CN110126299B - 一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和应用 - Google Patents

一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN110126299B
CN110126299B CN201910457293.9A CN201910457293A CN110126299B CN 110126299 B CN110126299 B CN 110126299B CN 201910457293 A CN201910457293 A CN 201910457293A CN 110126299 B CN110126299 B CN 110126299B
Authority
CN
China
Prior art keywords
electromagnetic wave
absorbing
damping
layer
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910457293.9A
Other languages
English (en)
Other versions
CN110126299A (zh
Inventor
梁森
陈新乐
郑长升
袁丽华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN201910457293.9A priority Critical patent/CN110126299B/zh
Publication of CN110126299A publication Critical patent/CN110126299A/zh
Priority to US16/734,308 priority patent/US11541627B2/en
Application granted granted Critical
Publication of CN110126299B publication Critical patent/CN110126299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • B29B15/125Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/04Making preforms by assembling preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0071Active shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明属于阻尼复合材料技术领域,具体涉及一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和应用。所述复合材料由多层电磁吸波预浸料层与电磁吸波阻尼层交错叠合而成,所述电磁吸波预浸料层由纤维布、微纳米电磁吸波材料和树脂组成,且电磁吸波预浸料层和电磁吸波阻尼层中的微纳米电磁吸波材料的含量按电磁吸波预浸料层的排序依次序梯度递增或递减;电磁吸波阻尼层由阻尼材料和微纳米电磁吸波材料形成,相邻的电磁吸波预浸料层和电磁吸波阻尼层中微纳米电磁吸波材料含量相同。本发明实现了嵌入式共固化高阻尼复合材料的电磁吸波功能,该结构在满足吸波性能要求的前提下也充分发挥了粘弹性阻尼层的阻尼性能。

Description

一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和 应用
技术领域
本发明属于阻尼复合材料技术领域,具体涉及一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和应用。
背景技术
本发明背景技术中公开的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
嵌入式共固化大阻尼复合材料具有优良的静力学性能和动力学性能,尤其是高阻尼性能,正是其这些优良的特性使其在航空、航天等高科技领域具有广泛的应用前景。电磁波吸收材料主要有石墨烯、石墨、炭黑、铁磁性材料等,电磁吸波材料结构主要有涂层形和结构形。包括尖劈形、单层平板型、双层或多层平板形。所以电磁吸波材料在实际应用过程中一般只具有电磁吸波特性,而不具有承受载荷的能力,更遑论兼顾其他优良的动力学性能和静力学性能。
发明内容
为兼具现有嵌入式共固化大阻尼复合材料和电磁吸波材料各自优良的材料特性。本发明旨在提供一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和应用。本发明实现了嵌入式共固化高阻尼复合材料的电磁吸波功能,该结构在满足吸波性能要求的前提下也充分发挥了粘弹性阻尼层的阻尼性能,为实现超高速运行的空间运载器、陆地航行器等设备的电磁隐身奠定了基础。
本发明第一目的:提供一种嵌入式共固化大阻尼电磁吸波复合材料。
本发明第二目的:提供一种嵌入式共固化大阻尼电磁吸波复合材料的制备方法。
本发明第三目的:提供所述嵌入式共固化大阻尼电磁吸波复合材料及其制备方法的应用。
为实现上述发明目的,本发明公开了下述技术方案:
首先,本发明公开一种嵌入式共固化大阻尼电磁吸波复合材料,其结构由多层电磁吸波预浸料层与多层电磁吸波阻尼层交错叠合而成,所述电磁吸波预浸料层由纤维布、微纳米电磁吸波材料和树脂组成,其中,微纳米电磁吸波材料分布在树脂中,树脂分布在纤维布中,且电磁吸波预浸料层中的微纳米电磁吸波材料的含量按电磁吸波预浸料层的排序梯度递增或递减;所述电磁吸波阻尼层由粘弹性阻尼材料和微纳米电磁吸波材料混合而成,且电磁吸波阻尼层中的微纳米电磁吸波材料的含量按电磁吸波阻尼层的排序依次序梯度递增或递减;所述相邻的电磁吸波预浸料层和电磁吸波阻尼层中的微纳米电磁吸波材料的含量设计为相同。
作为进一步的技术方案,所述微纳米电磁吸波材料包括Fe3O4粉末和La2O3粉末等。该所述电磁吸波材料的选择标准应满足以下几个条件:(1)选择电磁波吸收性能较高的微纳米材料;(2)要易于添加在粘弹性阻尼材料和树脂溶液中,并且在溶液中有较好的弥散性;(3)所选择的微纳米吸波材料在硫化温度下不会与电磁吸波阻尼层组分中的粘弹性阻尼材料发生反应,且不会改变粘弹性阻尼材料的硫化温度。
作为进一步的技术方案,所述树脂包括环氧树脂等;所述纤维布包括E玻璃纤维布等。
作为进一步的技术方案,所述电磁吸波预浸料层也可以由多层电磁吸波预浸料层叠合而成。
作为进一步的技术方案,所述粘弹性阻尼材料包括以下组分:N220S、N220CB、WCB、PEG4000、ZnO、SA、MB、DM、M、TT、BZ、PX、ZDC、PZ和S,需要说明的是,所述阻尼材料中各组分的比例可以根据需要进行配置,且粘弹性阻尼材料的制备方法也可采用现有制备方法。
需要说明的是,所述电磁吸波预浸料层中微纳米电磁吸波材料的添加量可根据嵌入式共固化高阻尼吸波复合材料板的电磁吸波性能要求和力学性能要求来设计,主要依据是吸波性能以及动力学和静力学性能的要求来设计电磁吸波预浸料层以及电磁吸波阻尼层的相互位置关系、铺层厚度以及微纳米电磁吸波材料的添加质量比,从而使嵌入式共固化高阻尼吸波复合材料兼具良好的吸波性能以及优良的动力学性能和静力学性能;因此,可以理解地,本领域技术人员可根据需要进行设计,本发明对此不做限定。
本发明提出的嵌入式共固化大阻尼电磁吸波复合材料的特点之一是:将电磁吸波预浸料层与粘弹性电磁吸波阻尼层相互嵌合的多层设计结构,在保证嵌入式共固化大阻尼复合材料优良的阻尼性能以及其他静力学和动力学性能的基础上,兼具了良好的电磁吸波特性,并且大幅度地提高了电磁波的吸收频宽。
本发明提出的嵌入式共固化大阻尼电磁吸波复合材料的特点之二是:微纳米电磁吸波材料在电磁吸波预浸料层与电磁吸波阻尼层中的含量是梯度递增或递减的,从而形成梯度阻抗,这样的结构一方面满足了阻抗匹配也同时拓宽了电磁波的吸收带宽。
本发明提出的嵌入式共固化大阻尼电磁吸波复合材料的特点之三是:每相邻电磁吸波预浸料层与电磁吸波阻尼层中微纳米电磁吸波材料的含量相同(实际中由于配制中误差的原因,可能更多地是含量相近),使其在一定程度上具有较好的阻抗匹配性,在空间层面上形成了梯度阻抗,减少了在分界面处的反射损失,提高了电磁波的吸收效率。
其次,本发明公开一种嵌入式共固化大阻尼电磁吸波复合材料的制备方法,包括如下步骤:
(1)电磁吸波预浸料层的制备:采用溶液法将树脂溶于低沸点溶剂形成树脂溶液,然后在该树脂溶液中加入微纳米电磁吸波材料,并利用超声分散技术将电磁吸波材料均匀地分散在树脂溶液中,并将该树脂溶液浸润在纤维布上,烘干后形成电磁吸波预浸料层;
(2)电磁吸波阻尼材料的制备:根据电磁吸波阻尼材料的组分质量比进行材料配制,并通过密炼机反复密炼,使各组分均匀混合在一起,得到粘弹性的电磁吸波阻尼材料;
(3)电磁吸波阻尼材料的硫化性能测试:硫化测试主要验证加入的电磁吸波剂对步骤(2)制备的电磁吸波阻尼材料的硫化曲线的影响,验证电磁吸波粘弹性阻尼材料的硫化温度、时间与树脂的固化温度、时间是否同步一致性,符合要求后进入下一工序;
(4)电磁吸波预浸料层和电磁吸波阻尼材料的复合:利用有机溶剂把步骤(3)密炼好的电磁吸波阻尼材料溶解为溶液,通过刷涂或喷涂法把电磁吸波阻尼胶浆刷涂或喷涂在步骤(1)制备好的电磁吸波预浸料层上,干燥后制得电磁吸波预浸料层和电磁吸波阻尼材料的复合层;
(5)预成型体的制备:按照预先设计好的铺层结构把步骤(4)制备好的复合层按照相互交错排列的方式叠合在一起,得到预成型体,其中,所述电磁吸波预浸料层中的微纳米电磁吸波材料的含量按电磁吸波预浸料层的排序依次序梯度递增或递减,所述电磁吸波阻尼层中的微纳米电磁吸波材料的含量按电磁吸波阻尼层的排序依次序梯度递增或递减;所述相邻的电磁吸波预浸料层和电磁吸波阻尼层中的微纳米电磁吸波材料的含量相同;
(6)嵌入式共固化大阻尼电磁吸波复合材料的制备:将步骤(5)制备的预成型体按照设定的固化工艺曲线在真空条件下进行加热、加压,进行共固化工序,完成后即得。
作为进一步的技术方案,步骤(1)中,所述超声分散技术需要的超声分散设备主要由超声波发生器、超声援振系统、超声分散工具、分散容器等组成。
作为进一步的技术方案,步骤(1)中,所述低沸点溶剂包括:正丁醇、二甲苯、丙酮等。
作为进一步的技术方案,步骤(1)中,所述超声分散技术将电磁吸波材料均匀地分散在树脂溶液中的方法为:将树脂溶液和微纳米吸波材料混合后放置在分散容器中,超声发生器产生设定的高频声波,超声援振系统使超声发生器与共振系统组成同频率自动跟踪系统通过超声分散工具把能量传输到分散容器内,从而使树脂溶液和微纳米吸波材料能均匀混合在一起,即可。
作为进一步的技术方案,步骤(1)中,所述树脂溶液浸润在纤维布上的方法为:利用现有复合材料预浸料的溶液法制作工艺,收卷装置带动纤维布运动,纤维布通过浸胶槽使树脂与电磁吸波材料的混合溶液浸润在纤维布上,并在烘干箱中加热通风条件下使溶剂快速挥发,烘干加热后通过覆膜机进行覆膜,从而使树脂与电磁吸波材料均匀混合浸润在纤维布上形成电磁吸波预浸料。
作为进一步的技术方案,步骤(5)中,利用有机溶剂把密炼均匀的粘弹性电磁吸波阻尼材料溶解成胶浆然后利用喷涂、刷涂工艺将其刷涂或喷涂在步骤(1)制备的电磁吸波预浸料层上,并在通风环境下让溶剂挥发掉,这时电磁吸波阻尼材料均匀附着在预浸料上形成电磁吸波阻尼层,为了避免影响层间力学结合性能,同时也避免对材料的电磁吸波性能产生影响,要确保有机溶剂完全挥发。待有机溶剂挥发完成后,按照预先设计好的铺层结构把制备好的电磁吸波预浸料层与电磁吸波阻尼材料层铺设好,形成嵌入式共固化电磁吸波阻尼复合材料预成型体,将该预成型体放入热压罐中按照固化工艺曲线进行共固化加工。
本发明制备方法的特点之一是:结合现有溶液法制备预浸料工艺,电磁吸波预浸料要把树脂溶于低沸点溶剂形成树脂溶液,在溶液中加入定量(设计好的质量)的微纳米电磁吸波材料添加剂,因为溶液的黏度相对比较高,流动性比较低,采用常规振动搅拌的方法很难保证电磁吸波材料能均匀地弥散在树脂溶液中,所以本发明探索使用超声分散使电磁吸波材料均匀地分散在树脂溶液中保证了材料的电磁吸波性能。
本发明制备方法的特点之二是:根据预先设计好的粘弹性电磁吸波阻尼材料的组分及其比例配制吸波阻尼材料,通过密炼机反复密炼,待其各组分混合均匀,避免因电磁吸波材料弥散的不均匀对硫化性能和电磁吸波性能产生影响;粘弹性阻尼材料是根据树脂的固化温度曲线调整其各组分的质量比,使其硫化温度、时间与树脂的固化温度、时间保持一致,在混入电磁吸波材料后需要对阻尼材料进一步测试其硫化曲线,观察电磁吸波材料的加入对其硫化温度的影响。密炼完成后,取炼制好的粘弹性电磁吸波阻尼材料放在硫化仪上进行硫化测试,观察硫化温度、时间与树脂的固化温度、时间是否一致,确保电磁吸波材料添加剂对粘弹性阻尼材料的硫化性能不会产生不良影响,如果不一致重新调配吸波阻尼材料的组分,重新密炼,直到阻尼材料硫化温度和时间与环氧树脂的固化温度与时间同步一致。
最后,本发明公开所述嵌入式共固化大阻尼电磁吸波复合材料及其制备方法在超高速运行的空间运载器、陆地航行器等设备中的应用。
与现有技术相比,本发明取得了以下有益效果:本发明创新性地设计了一种嵌入式共固化大阻尼电磁吸波复合材料结构,使其兼具优良的阻尼性能和电磁吸波性能,并拥有优良的动力学和静力学性能。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1的嵌入式共固化大阻尼电磁吸波复合材料的结构示意图。
图2为本发明实施例2的电磁吸波预浸料层的制备工序示意图。
图3为本发明实施例2的电磁吸波阻尼材料的硫化性能曲线。
图4为本发明实施例2的嵌入式共固化大阻尼电磁吸波复合材料的共固化工艺曲线图。
图5为本发明实施例2制备的嵌入式共固化大阻尼电磁吸波复合材料效果图。
图6为本发明实施例2和对比例制备的嵌入式共固化大阻尼电磁吸波复合材料电磁吸波性能曲线图。
图7本发明实施例2和对比例制备的嵌入式共固化大阻尼电磁吸波复合材料层间剪切曲线图。
上述附图中标记分别代表:1-电磁吸波预浸料层,2-电磁吸波阻尼层。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如前文所述,所以电磁吸波材料在实际应用过程中一般只具有电磁吸波特性,而不具有承受载荷的能力,更遑论兼顾其他优良的动力学性能和静力学性能。因此,本发明提出一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法;现结合附图1至图7和具体实施方式对本发明进一步进行说明。
实施例1
一种嵌入式共固化大阻尼电磁吸波复合材料,参考图1,其结构由多层电磁吸波预浸料层1与多层电磁吸波阻尼层2交错叠合而成,所述电磁吸波预浸料层1由纤维布、微纳米电磁吸波材料和树脂组成,其中,微纳米电磁吸波材料分布在树脂中,树脂分布在纤维布中,且电磁吸波预浸料层1中的微纳米电磁吸波材料的含量按电磁吸波预浸料层1的排序依次序(从下到上)梯度递增;所述电磁吸波阻尼层2由粘弹性阻尼材料和微纳米电磁吸波材料混合而成,且电磁吸波阻尼层2中的微纳米电磁吸波材料的含量按电磁吸波阻尼层2的排序依次序(从下到上)梯度递增;所述相邻的电磁吸波预浸料层1和电磁吸波阻尼层2中的微纳米电磁吸波材料的含量相同(实际中由于配制中误差的原因,可能更多地是含量相近)。
微纳米电磁吸波材料在电磁吸波预浸料层与电磁吸波阻尼层中的含量逐层递增,可以在空间层面上形成梯度阻抗,减少电磁波在分界面处的反射损失,提高了电磁波的吸收效率,电磁吸波预浸料层与粘弹性电磁吸波阻尼层相互嵌合的多层设计结构,在保证嵌入式共固化大阻尼复合材料优良的阻尼性能以及其他静力学和动力学性能的基础上,兼具良好的电磁吸波特性,并且大幅度提高了电磁波的吸收频宽。
实施例2
实施例1所述的嵌入式共固化大阻尼电磁吸波复合材料的制备方法,包括如下步骤:
(1)根据电磁波传输理论结合复合材料的可设计性以及多层铺设的特性,设计嵌入式共固化高阻尼电磁吸波复合材料结构,如图1所示,“6+5”式结构的嵌入式共固化大阻尼电磁吸波复合材料,是由6层电磁吸波预浸料层,每层的预浸料厚度约为0.4mm(由两层E玻纤维布环氧树脂电磁吸波预浸料铺设而成,每层厚度为0.2mm),5层电磁吸波阻尼层,每层厚度约为0.1mm,复合材料板的尺寸为200mm×200mm。
(2)微纳米电磁吸波材料的选择:选择粒径为100nm的Fe3O4粉末和100nm的La2O3粉末为电磁吸波材料,首先纳米Fe3O4粉末和La2O3粉末具有良好的电磁波吸收性能,其粒径为纳米级别,易于添加在粘弹性阻尼材料和树脂溶液中,并且在溶液中有较好的弥散性;
(3)在选择好电磁吸波材料后,根据电磁吸波性能要求以及结合阻尼材料力学特性计算出每层电磁吸波预浸料层和电磁吸波阻尼层的相关组分材料质量比,相关材料组分质量比如表1所示,其中,电磁吸波预浸料层中微纳米电磁吸波材料的含量按照表1中含量进行添加,确保相邻的电磁吸波预浸料层1和电磁吸波阻尼层2中的微纳米电磁吸波材料的设计含量相近。该组分配比既保证粘弹性阻尼材料优良的阻尼性能,也使阻尼材料具有了电磁吸波特性。
(4)电磁吸波预浸料的制备:先把环氧树脂溶于正丁醇中形成环氧树脂溶液,在该溶液中加入纳米Fe3O4粉末和La2O3粉末得到混合液,将该混合液体放置在分散容器中,超声发生器产生设定频率为15KHz的高频声波,超声援振系统使超声发生器与共振系统组成同频率自动跟踪系统通过超声分散工具(超声工具头和振动子)把能量传输到分散容器内,从而将环氧树脂溶液、Fe3O4粉末和La2O3粉末最大程度地均匀混合在一起;
(5)结合现有复合材料预浸料制备工艺,参考图2,收卷装置和纱架带动E玻璃纤维布的移动,纤维布通过浸胶槽,浸胶槽中为环氧树脂溶液和纳米Fe3O4粉末与La2O3粉末混合溶液,从而使环氧树脂溶液、纳米Fe3O4粉末与La2O3粉末混合溶液浸润在E玻璃纤维布上,并在通风烘干箱中加热烘干使树脂溶剂挥发,通过覆膜机覆膜形成E玻纤环氧树脂电磁吸波预浸料(其中,树脂+纳米颗粒的质量分数为60%;E玻纤环氧树脂质量分数为40%);
(6)电磁吸波阻尼材料的制备以及粘弹性电磁吸波阻尼材料的硫化性能测试:如表1所示,根据预先设计好的粘弹性电磁吸波阻尼材料的质量比配制吸波阻尼材料,通过密炼机反复密炼,其各组分混合均匀,避免因电磁吸波材料弥散的不均匀对硫化性能和电磁吸波性能产生不良影响,密炼完成后,把炼制好的粘弹性电磁吸波阻尼材料放在硫化仪上进行硫化测试,如图3所示,得到电磁吸波阻尼材料的硫化曲线,观察硫化温度和时间与环氧树脂的固化温度和时间是否一致,确保阻尼材料硫化温度和时间与环氧树脂的固化温度与时间同步一致,如果不一致重新调配吸波阻尼材料的组分,重新密炼,直到阻尼材料硫化温度和时间与环氧树脂的固化温度与时间同步一致;
(7)电磁吸波预浸料层和电磁吸波阻尼材料的复合:利用四氢呋喃溶剂把步骤(6)密炼均匀的粘弹性电磁吸波阻尼材料溶解成胶浆然后利用刷涂或喷涂工艺刷涂或喷涂在步骤(5)制备好的E玻纤环氧树脂电磁吸波预浸料上,并在通风环境下尽可能让溶剂完全挥发掉,电磁吸波阻尼材料就会均匀附着在预浸料上形成电磁吸波阻尼层,尽可能确保四氢呋喃完全挥发,避免影响层间力学结合性能,同时也避免对材料的电磁吸波性能产生影响;
(8)预成型体的制备及共固化:将步骤(7)中刷涂或喷涂后得到的阻尼材料层先晾干,再按照图1所示的结构进行铺设,铺设完成后把复合材料板放置在热压罐中在加压、抽真空的条件下按照图4所示的固化工艺曲线进行共固化加工得到如图5所示的嵌入式共固化大阻尼电磁吸波复合材料试件。
对比例1
一种嵌入式共固化大阻尼电磁吸波复合材料,同实施例2,区别在于:对比例1中电磁吸波预浸料层与电磁吸波阻尼层中不含有微纳米电磁吸波材料。
表1电磁吸波阻尼层的组分及含量(单位:g)
Figure BDA0002076988020000121
性能测试:
(1)对实施例2和对比例制备的嵌入式共固化大阻尼电磁吸波复合材料的电磁吸波特性进行测试,结果如图6所示,图中,曲线1#代表对比例1,曲线2#代表实施例2。从图6可以看出:采用本发明提出方法的实施例2制备的嵌入式共固化大阻尼电磁吸波复合材料具有良好的电磁吸波性能。而对比例制备的复合材料则未表现出电磁吸波性能。
(1)对实施例2和对比例1制备的嵌入式共固化大阻尼电磁吸波复合材料的板层间进行剪切试验,结果如图7所示,图中,曲线1#代表对比例1,曲线2#代表实施例2。从图7可以看出:采用本发明提出的方法的实施例2的复合材料的层间剪切性能相对于对比例有了显著提升,研究后发现,主要原因在于纳米电磁吸波粉末提高了阻尼材料在硫化过程中的交联密度,加强了纳米粉末粒子与阻尼材料大分子链的结合,在空间上形成了三维网状结构,纳米电磁吸波粉末为网状结构节点,由于电磁吸波粉末添加剂与粘弹性阻尼材料内摩擦力的存在,增强了阻尼材料传递和分散应力的特性,从而增强了试件的层间剪切应力。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种嵌入式共固化大阻尼电磁吸波复合材料,其特征在于,所述复合材料的结构由多层电磁吸波预浸料层与多层电磁吸波阻尼层交错叠合而成,所述电磁吸波预浸料层由纤维布、微纳米电磁吸波材料和树脂组成,其中,微纳米电磁吸波材料分布在树脂中,树脂分布在纤维布中,且电磁吸波预浸料层中的微纳米电磁吸波材料的含量按电磁吸波预浸料层的排序依次序梯度递增或递减;所述电磁吸波阻尼层由粘弹性阻尼材料和微纳米电磁吸波材料混合而成,且电磁吸波阻尼层中的微纳米电磁吸波材料的含量按电磁吸波阻尼层的排序依次序梯度递增或递减;所述相邻的电磁吸波预浸料层和电磁吸波阻尼层中的微纳米电磁吸波材料的含量设计为相同;
其中,所述电磁吸波复合材料由6层电磁吸波预浸料层和5层电磁吸波阻尼层叠合而成;
所述电磁吸波阻尼层每层分别包括以下含量的粘弹性阻尼材料组分:N220S 100份、N220CB 4份、WCB 5份、PEG4000 0.6份、ZnO 1份、SA 0.2份、MB 0.3份、DM 0.3份、M 0.3份、TT 0.3份、BZ 0.3份、PX 0.3份、ZDC 0.3份、PZ 0.3份和S 0.4份;
所述微纳米电磁吸波材料包括Fe3O4粉末和La2O3粉末;所述Fe3O4粉末按照5层电磁吸波阻尼层的排序依次序为10份、11份、12份、13份、14份;所述La2O3粉末按照5层电磁吸波阻尼层的排序依次序为2份、2.2份、2.4份、2.6份、2.8份;所述树脂为环氧树脂;所述纤维布为E玻璃纤维布;
以上份数均为质量份数。
2.如权利要求1所述的嵌入式共固化大阻尼电磁吸波复合材料的制备方法,其特征在于,包括如下步骤:
(1)电磁吸波预浸料层的制备:采用溶液法将树脂溶于低沸点溶剂形成树脂溶液,然后在该树脂溶液中加入微纳米电磁吸波材料,并利用超声分散技术将电磁吸波材料均匀地分散在树脂溶液中,并将该树脂溶液浸润在纤维布上,烘干后形成电磁吸波预浸料层;
(2)电磁吸波阻尼材料的制备:根据电磁吸波阻尼材料的组分质量比进行材料配制,并通过密炼机反复密炼,使各组分均匀混合在一起,得到粘弹性的电磁吸波阻尼材料;
(3)电磁吸波阻尼材料的硫化性能测试:硫化测试主要验证加入的电磁吸波剂对步骤(2)制备的电磁吸波阻尼材料的硫化曲线的影响,验证电磁吸波粘弹性阻尼材料的硫化温度、时间与树脂的固化温度、时间是否同步一致性,符合要求后进入下一工序;
(4)电磁吸波预浸料层和电磁吸波阻尼材料的复合:利用有机溶剂把步骤(3)密炼好的电磁吸波阻尼材料溶解为溶液,通过刷涂或喷涂法把电磁吸波阻尼胶浆刷涂或喷涂在步骤(1)制备好的电磁吸波预浸料层上,干燥后制得电磁吸波预浸料层和电磁吸波阻尼层的复合层;
(5)预成型体的制备:按照预先设计好的铺层结构把步骤(4)制备好的复合层按照相互交错排列的方式叠合在一起,得到预成型体,其中,所述电磁吸波预浸料层中的微纳米电磁吸波材料的含量按电磁吸波预浸料层的排序依次序梯度递增或递减,所述电磁吸波阻尼层中的微纳米电磁吸波材料的含量按电磁吸波阻尼层的排序依次序梯度递增或递减;所述相邻的电磁吸波预浸料层和电磁吸波阻尼层中的微纳米电磁吸波材料的含量相同;
(6)嵌入式共固化大阻尼电磁吸波复合材料的制备:将步骤(5)制备的预成型体按照设定的固化工艺曲线在真空条件下进行加热、加压,进行共固化工序,完成后即得。
步骤(1)中,所述低沸点溶剂包括:正丁醇、二甲苯或丙酮。
3.如权利要求2所述的制备方法,其特征在于,步骤(1)中,所述超声分散技术需要的超声分散设备主要由超声波发生器、超声援振系统、超声分散工具、分散容器组成。
4.如权利要求3所述的制备方法,其特征在于,步骤(1)中,所述超声分散技术将电磁吸波材料均匀地分散在树脂溶液中的方法为:将树脂溶液和微纳米吸波材料混合后放置在分散容器中,超声发生器产生设定的高频声波,超声援振系统使超声发生器与共振系统组成同频率自动跟踪系统通过超声分散工具把能量传输到分散容器内,从而使树脂溶液和微纳米吸波材料能均匀混合在一起。
5.如权利要求3或4所述的制备方法,其特征在于,步骤(1)中,所述树脂溶液浸润在纤维布上的方法为:利用的复合材料预浸料的溶液法制作工艺如下:收卷装置带动纤维布运动,纤维布通过浸胶槽使树脂与电磁吸波材料的混合溶液浸润在纤维布上,并在烘干箱中加热通风条件下使溶剂快速挥发,烘干加热后通过覆膜机进行覆膜,从而使树脂与电磁吸波材料均匀混合浸润在纤维布上形成电磁吸波预浸料。
6.如权利要求1所述的嵌入式共固化大阻尼电磁吸波复合材料在超高速运行的空间运载器或陆地航行器中的应用。
CN201910457293.9A 2019-05-29 2019-05-29 一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和应用 Active CN110126299B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910457293.9A CN110126299B (zh) 2019-05-29 2019-05-29 一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和应用
US16/734,308 US11541627B2 (en) 2019-05-29 2020-01-04 Embedded co-cured composite material with large-damping and electromagnetic wave absorbing properties and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910457293.9A CN110126299B (zh) 2019-05-29 2019-05-29 一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110126299A CN110126299A (zh) 2019-08-16
CN110126299B true CN110126299B (zh) 2021-02-02

Family

ID=67582700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910457293.9A Active CN110126299B (zh) 2019-05-29 2019-05-29 一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和应用

Country Status (2)

Country Link
US (1) US11541627B2 (zh)
CN (1) CN110126299B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643147A (zh) * 2019-08-27 2020-01-03 武汉格罗夫氢能汽车有限公司 一种氢能汽车用微波固化预浸料、制备方法及其用途
CN113013635A (zh) * 2021-02-09 2021-06-22 北京大学 一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法
CN113316379B (zh) * 2021-05-26 2022-09-02 湖南工程学院 一种纳米复合结构吸波剂材料、制备方法及应用
CN113400736A (zh) * 2021-06-30 2021-09-17 航天特种材料及工艺技术研究所 一种多层吸波复合材料及其制备方法
CN114016182B (zh) * 2021-11-03 2023-02-03 哈尔滨工业大学 一种周期性纤维编织电磁波吸收材料的制备方法和应用
CN114771045A (zh) * 2022-05-18 2022-07-22 成都三洪高科科技有限公司 一种吸波复合材料碳纤维板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401346B (en) * 2003-05-07 2005-04-13 Oxford Magnet Tech A structural composite material for acoustic damping
US8796164B2 (en) * 2010-12-28 2014-08-05 Cytec Technology Corp. Multilayer and composition gradient structures with improved damping properties
JP2012051379A (ja) * 2011-11-25 2012-03-15 Sumitomo Bakelite Co Ltd 透明複合シート
CN102604239B (zh) * 2012-02-13 2013-11-06 青岛理工大学 嵌入式高温共固化大阻尼复合材料及其制备工艺
CN104015406B (zh) * 2014-06-11 2015-12-30 青岛理工大学 嵌入式共固化网格阻尼复合材料结构及其制作工艺
CN105101769A (zh) 2015-07-31 2015-11-25 武汉理工大学 一种嵌入式复合超材料吸波体
CN106058478A (zh) 2016-05-15 2016-10-26 武汉理工大学 一种高低频兼顾的可调谐宽带吸波复合超材料
CN107586436A (zh) * 2016-07-08 2018-01-16 洛阳尖端技术研究院 一种吸波预浸料及其制备方法
CN107283878A (zh) * 2017-07-26 2017-10-24 青岛理工大学 嵌入式共固化穿孔阻尼复合材料的模压法制作工艺
US10899930B2 (en) * 2017-11-21 2021-01-26 Viavi Solutions Inc. Asymmetric pigment
CN109054742B (zh) 2018-08-10 2021-05-11 西安工业大学 Fe-Co-RGO复合吸波材料及其制备方法
CN109776893B (zh) * 2019-01-21 2021-03-19 青岛理工大学 氨酚醛树脂基中温共固化的嵌入式大阻尼复合材料及其制备工艺

Also Published As

Publication number Publication date
US20200376798A1 (en) 2020-12-03
US11541627B2 (en) 2023-01-03
CN110126299A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN110126299B (zh) 一种嵌入式共固化大阻尼电磁吸波复合材料及其制备方法和应用
WO2022267289A1 (zh) 一种吸波复合材料及其制备方法
CN102189733B (zh) 层压复合物及其制造方法
US20200024795A1 (en) Fiber-reinforced composites, methods therefor, and articles comprising the same
CN102686383B (zh) 具有可调电阻率的纤维增强聚合物复合材料及其制备方法
WO2012124450A1 (ja) プリプレグ、プリプレグの製造方法および炭素繊維強化複合材料
TW201518085A (zh) 夾芯構造體、使用其之一體化成形品及該等之製造方法
CN104772962B (zh) 平流层浮空器蒙皮及其制备方法
CN106364025B (zh) 一种复合材料三明治夹层板及其生产方法
JP6210007B2 (ja) プリプレグおよびその製造方法、ならびに炭素繊維強化複合材料
CN114591645B (zh) 碳基吸波涂料、其制备方法和蜂窝夹层结构复合吸波材料
JP6672268B2 (ja) 多孔質ナノ複合材料及びその製造方法
Wiedemann et al. Adaptive, tolerant and efficient composite structures
CN110920158A (zh) 一种树脂柱增强宽频吸波/承载复合材料及其制备方法
Xiao et al. Constructing a two-layer oblique honeycomb sandwich structure by LCD 3D printing for efficient electromagnetic wave absorbing
CN106313761A (zh) 纳米改性减振阻尼蜂窝夹层板
Ma et al. Potentiality of MWCNT on 3D-printed bio-inspired spherical-roof cubic core under quasi-static loading
CN102390129B (zh) 一种泡沫夹层结构复合材料及其制备方法
Zhou et al. Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design
Studer et al. Local reinforcement of aerospace structures using co-curing RTM of metal foil hybrid composites
CN109080235B (zh) 一种低/负热膨胀复合材料2.5d多尺度预制体及其制备方法
CN112677602B (zh) 一种用于预浸料的增韧材料、高韧性复合材料及其制备方法
CN106739294A (zh) 热固性树脂超低密度层压材料及其制备方法
Yu et al. Comparison of two different methods for producing hollow macrospheres with carbon fiber reinforced composite skin used in syntactic foams
KR102510604B1 (ko) 레이더 흡수 복합재료 구조체

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant