simultaneousdetermination of different endogenetic plant growth regulators in commongreen seaweeds using dispersive liquid-liquid microextraction method[J].PlantPhysiology and Biochemistry,2011,49(11):1259-1263.
参考文献2:Wang L,Wang M,Yan H,et al.A new graphene oxide/polypyrrolefoam material with pipette-tip solid-phase extraction for determination ofthree auxins in papaya juice[J].Journal of Chromatography A,2014,1368:37-43.
参考文献3:Wang Z H,Xia J F,Han Q,et al.Multi-walled carbon nanotubeas a solid phase extraction adsorbent for analysis of indole-3-butyric acidand 1-naphthylacetic acid in plant samples[J].Chinese Chemical Letters,2013,24(7):588-592.
参考文献4:Zhang Y,Li Y,Hu Y,et al.Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine andβ-cyclodextrin asbinary monomer via microwave heating initiated polymerization and theirapplication to trace analysis of auxins in plant tissues[J].Journal ofChromatography A,2010,1217(47):7337-7344.
参考文献5:Chen J,Cao S,Zhu M,et al.Fabrication of a high selectivitymagnetic solid phase extraction adsorbent based onβ-cyclodextrin andapplication for recognition of plant growth regulators[J].Journal ofChromatography A,2018,1547:1-13.
参考文献6:Chen J Y,Cao S R,Xi C X,et al.A novel magneticβ-cyclodextrin modified graphene oxide adsorbent with high recognitioncapability for 5plant growth regulators[J].Food Chemistry,2018,239:911-919.
对比例1
Fe3O4@COF(TpBD)的制备:将63.0mg Tp,82mg联苯胺(BD)和80mg Fe3O4纳米粒子分散在3mL二恶烷中。将混合物转移到一耐压管中,然后将耐压管在液氮浴中快速冷冻,将耐压管抽空至19mbar并火焰密封,待温度恢复至室温后,将悬浮液置于120℃的烘箱中保持3d。待冷却至室温后,用外部磁铁收集产物,用DMF和THF洗涤数次,直至上清液澄清。然后将产物在80℃下干燥,即为Fe3O4@COF(TpBD)。
1、标准溶液的配制
分别称取10mg的IAA、IPA、IBA、1-NAA、2-NAA、1-NOA和2-NOA,将它们分别溶解在10mL的乙腈中,配成浓度为1mg/mL的PGRs标准溶液,放在4℃的冰箱中避光储存,备用。
2、色谱条件
同实施例1。
3、磁性固相萃取
为了体现Fe3O4@COF(TpDA)在检测PGRs中的优点,分别将实施例1的Fe3O4@COF(TpDA)和Fe3O4@COF(TpBD)作为吸附剂在相同的MSPE条件下对PGRs进行吸附,步骤如下:将15mg吸附剂分散在10mL PGRs标准溶液中,所得悬浮液在VX-200漩涡混合器中涡旋5min以实现PGRs与吸附剂之间的吸附。然后,通过外部磁铁收集吸附剂材料并除去上清液。接着,在超声波作用下用1mL含1%甲酸的乙腈将PGRs从吸附剂材料中解吸出来,解吸10min。最后,收集洗脱液并用0.22μm的尼龙膜过滤,进行HPLC分析,结果如下:
表6不同吸附剂比较
Figure BDA0002051034330000121
从上表结果可以看出,虽然Fe3O4@COF(TpBD)作为MSPE吸附剂也可以通过π-π相互作用和疏水作用富集一定量的PGRs,但是吸附量要比Fe3O4@COF(TpDA)作为MSPE吸附剂富集PGRs时少很多。因此,Fe3O4@COF(TpDA)是作为MSPE吸附剂对PGRs进行富集的最佳选择。
对比例2
1、标准溶液的配制
分别称取10mg的IAA、IPA、IBA、1-NAA、2-NAA、1-NOA和2-NOA,将它们分别溶解在10mL的乙腈中,配成浓度为1mg/mL的PGRs标准溶液,放在4℃的冰箱中避光储存,备用。
2、色谱条件
在配备二极管阵列检测器的Agilent 1260型高效液相色谱仪(安捷伦公司)上进行色谱分析。在Hypersil GOLD C18柱(150×4.6mm,3μm)上进行PGRs的分离。选择5%的乙腈水溶液(A)和纯乙腈(B)作为流动相。洗脱采用梯度洗脱,程序为(体积分数):0-2min,流动相B为30%;2-10min,流动相B从30%增加到34%;10-15min,流动相B从34%增加到100%。流速设定为1mL/min,柱温设定为25℃。检测波长设定为280nm,注入体积为10μL。在测试下一个样品之前,将色谱柱用初始流动相平衡5min。
3、磁性固相萃取
同实施例1。
对磁性固相萃取得到的分析物进行HPLC分析,结果如图12所示。从图中可以看出,由于洗脱程序的改变,有一个PGRs无法出峰。

Claims (8)

1.一种磁性固相萃取检测果蔬中植物生长调节剂的方法,其特征是:以磁性共价有机骨架材料Fe3O4@COF(TpDA)作为磁性固相萃取的吸附剂,对果蔬中的植物生长调节剂进行萃取,所述植物生长调节剂为吲哚-3-乙酸、吲哚-3-丙酸、吲哚-3-丁酸、1-萘乙酸、2-萘乙酸、1-萘氧乙酸和2-萘氧乙酸。
2.根据权利要求1所述的方法,其特征是:所述果蔬为水果和蔬菜。
3.根据权利要求1或2所述的方法,其特征是:所述Fe3O4@COF(TpDA)是1,3,5-三醛基间苯三酚和2,6-二氨基蒽醌在Fe3O4纳米粒子表面进行席夫碱反应得到的。
4.根据权利要求3所述的方法,其特征是:所述Fe3O4@COF(TpDA)的制备过程是:将1,3,5-三醛基间苯三酚、2,6-二氨基蒽醌和Fe3O4纳米粒子按照1:1-2:1-2的摩尔比分散在二恶烷中,用液氮快速冷冻后抽真空密封,待温度自然升至室温后将混合物置于115-125℃下反应3-4天,反应后冷却至室温,收集产物,洗涤、干燥,得Fe3O4@COF(TpDA)。
5.根据权利要求1所述的方法,其特征是:包括以下步骤:
(1)将果蔬样品切成小块并搅碎,将5 g样品加入5-8 mL甲醇中超声提取35-45 min,然后离心取上清液,离心后剩余的样品再按照此方法用甲醇提取3次,合并所得上清液,得萃取液;
(2)将上述萃取液用氮气干燥,除去大部分溶剂后用水稀释至10 mL,即为样品溶液;
(3)向上述10 mL样品溶液中加入12-18 mg Fe3O4@COF(TpDA),涡旋使Fe3O4@COF(TpDA)充分吸附样品中的植物生长调节剂,然后收集Fe3O4@COF(TpDA);
(4)将吸附植物生长调节剂后的Fe3O4@COF(TpDA)加入1-2 mL 0.5-2wt%的甲酸的乙腈溶液中,超声处理将植物生长调节剂从Fe3O4@COF(TpDA)中解吸出来,然后过滤收集洗脱液;
(5)将上述洗脱液进行HPLC分析,检测植物生长调节剂的含量。
6.根据权利要求5所述的方法,其特征是:步骤(3)中,涡旋时间为5min。
7.根据权利要求5所述的方法,其特征是:步骤(4)中,解吸时间为10min。
8.根据权利要求5所述的方法,其特征是:高效液相色谱分析的色谱条件为:
色谱柱:Hypersil GOLD C18柱;
检测器:二极管阵列检测器;
流动相A:5wt%的乙腈水溶液,流动相B:纯乙腈;
梯度洗脱:0-2min,流动相B 体积分数由30%增至34%;2-13min,流动相B体积分数保持34%不变;13-15min,流动相B体积分数由34%增至100%;
流速:1 mL/min;
柱温:25 ºC;
进样量:10 μL;
检测波长:280 nm。
CN201910374049.6A 2019-05-07 2019-05-07 一种磁性固相萃取检测果蔬中植物生长调节剂的方法 Active CN110133125B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910374049.6A CN110133125B (zh) 2019-05-07 2019-05-07 一种磁性固相萃取检测果蔬中植物生长调节剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910374049.6A CN110133125B (zh) 2019-05-07 2019-05-07 一种磁性固相萃取检测果蔬中植物生长调节剂的方法

Publications (2)

Publication Number Publication Date
CN110133125A CN110133125A (zh) 2019-08-16
CN110133125B true CN110133125B (zh) 2022-02-01

Family

ID=67576370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910374049.6A Active CN110133125B (zh) 2019-05-07 2019-05-07 一种磁性固相萃取检测果蔬中植物生长调节剂的方法

Country Status (1)

Country Link
CN (1) CN110133125B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110665485A (zh) * 2019-09-25 2020-01-10 南开大学 一种磁性共价有机骨架材料的制备方法及其应用
CN111638284B (zh) * 2020-06-08 2021-08-20 江南大学 一种同时测定鸡蛋中7种色素的方法
CN112547031A (zh) * 2020-09-29 2021-03-26 陕西科技大学 一种固相微萃取探针纤维及其制备方法和应用
CN112763561B (zh) * 2020-12-24 2022-03-25 云南大学 一种检测gⅱ.4诺如病毒的电化学传感器
CN112816602B (zh) * 2020-12-31 2022-10-11 山东省分析测试中心 一种磁性固相萃取剂及制备方法与应用
CN114689744B (zh) * 2022-03-21 2023-03-24 江南大学 功能化三维共价有机骨架在检测有机磷农药残留中的应用
CN115608339B (zh) * 2022-10-14 2024-04-19 上海市农业科学院 一种用于九种真菌毒素同时富集净化的磁固相萃取剂

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107413313B (zh) * 2017-07-18 2019-10-25 武汉大学 一种基于共价有机骨架材料的磁性固相萃取剂及其制备方法和应用
CN108802223B (zh) * 2018-06-13 2020-12-04 绿城农科检测技术有限公司 一种测定瓜果中9种植物生长调节剂残留量的方法
CN109212064A (zh) * 2018-09-19 2019-01-15 遵义市产品质量检验检测院 一种植物生长调节剂残余量的检测方法
CN109589931B (zh) * 2018-12-05 2020-03-06 江南大学 一种磁性共价有机骨架化合物固相萃取吸附剂及制备方法

Also Published As

Publication number Publication date
CN110133125A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN110133125B (zh) 一种磁性固相萃取检测果蔬中植物生长调节剂的方法
Li et al. Effective enrichment and detection of plant growth regulators in fruits and vegetables using a novel magnetic covalent organic framework material as the adsorbents
Zhang et al. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples
Lu et al. A functionalized magnetic covalent organic framework for sensitive determination of trace neonicotinoid residues in vegetable samples
Boon et al. Magnetic poly (β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis
Yan et al. Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples
Chen et al. A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by HPLC
Chen et al. A novel magnetic β-cyclodextrin modified graphene oxide adsorbent with high recognition capability for 5 plant growth regulators
Xu et al. Adsorption of aflatoxins and ochratoxins in edible vegetable oils with dopamine-coated magnetic multi-walled carbon nanotubes
Yang et al. Modulated construction of imine-based covalent organic frameworks for efficient adsorption of polycyclic aromatic hydrocarbons from honey samples
CN109342613A (zh) 一种用于分析饮料中酚类内分泌干扰物的方法
Wang et al. Molecularly imprinted polymers with dual template and bifunctional monomers for selective and simultaneous solid-phase extraction and gas chromatographic determination of four plant growth regulators in plant-derived tissues and foods
Li et al. Simultaneous determination of aflatoxin B1 and zearalenone by magnetic nanoparticle filled amino-modified multi-walled carbon nanotubes
Zheng et al. Melamine-based porous organic polymers inline solid phase extraction coupled with high performance liquid chromatography for the analysis of phytohormones in juice samples
He et al. Engineering of amino microporous organic network on zeolitic imidazolate framework-67 derived nitrogen-doped carbon for efficient magnetic extraction of plant growth regulators
Li et al. Preparation of magnetic hyper-crosslinked polymer for high efficient preconcentration of four aflatoxins in rice and sorghum samples
Lu et al. One pot green synthesis of m-aminophenol–urea–glyoxal resin as pipette tip solid-phase extraction adsorbent for simultaneous determination of four plant hormones in watermelon juice
Kardani et al. A novel immunoaffinity column based metal–organic framework deep eutectic solvents@ molecularly imprinted polymers as a sorbent for the solid phase extraction of aflatoxins AFB1, AFB2, AFG1 and AFG2 from cereals samples
Guo et al. Facile synthesis of conjugated microporous polymer with spherical structure for solid phase extraction of phenyl urea herbicides
CN114471476A (zh) 磁性多孔有机骨架材料及其制备方法与应用
Chen et al. Facile preparation of novel COFs functionalized magnetic core-shell structured nanocomposites and used for rapid detection of trace polycyclic aromatic hydrocarbons in food
Li et al. Facile synthesis of magnetic hypercrosslinked polymer for the magnetic solid-phase extraction of benzoylurea insecticides from honey and apple juice samples
Liang et al. Banana-peel-derived magnetic porous carbon as effective adsorbent for the enrichment of six bisphenols from beverage and water samples
Liu et al. Fabrication of a functionalized magnetic covalent organic framework composite as an efficient adsorbent for sulfonamide extraction from food samples
Nasrollahpour et al. A simple vortex-assisted magnetic dispersive solid phase microextraction system for preconcentration and separation of triazine herbicides from environmental water and vegetable samples using Fe3O4@ MIL-100 (Fe) sorbent

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant