CN110128145A - 一种合成高纯Ti3SiC2的方法 - Google Patents

一种合成高纯Ti3SiC2的方法 Download PDF

Info

Publication number
CN110128145A
CN110128145A CN201910562986.4A CN201910562986A CN110128145A CN 110128145 A CN110128145 A CN 110128145A CN 201910562986 A CN201910562986 A CN 201910562986A CN 110128145 A CN110128145 A CN 110128145A
Authority
CN
China
Prior art keywords
powder
sic
purity
graphite
titanium valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910562986.4A
Other languages
English (en)
Inventor
吴琼
杨占鑫
齐国超
李庆文
刘志豪
胡竟宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinzhou Zhongwei Powder Material Co Ltd
Liaoning University of Technology
Original Assignee
Jinzhou Zhongwei Powder Material Co Ltd
Liaoning University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinzhou Zhongwei Powder Material Co Ltd, Liaoning University of Technology filed Critical Jinzhou Zhongwei Powder Material Co Ltd
Priority to CN201910562986.4A priority Critical patent/CN110128145A/zh
Publication of CN110128145A publication Critical patent/CN110128145A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种合成高纯Ti3SiC2的方法,由原始粉末和聚乙烯醇粘结剂组成,原始粉末包括钛粉、硅粉、石墨粉,粘结剂占三种粉体总质量的1.5%,原始粉末按原子比:钛粉3、硅粉0.8、石墨粉1.2‑2、铝粉0.2。制备Ti3SiC2由以下具体步骤制成,粘结剂制备;混料;压型;烧结;本发明的目的是克服现有技术的不足,采用压型后烧结技术,以钛粉、硅粉、石墨粉为原料,聚乙烯醇为粘结剂,压型后放入真空烧结内进行烧结,通过多次试验得到制备高纯Ti3SiC2工艺参数。本发明具有工艺简便、成本较低、产品纯度高的优点。

Description

一种合成高纯Ti3SiC2的方法
技术领域
本发明涉及化学技术领域,具体为一种合成高纯Ti3SiC2的方法。
背景技术
Ti3SiC2材料是一类三元层状化合物,其晶体结构与层状石墨类似,将Si原子层从其中除去便可。以得到类似于石墨烯的层状结构,非常适合离子的嵌入和脱嵌,具有较高的电导率;材料表面良好的亲水性,与电解液湿润性良好;较高的弹性模数,抗拉压能力;工作电压低,可满足低电压工作的需求,在锂离子电池和超级电容器中有广泛的应用前景。
就目前来说,制备Ti3SiC2的主要方法有:热压法、机械合金辅助合成、熔盐法。EI-Raghy等人以钛粉、碳化硅粉、碳粉为原料利用热压法在1600℃下烧结4h制得Ti3SiC2块体;李敬锋等人以钛粉、硅粉、碳粉为原料在无压烧结前进行一定时间的球磨在低温时合成了纯度较低的Ti3SiC2;程本军等人以钛粉、硅粉、碳粉为原料利用熔盐法经过混料、煅烧、洗涤、干燥得到Ti3SiC2
但上述方法中均存在着不足,比如热压法在反应过程中硅的流失很难控制,虽然他们尝试在原料配比中增加硅的量,但由于变量较多并未能成功制备高纯度Ti3SiC2块体;在利用机械合金辅助合成时,虽然球磨使得在低温就合成了Ti3SiC2粉体,但纯度过低;而熔盐法合成Ti3SiC2过程繁琐且对环境有一定的污染,合成的纯度也并不理想。
针对上述问题,特提出一种合成高纯Ti3SiC2的方法。
发明内容
本发明的目的在于提供一种合成高纯Ti3SiC2的方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种合成高纯Ti3SiC2的方法,制备原料包括原始粉末和聚乙烯醇粘结剂;
原始粉末包括钛粉、硅粉、石墨粉和铝粉,聚乙烯醇粘结剂为聚乙烯醇的水溶液;
原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.2-2、铝粉0.2,聚乙烯醇粘结剂占钛粉、硅粉、石墨粉和铝粉总质量之和的1.5%;
所述的钛粉,粒度为300-400目,其中Ti≥99%、TiH≤1%;
所述的硅粉,粒度为200目,其中Si≥99.99%;
所述的石墨粉,粒度为400目,其中C≥99.9%;
所述的铝粉,粒度为200目,其中Al≥99.99%;
所述的聚乙烯醇,含量≥97%,挥发分2%,灰分0.2%,乙酸钠0.2%。
优选的,所述原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉2、铝粉0.2。
优选的,所述原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.8、铝粉0.2。
优选的,所述原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.6、铝粉0.2。
优选的,所述原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.4、铝粉0.2。
优选的,所述原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.2、铝粉0.2。
制备Ti3SiC2由以下具体步骤制成:
第一步,粘结剂制备;
首先在烧杯中加入一定量的水,然后慢慢将10g聚乙烯醇颗粒加入烧杯中,加入量要均匀,加入速度要缓慢,然后在烧杯中加入至200g水,加入速度要缓慢,在不升温的情况下搅拌15分钟,搅拌后将烧杯放入恒温水浴锅中进行加热,在加热过程中间断地用玻璃棒进行搅拌,缓慢的将温度升高到90℃,加热到指定温度时保温至聚乙烯醇颗粒溶解完全,在保温过程中也应该不断的搅拌,待溶液温度降至室温时即可使用。
第二步,混料;
将原始粉末按预先配比用天平准确称量,加入研钵中搅拌均匀,再加入粘结剂进行研磨均匀。
第三步,压型;
将研磨均匀的原料和粘结剂放入压型装置中,在预制压力120Mp下制成块体,置于刚玉坩埚备用。
第四步,烧结;
升温阶段:开机械泵抽真空至30Pa以下,打开扩散泵抽空至10-3Pa,升温至300℃时保温1h,300℃-600℃范围内要控制升温速率,以利于分体间气体的顺利排出,之后在装置允许条件下进行快速加热,至1600℃时保温1h;
冷却阶段:保温结束后,切开加热电源,在保持真空条件下进行随炉冷却至室温。
优选的,所述第二步中均匀搅拌的时间为30分钟-40分钟。
优选的,所述第四步中烧结选用的设备为:烧结炉真空热压炉,发热体为石墨管,发热体外采用石墨毡约200mm作为保温层,然后在石墨毡外侧放置约100mm氧化锆纤维毡作为绝缘层。
优选的,所述第四步烧结中300℃-600℃控制的升温速率为小于5℃/min,快速加热的速率不得高于10℃/min。
与现有技术相比,本发明的有益效果是:本发明的目的是克服现有技术的不足,采用压型后烧结技术,以钛粉、硅粉、石墨粉为原料,聚乙烯醇为粘结剂,压型后放入真空烧结内进行烧结,通过多次试验得到制备高纯Ti3SiC2工艺参数。本发明具有工艺简便、成本较低、产品纯度高的优点。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种合成高纯Ti3SiC2的方法,制备原料包括原始粉末和聚乙烯醇粘结剂;
原始粉末包括钛粉、硅粉、石墨粉和铝粉,聚乙烯醇粘结剂为聚乙烯醇的水溶液;
原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.2-2、铝粉0.2,聚乙烯醇粘结剂占钛粉、硅粉、石墨粉和铝粉总质量之和的1.5%;
所述的钛粉,粒度为300-400目,其中Ti≥99%、TiH≤1%;
所述的硅粉,粒度为200目,其中Si≥99.99%;
所述的石墨粉,粒度为400目,其中C≥99.9%;
所述的铝粉,粒度为200目,其中Al≥99.99%;
所述的聚乙烯醇,含量≥97%,挥发分2%,灰分0.2%,乙酸钠0.2%。
具体包括以下步骤:
第一步:粘结剂制备:首先在烧杯中加入一定量的水,水温应不超过30℃,避免产生团块,然后将10g聚乙烯醇颗粒慢慢将10g聚乙烯醇颗粒加入烧杯中,加入量要均匀,加入速度要缓慢,这样不容易形成团块。然后在烧杯中加入至200g水。加入速度要缓慢,这样不容易形成团块。可在不升温的情况下搅拌15分钟。将烧杯放入恒温水浴锅中进行加热,在加热过程中间断地用玻璃棒进行搅拌。缓慢的将温度升高到90~95℃,加热到指定温度时保温至聚乙烯醇颗粒溶解完全,在保温过程中也应该不断的搅拌,待溶液温度降至室温时即可使用。
第二步:混料:将原料按总质量10g,钛粉:硅粉:石墨粉:铝粉原子比为3:0.8:2:0.2。用天平准确称量各粉体分别为7.35g、1.15g、1.23g、0.28g,加入研钵中搅拌均匀(大于30分钟),再加入粘结剂(聚乙烯醇)0.3g-0.5g进行研磨均匀。
第三步:压型:将研磨均匀的原料和粘结剂放入压型装置中,在预制压力120Mp下制成块体,置于刚玉坩埚备用。
第四步:烧结:烧结采用真空热压炉,发热体为石墨管,发热体外采用石墨毡约200mm作为保温层,然后在石墨毡外侧放置约100mm氧化锆纤维毡作为绝缘层,升温阶段:开机械泵抽真空至30Pa以下,打开扩散泵抽空至10-3Pa,升温至300℃时保温1h,300℃-600℃范围内要控制升温速率(小于5℃min以下),以利于分体间气体的顺利排出,之后在装置允许条件下进行快速加热(10℃/min以下),至1600℃保温1h,冷却阶段:保温结束后,切开加热电源,在保持真空条件下进行随炉冷却至室温。
将本实施例制得的Ti3SiC2块体进行检测,从检测结果可以看出制得的Ti3SiC2块体为层状类石墨结构,纯度很高只有微量的TiC相存在。
实施例2:
与实施例1不同之处在于:钛粉:硅粉:石墨粉:铝粉原子比为3:0.8:1.8:0.2,用天平准确称量各粉体分别为7.44g、1.16g、1.12g、0.28g。所制得的Ti3SiC2块体为层状类石墨结构,纯度较高TiC峰强度有所增加。
实施例3:
与实施例1不同之处在于:钛粉:硅粉:石墨粉:铝粉原子比为3:0.8:1.6:0.2,用天平准确称量各粉体分别为7.53g、1.18g、1.01g、0.28g。所制得的Ti3SiC2块体为层状类石墨结构,纯度较高TiC峰强度增长较大。
实施例4:
与实施例1不同之处在于:钛粉:硅粉:石墨粉:铝粉原子比为3:0.8:1.4:0.2,用天平准确称量各粉体分别为7.63g、1.19g、0.89g、0.29g。所制得的Ti3SiC2块体为层状类石墨结构,Ti3SiC2峰强较低,TiC峰强度增长很大。
实施例5:
与实施例1不同之处在于:钛粉:硅粉:石墨粉:铝粉原子比为3:0.8:1.2:0.2,用天平准确称量各粉体分别为7.73g、1.21g、0.77g、0.29g。所制得的Ti3SiC2块体为层状类石墨结构,Ti3SiC2峰强较低,TiC峰强度增长很大。
1、铝的熔点较低只有660℃,在原料中添加少量的铝为烧结助剂,当反应温度超过铝的熔点时,铝开始熔化形成液相熔池,从而加快Si原子的扩散,Ti3SiC2在熔池中成核、生长,从而加速了Ti3SiC2的合成,同时铝能够有效的捕捉氧原子在一定程度上抑制了反应过程中钛和硅的氧化。
2、本发明无需球磨、烘干、洗涤等繁琐步骤,在烧结过程中也无需通氩气保护,整个工艺工序简单,工艺参数易于控制。
3、本发明的合成方法中所述钛粉、硅粉、石墨粉、铝粉的原子比为3:0.8:2:0.2可以保证合成的Ti3SiC2有较高的纯度。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种合成高纯Ti3SiC2的方法,其特征在于:制备原料包括原始粉末和聚乙烯醇粘结剂;
原始粉末包括钛粉、硅粉、石墨粉和铝粉,聚乙烯醇粘结剂为聚乙烯醇的水溶液;
原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.2-2、铝粉0.2,聚乙烯醇粘结剂占钛粉、硅粉、石墨粉和铝粉总质量之和的1.5%;
所述的钛粉,粒度为300-400目,其中Ti≥99%、TiH≤1%;
所述的硅粉,粒度为200目,其中Si≥99.99%;
所述的石墨粉,粒度为400目,其中C≥99.9%;
所述的铝粉,粒度为200目,其中Al≥99.99%;
所述的聚乙烯醇,含量≥97%,挥发分2%,灰分0.2%,乙酸钠0.2%。
2.根据权利要求1所述的一种合成高纯Ti3SiC2的方法,其特征在于:所述原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉2、铝粉0.2。
3.根据权利要求1所述的一种合成高纯Ti3SiC2的方法,其特征在于:所述原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.8、铝粉0.2。
4.根据权利要求1所述的一种合成高纯Ti3SiC2的方法,其特征在于:所述原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.6、铝粉0.2。
5.根据权利要求1所述的一种合成高纯Ti3SiC2的方法,其特征在于:所述原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.4、铝粉0.2。
6.根据权利要求1所述的一种合成高纯Ti3SiC2的方法,其特征在于:所述原始粉末中按原子数量配比为:钛粉3、硅粉0.8、石墨粉1.2、铝粉0.2。
7.根据权利要求1所述的一种合成高纯Ti3SiC2的方法,其特征在于:制备Ti3SiC2由以下具体步骤制成:
第一步,粘结剂制备;
首先在烧杯中加入一定量温度不超过30度的水,然后慢慢将10g聚乙烯醇颗粒加入烧杯中,加入量要均匀,加入速度要缓慢,然后在烧杯中加入至200g水,加入速度要缓慢,在不升温的情况下搅拌15分钟,搅拌后将烧杯放入恒温水浴锅中进行加热,在加热过程中间断地用玻璃棒进行搅拌,缓慢的将温度升高到90℃,加热到指定温度时保温至聚乙烯醇颗粒溶解完全,在保温过程中也应该不断的搅拌,待溶液温度降至室温时即可使用。
第二步,混料;
将原始粉末按预先配比用天平准确称量,加入研钵中搅拌均匀,再加入粘结剂进行研磨均匀。
第三步,压型;
将研磨均匀的原料和粘结剂放入压型装置中,在预制压力120MPa下制成块体,置于刚玉坩埚备用。
第四步,烧结;
升温阶段:开机械泵抽真空至30Pa以下,打开扩散泵抽空至10-3Pa,升温至300℃时保温1h,300℃-600℃范围内要控制升温速率,以利于分体间气体的顺利排出,之后在装置允许条件下进行快速加热,至1600℃时保温1h;
冷却阶段:保温结束后,切开加热电源,在保持真空条件下进行随炉冷却至室温。
8.根据权利要求7所述的一种合成高纯Ti3SiC2的方法,其特征在于:所述第二步中均匀搅拌的时间为30分钟-40分钟。
9.根据权利要求7所述的一种合成高纯Ti3SiC2的方法,其特征在于:所述第四步中烧结选用的设备为:烧结炉真空热压炉,发热体为石墨管,发热体外采用石墨毡约200mm作为保温层,然后在石墨毡外侧放置约100mm氧化锆纤维毡作为绝缘层。
10.根据权利要求7所述的一种合成高纯Ti3SiC2的方法,其特征在于:所述第四步烧结中300℃-600℃控制的升温速率为小于5℃/min,快速加热的速率不得高于10℃/min。
CN201910562986.4A 2019-06-26 2019-06-26 一种合成高纯Ti3SiC2的方法 Pending CN110128145A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910562986.4A CN110128145A (zh) 2019-06-26 2019-06-26 一种合成高纯Ti3SiC2的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910562986.4A CN110128145A (zh) 2019-06-26 2019-06-26 一种合成高纯Ti3SiC2的方法

Publications (1)

Publication Number Publication Date
CN110128145A true CN110128145A (zh) 2019-08-16

Family

ID=67566556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910562986.4A Pending CN110128145A (zh) 2019-06-26 2019-06-26 一种合成高纯Ti3SiC2的方法

Country Status (1)

Country Link
CN (1) CN110128145A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112919470A (zh) * 2021-01-21 2021-06-08 辽宁中色新材科技有限公司 一种碳化硅钛的生产工艺
CN115073152A (zh) * 2022-07-22 2022-09-20 内蒙古工业大学 层压陶瓷复合材料及制备方法和铬酸镧陶瓷及制作工艺
CN117776690A (zh) * 2024-02-27 2024-03-29 北京利尔高温材料股份有限公司 一种溶胶结合高炉铁沟喷补料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1250039A (zh) * 1998-10-07 2000-04-12 中国科学院金属研究所 一种原位热压固-液相反应制备钛碳化硅体材料的方法
CN1552662A (zh) * 2003-05-28 2004-12-08 中国科学院金属研究所 一种无TiC杂质的Ti3SiC2材料的制备方法
CN1609055A (zh) * 2004-09-21 2005-04-27 北京交通大学 一种钛硅碳化物粉及其以铝为反应助剂的常压合成方法
CN1800100A (zh) * 2006-01-12 2006-07-12 上海大学 金属陶瓷Ti3SiC2粉体的制备方法
CN101624287A (zh) * 2009-08-07 2010-01-13 陕西科技大学 一种Ti3SiC2陶瓷材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1250039A (zh) * 1998-10-07 2000-04-12 中国科学院金属研究所 一种原位热压固-液相反应制备钛碳化硅体材料的方法
CN1552662A (zh) * 2003-05-28 2004-12-08 中国科学院金属研究所 一种无TiC杂质的Ti3SiC2材料的制备方法
CN1609055A (zh) * 2004-09-21 2005-04-27 北京交通大学 一种钛硅碳化物粉及其以铝为反应助剂的常压合成方法
CN1800100A (zh) * 2006-01-12 2006-07-12 上海大学 金属陶瓷Ti3SiC2粉体的制备方法
CN101624287A (zh) * 2009-08-07 2010-01-13 陕西科技大学 一种Ti3SiC2陶瓷材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAORUI JI: "Synthesis, characterization and tribological properties of High purity Ti3SiC2 nanolamellas", 《CERAMIC INTERNATIONAL》 *
徐峰: "《建筑涂料与涂装技术》", 31 May 1998, 化学工业出版社 *
李庆文: "真空烧结法层状Ti3SiC2材料的制备研究", 《陶瓷》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112919470A (zh) * 2021-01-21 2021-06-08 辽宁中色新材科技有限公司 一种碳化硅钛的生产工艺
CN115073152A (zh) * 2022-07-22 2022-09-20 内蒙古工业大学 层压陶瓷复合材料及制备方法和铬酸镧陶瓷及制作工艺
CN117776690A (zh) * 2024-02-27 2024-03-29 北京利尔高温材料股份有限公司 一种溶胶结合高炉铁沟喷补料
CN117776690B (zh) * 2024-02-27 2024-05-31 北京利尔高温材料股份有限公司 一种溶胶结合高炉铁沟喷补料

Similar Documents

Publication Publication Date Title
CN110128145A (zh) 一种合成高纯Ti3SiC2的方法
CN102206080B (zh) 太阳能光伏产业单晶硅生长热场用石墨材料及其制造方法
CN102354544B (zh) 晶硅太阳能电池正面电极用银导体浆料及其制备方法
CN101428273B (zh) 多晶硅太阳能电池铸锭用石英坩埚的氮化硅喷涂方法
CN103695852B (zh) 钨硅靶材的制造方法
CN103754891B (zh) 一种硼/碳热还原法低温制备硼化铪粉体的方法
CN105197952B (zh) 纳米单晶硼化镧的制备及其在电镜灯丝制备中的应用
CN104562192A (zh) 一种多晶硅锭的铸造方法
CN102212781A (zh) 一种高密度低成本氧化锌铝溅射靶材的制造方法
CN108383530B (zh) 一种ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺
CN109817957A (zh) 一种沥青包覆硅掺杂天然鳞片石墨负极材料的制备方法
CN201058893Y (zh) 直拉法生长掺镓硅单晶的装置
CN107857261A (zh) 一种核石墨材料的制备方法
CN111786014A (zh) 一种超细粒度的石榴石型固体电解质粉体及其制备方法
CN108484173A (zh) SiCf/SiC复合材料及其制备方法
CN111004018B (zh) 一种高温相变储热材料、储热砖及其制备方法
CN106587901A (zh) 耐高温高强度刚性隔热材料的制备方法
CN114497714B (zh) 一种高离子电导率石榴石型固体电解质的制备方法
CN101885609A (zh) 一种氧化锌基陶瓷溅射靶材的中温制备方法
CN110492074A (zh) 一种制备锂离子电池碳纤维/硫化锑复合负极的方法
CN101412510A (zh) 用于锂二次电池的复合石墨及其制造方法
CN102390856A (zh) 一种低温制备高稳定性γ相纳米硫化镧粉体的方法
CN115028164B (zh) 铁水孕育人造石墨负极材料及制造方法
CN107282857B (zh) MgO-SrZrO3复合型壳、应用及其制备方法
CN100441055C (zh) 一种复合金属电热膜溶胶及用其制造电热管的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination