CN110121806B - 燃料电池的制备方法及燃料电池 - Google Patents

燃料电池的制备方法及燃料电池 Download PDF

Info

Publication number
CN110121806B
CN110121806B CN201780060130.6A CN201780060130A CN110121806B CN 110121806 B CN110121806 B CN 110121806B CN 201780060130 A CN201780060130 A CN 201780060130A CN 110121806 B CN110121806 B CN 110121806B
Authority
CN
China
Prior art keywords
solid electrolyte
electrolyte layer
electrode
bonding
electrode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780060130.6A
Other languages
English (en)
Other versions
CN110121806A (zh
Inventor
三原辉仪
桥本富仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority claimed from PCT/JP2017/040859 external-priority patent/WO2018096971A1/ja
Publication of CN110121806A publication Critical patent/CN110121806A/zh
Application granted granted Critical
Publication of CN110121806B publication Critical patent/CN110121806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

提供一种对于伴随着启动及停止的热循环的反复具有高的耐久性的燃料电池的制备方法及燃料电池。具备一个以上的固体电解质层及多个电极的燃料电池的制备方法包括:层叠工序(步骤S1),将固体电解质层和电极层叠而形成在固体电解质层的两面配置有电极的层叠体;第一电压施加工序(步骤S2),夹着固体电解质层而相向的电极间施加第一极性的电压;以及第二电压施加工序(步骤S3),夹着固体电解质层而相向的电极间施加与第一极性相反的第二极性的电压。

Description

燃料电池的制备方法及燃料电池
技术领域
本发明涉及燃料电池的制备方法及燃料电池。
背景技术
以往,作为燃料电池,已知的有利用固体电解质的固体氧化物燃料电池(SolidOxide Fuel Cell,以下,也称之为“SOFC”或“燃料电池”)。在固体氧化物燃料电池(SOFC)中,作为发电单元的燃料电池(以下,也称之为“电池单元”)具有在固体电解质层的两面设置有电极的结构。此外,为了获得所期望的电压或电流,还使用层叠了多个电池单元的燃料电池堆(以下,也称之为“电池堆”)。
作为用于形成上述固体氧化物燃料电池(SOFC)中的固体电解质层的方法,使用湿法,其中将固体电解质材料的浆料涂敷于电极的表面并进行干燥之后,在高温下进行烧成(例如,参照专利文献1)。
(现有技术文献)
(专利文献)
专利文献:日本特开2013-65518号公报
发明内容
(发明所要解决的问题)
可是,固体氧化物燃料电池(SOFC)会受到由从启动至停止为止的期间从常温(例如,室温)上升至发电时的温度(例如,750℃~1000℃)并重新降至常温的热循环所引起的大的热应力(heat stress)。
然而,在包括专利文献1在内的利用湿法所形成的固体氧化物燃料电池(SOFC)中,因上述热循环的反复而在固体电解质层中产生龟裂(crack)或在固体电解质层与电极之间的界面产生剥离,因此耐久性方面存在问题。
本发明是着眼于上述问题而提出的,其目的在于,提供一种对于伴随着启动及停止的热循环的反复具有高的耐久性的燃料电池的制备方法及燃料电池。
(解决问题所采用的措施)
为了解决上述问题,第一观点的燃料电池的制备方法为制备包括一个以上的固体电解质层及多个电极的燃料电池的方法,其包括:层叠工序,将上述固体电解质层和上述电极层叠而形成在上述固体电解质层的两面配置有上述电极的层叠体;第一电压施加工序,在夹着上述固体电解质层而相向的电极之间施加第一极性的电压;以及第二电压施加工序,在夹着上述固体电解质层而相向的电极之间施加与上述第一极性相反的第二极性的电压。
(发明的效果)
根据本发明,可获得对于伴随着启动及停止的热循环的反复具有高的耐久性的燃料电池。
附图说明
图1为本发明的燃料电池的制备方法的流程图。
图2为用于说明利用阳极接合法来接合固体电解质层与电极而形成电池单元的方法的图。
图3为示出具有支撑体及电极层的电极的图。
图4A为示出具有冲孔金属板的支撑体的图。
图4B为示出仅在固体电解质层与电极层相接触的部分具有冲孔金属板的支撑体的图。
图4C为示出开口部中填充有多孔质材料的冲孔金属板的图。
图5为示出接合体(电池单元)的图。
图6为示出利用了根据本发明而获得的接合体(电池单元)的燃料电池的结构例的图。
图7A为用于说明本发明中对多个层叠体进行阳极接合的方法的图。
图7B为用于说明本发明中对多个层叠体进行阳极接合的方法的图。
图8为用于说明具备截面形状为矩形波状的电极的电池堆的图。
图9为用于说明具备截面形状为矩形波状的电极的另一电池堆的图。
图10A为用于说明相向的电极的层叠的形态的图。
图10B为用于说明相向的电极的层叠的形态的图。
图11为用于说明具备截面形状为三角波状的电极的电池堆的图。
图12为用于说明具备截面形状为三角波状的电极的另一电池堆的图。
图13A为用于说明相向的电极的层叠的形态的图。
图13B为用于说明相向的电极的层叠的形态的图。
图14为用于说明具备接合有两个电极的电极体的电池堆的图。
图15为用于说明设置于电极中的四个气体流通口的图。
图16A为隔板的结构的立体图。
图16B为隔板的结构的剖视图。
图17A为用于说明两个电极之间的隔板的配置的图。
图17B为用于说明两个电极之间的隔板的配置的图。
图17C为图17A的B-B剖视图。
图17D为图17A的C-C剖视图。
图18为用于说明气体流路中的气体的流动的图。
图19A为用于说明垫片的图。
图19B为用于说明图19A的垫片的配置的图。
图20A为用于说明抑制垫片的贯通孔的放大的方法的图。
图20B为用于说明抑制垫片的贯通孔的放大的另一种方法的图。
图21A为示出气体供给配管的图。
图21B为示出气体供给配管的图。
图22为示出插入贯通有气体供给配管的电池堆的图。
图23为示出用端板固定的电池堆的图。
图24为示出电池堆中的气体的流动的图。
图25为用于说明利用阴极接合法来结合固体电解质层与电极而形成电池单元的方法的图。
图26为示出在表面具有氧化物层的冲孔金属板的图。
图27为用于说明利用阴极接合法来形成的、与图8中所示的电池堆30相同的电池堆130的图。
图28为用于说明利用阴极接合法来形成的、与图27中所示的电池堆130相同的电池堆140的图。
图29为用于说明利用阴极接合法来形成的、与图11中所示的电池堆50相同的电池堆150的图。
图30为用于说明利用阴极接合法来形成的、与图29中所示的电池堆150相同的电池堆160的图。
图31为用于说明利用阴极接合法来形成的、与图14中所示的电池堆70相同的电池堆170的图。
图32为示出表面形成有氧化物层的电极体的图。
图33为示出借助于垫片来层叠固体电解质层和具有氧化物层的电极体的状态的图。
图34为示出在图33中所示的层叠体中插入贯通了气体供给配管而获得的电池堆的图。
具体实施方式
(燃料电池的制备方法)
以下,参照附图,对根据本发明的燃料电池的制备方法进行说明。图1为示出本发明的燃料电池的制备方法的流程图。本发明的燃料电池的制备方法为制备包括一个以上的固体电解质层及多个电极的燃料电池的方法,其包括:层叠工序,层叠固体电解质层和电极而形成在固体电解质层的两面配置有电极的层叠体(步骤S1);第一电压施加工序,在夹着固体电解质层而相向的电极之间施加第一极性的电压(步骤S2);以及第二电压施加工序,在夹着固体电解质层而相向的电极之间施加与第一极性相反的第二极性的电压(步骤S3)。
本发明的特征在于,利用阳极接合法来接合固体电解质层和电极而制备电池单元或电池堆。在阳极接合法中,将接合对象的材料接触,并在进行加热的同时以使夹着固体电解质层的一对电极中的、欲要形成接合的电极为正(阳极)并使另一个为负(负极)的方式施加直流电压。由此,氧离子在固体电解质层中朝向阳极传导,并且在阳极侧的材料界面产生因静电引力所引起的强的粘着力。可通过使移动至该界面的氧离子与界面的两物质共价键结合,来能够牢固地接合形成材料。以下,以形成电池单元的情况为例子来说明本发明的各工序。
首先,在步骤S1中,进行层叠固体电解质层和电极而形成在固体电解质层的两面配置有电极的层叠体的层叠工序。具体地,如图2所示,在与电压施加装置V相连接的两个电极板P之间配置以电极3、固体电解质层1及电极2的顺序层叠的层叠体。
在本说明书中,将固体电解质层的两面配置电极并固体电解质层与电极相接合之前的结构体称之为“层叠体”,将固体电解质层与电极相接合之后的结构体称之为“接合体”或“电池单元”。
作为固体电解质层1,可优选地使用气体不透过但氧离子可透过的固体电解质层。作为固体电解质层1的材料,可使用固溶了例如氧化钇(Y2O3)、氧化钕(Nd2O3)、氧化钐(Sm2O3)、氧化钆(Gd2O3)、氧化钪(Sc2O3)等的稳定氧化锆(YSZ)。此外,还可使用如氧化钐参杂氧化铈(SDC)、氧化钇参杂氧化铈(YDC)、氧化钆参杂氧化铈(GDC)那样的铈固溶体、氧化铋(Bi2O3)、锶镁掺杂镓酸镧(La1-xSrxGa1-yMgyO3:LSGM)等。
此外,固体电解质层1的材料不限于如上所述的材料,还可使用其他公知的固体电解质材料。此外,这些材料可单独使用一种,也可多种组合而使用。
具有代表性地,上述固体电解质层1可使用通过将原料的粉末与有机粘合剂(binder)混合之后施加压力而使其薄薄地延伸并在高温炉中进行加压烧结的热压法来获得的固体电解质层。更加薄膜化的固体电解质层1可通过溶胶凝胶法来制备而成。
电极2、电极3中的一个作为燃料电池的空气极来发挥作用,而另一个作为燃料极来发挥作用。在电池堆中,为了增加输出需要使电池单元薄板化,但为此需要提高电池单元的机械强度。于是,如图3所示,优选地,电极2、电极3构成为具有成为基材的支撑体4和该支撑体4上的电极层5的结构。
支撑体4需要收集电极层5的电子且将燃料气体或氧化剂气体提供给固体电解质层1。作为这种支撑体4,可使用由导电性材料形成的无纺布或多孔质材料、对单体金属或合金等设置了多个贯通孔的冲孔金属板等。
其中,如图4A所示,优选地,支撑体4具有冲孔金属板6。冲孔金属板6为通过利用金属模具的冲压加工来对金属板形成多个贯通孔的部件。冲孔金属板6可通过减小贯通孔的直径来增加密度,从而增加电极与燃料气体或氧化剂气体之间的接触面积而使电池单元或电池堆的输出密度得以提高。
此外,如图4B所示,优选地,在支撑体4具有冲孔金属板6的情况下,为了将固体电解质层1有效地使用于发电,电极层5在与固体电解质层1相接触的部分具有冲孔金属板6。
在支撑体4具有冲孔金属板6的情况下,优选地,支撑体4的材料为热膨胀率与固体电解质材料的热膨胀率相近且可承受600℃以上的高温的氧化环境的材料。作为具有这种特性的材料,目前不锈钢(SUS)最为优选。
此外,作为电极层5的材料,可使用如利用阳极接合法来与固体电解质层1形成牢固的接合并且与包含于氧化剂气体(例如,空气)中的氧气反应而不会消失、在高温下扩散到固体电解质层1中而不会对氧气传导产生不利影响的材料。例如,可使用非晶硅(a-Si)、镍(Ni)等。由真空蒸镀法制造的a-Si为具有这种特性的材料且在机械强度方面也优异,除此之外,在阳极接合的温度(300℃~600℃)、通常运行时的温度(600℃~800℃)下显示出作为电极的良好的导电性,因此由真空蒸镀法制造的a-Si为合适的材料。此外,镍作为固体氧化物燃料电池(SOFC)的稳定的电极材料而被众所周知,并且作为抑制多层材料之间的高温环境下的合金反应的势垒金属(Barrier metal)也具有较高的实际成果,因此镍为合适的材料。
虽是大致的基准,在例如100mmΦ、固体电解质的厚度为10μm的电池的情况下,从处理(handling)的观点出发,支撑体4的厚度优选为50μm以上。此外,考虑导电电阻与热膨胀率之间的匹配,电极层5的厚度优选为0.1μm以上且1μm以下。
作为在支撑体4上形成上述电极层5的方法,在a-Si的情况下,可利用蒸镀或化学气相沉积(Chemical Vapor Deposition,CVD)法,在Ni的情况下,可利用化学镀法或真空蒸镀法。
此外,图4C所示,优选地,在上述冲孔金属板6的开口部6a中填充作为空气极以及燃料极来发挥作用的多孔质材料6b、6c。由此,保持氧化剂气体或燃料气体与固体电解质层1之间的良好的接触性,并且增加电极2、电极3与固体电解质层1之间的接触面积而可提高发电效率。
当电极2为空气极时,作为填充于开口部6a中的多孔质材料6b,可使用在氧化反应下不会变成非导体化的空气极用的公知的材料。作为这种材料,可例举(La,Sr)MnO3(LSM)或(La,Sr)CoO3(LSC)、(La,Sr)(Co,Fe)O3(LSCF)等。
上述多孔质材料6b的向开口部6a的填充可通过如下方法进行:在后述的步骤S2、S3中将电极2、电极3阳极接合于固体电解质层1之后,将例如填充材料的浆料涂敷于电极2的冲孔金属板6的表面并进行干燥之后,实施烧成处理。
此外,当电极3为燃料极时,作为填充于开口部6a的多孔质材料6c,可使用在还原反应下不会变成分解而成非导体化的燃料极用的公知的材料。作为这种材料,可例举Ni/YSZ金属陶瓷、Ru/YSZ金属陶瓷等。
上述多孔质材料6c的向开口部6a的填充可通过如下方法进行:在后述的步骤S2、S3中将电极2、电极3阳极接合于固体电解质层1之后,将例如填充材料的原料粉填充于电极3的冲孔金属板6的开口部6a之后,实施烧成处理。
此外,在图4C中,冲孔金属板6的开口部6a未被多孔质材料6b、6c完全填充,但是填充量可基于多孔质材料6b、6c的空隙率等来适当地设定。
接着,在步骤S2中,进行向夹着固体电解质层1而相向的电极2、电极3之间施加第一极性的电压的第一电压施加工序。例如,将电极2连接在电压施加装置V的正极侧,将电极3连接在负极侧,并且对固体电解质层1、电极2、电极3进行加热的同时向电极2与电极3之间施加直流电压,由此可对固体电解质层1与电极2进行接合。
施加于电极2与电极3之间的电压根据工作温度而具有最佳范围,因此根据固体电解质的材料而选择其最佳的范围。在温度或电压过低的情况下,固体电解质的氧离子传导电流变小,并且接合时间变长。另一方面,在温度高的情况下,接合时间变短,但接合之后的残余应力变大,因此从耐久性的观点来考虑这是不适合的。在电压过高的情况下,发生向接合部以外的放电而接合变得困难。典型地,在300℃以上且500℃以下的温度条件下选择50V以上且500V以下的电压范围内的最佳值为好。由此,更加牢固地结合固体电解质层1与电极2、电极3。
接着,说明向电极2与电极3之间施加电压的时间。在成为负极的电极3与固体电解质层1之间的接触面,空气中的氧气从负极接收电子而电离,从而成为氧离子。所生成的氧离子在固体电解质层1内移动,在电极2之间的界面处将电子向正极传递,从而与固体电解质层1及电极2的结构原子形成牢固的共价键结合。就这样,电极2与固体电解质层1化学接合。此时,在提供氧离子而电极2与固体电解质层1之间的接合形成面积扩大的期间,电流示出增加倾向。当接合几乎结束时,电流转变为减少。该电流值转变为减少的点电压的施加的停止为基准为好。由此,在接合面的整个面上牢固地接合固体电解质层1和电极2、电极3。
接着,在步骤S3中,进行向夹着固体电解质层1而相向的电极之间施加与第一极性相反的第二极性的电压的第二电压施加工序。例如,在上述第一电压施加工序中,在将电极2连接在电压施加装置V的正极侧且将电极3连接在负极侧而施加了电压的情况下,在保持这些连接的状态下,反转电压施加装置V的电压的极性而施加直流电压、或者以将电极2连接于电压施加装置V的负极侧且将电极3连接于正极侧的方式分别变更连接而施加直流电压。由此,对在第一电压施加工序中未被接合的固体电解质层1与电极3进行接合。
关于第二电压施加工序中的电压、电压施加时间、加热温度等的条件,除了施加的电压的极性之外可与第一电压施加工序相同。
这样,接合固体电解质层1与电极2、电极3而能够获得如图5所示的接合体(电池单元)10。
图6示出利用了根据本发明而所获得的接合体(电池单元)10的燃料电池的结构例。该图中所示的燃料电池100包括:接合体10、上腔室11及下腔室12。此外,上腔室11连接有氧化剂气体导入管13及氧化剂废气排气管14,并且由氧化剂气体导入管13、上腔室11、接合体10及氧化剂废气排气管14区划成氧化剂气体流路15。进而,下腔室12连接有燃料气体导入管16及燃料废气排气管17,并且由燃料气体导入管16、下腔室12、接合体10及燃料废气排气管17区划成燃料气体流路18。
利用这种燃料电池100,用未图示的燃烧器等对接合体10进行加热的同时从氧化剂气体导入管13导入空气等的氧化剂气体A,并且从燃料气体导入管16导入氢气等的燃料气体F。于是,在空气极2中,包含于氧化剂气体A中的氧气从未图示的外部回路接收电子而成为氧离子。所生成的氧离子穿过固体电解质层1而向燃料极3移动,并且与燃料气体F进行反应。此时,释放出电子而向外部回路提供。这样,进行发电。
以上,以燃料电池形成具备一层的固体电解质层的电池单元的情况作为示例来说明了本发明,但是本发明还可优选地适用于燃料电池具备多个固体电解质层的电池堆的形成。具体地,首先,如图7A所示,层叠多个在固体电解质层1的两面配置了电极2、电极3的层叠体(步骤S1)。
接着,例如,将所有的电极2连接在电压施加装置V的正极侧且将所有的电极3连接在负极侧,并对所有的固体电解质层1、电极2、电极3进行加热的同时,向电极2与电极3之间施加直流电压(步骤S2)。由此,所有的固体电解质层1与电极2得以接合。
接着,反转向电极2与电极3之间施加的电压的极性、或者将所有的电极2连接在电压施加装置V的负极侧且将所有的电极3连接在正极侧,并对所有的固体电解质层1、电极2、电极3进行加热的同时,向电极2与电极3之间施加直流电压(步骤S3)。由此,所有的固体电解质层1与电极3得以接合。
这样,在燃料电池形成多个固体电解质层、即形成电池堆的情况下,也能够通过两次的电压施加工序(阳极接合)来接合所有的固体电解质层1和电极2、电极3,从而获得如图7B所示的电池堆20。此外,在图7B的电池堆20中,接合体10相互分离而示出,但可利用未图示的各接合体之间的隔板(separator)而整体上构成为一体。
像这样,在燃料电池具备多个固体电解质层的情况下、即形成电池堆的情况下,也能够通过两次的电压施加工序(阳极接合)来接合所有的固体电解质层1和所有的电极2、电极3。
此外,对于燃料电池具备一层的固体电解质层的情况,在上述的说明中,在图2中所示的两个电极板P之间以电极3、固体电解质层1及电极2的顺序层叠配置,并在成为层叠体的状态下施加电压而获得接合体10。但是,在两个电极板P之间先仅配置电极3及固体电解质层1而进行接合之后,在固体电解质层1的上配置电极2而接合固体电解质层1和电极2,也能够通过两次的电压施加工序来获得接合体10。像这样形成接合体10的结构也包含在本发明中。
在本发明中,因通过低温法(300~600℃)来形成燃料电池,因此恢复至常温时,固体电解质层1、电极2、电极3所受到的残余应力可显著地减小。与暴露于所谓1000℃~1500℃的高温的烧成温度的以往的湿法相比,可将残余应力的大小抑制到20~60%。由此,可抑制使所谓的电极材料的蠕变(creep)、晶粒边界断裂的寿命劣化的机制(mechanism)的进程。因此,在如汽车用的燃料电池那样在反复进行启动及停止的苛刻条件下也可显著改善耐久性。
此外,根据本发明,与利用湿法来形成的情况相比,可提高固体电解质层1与电极2、电极3之间的紧贴性,其结果,可使电池的输出稳定。
进而,在本发明中,可省略在湿法中所进行的固体电解质材料的浆料的干燥工序及烧成工序,并且可通过两次的电压施加工序(阳极接合)来接合所有的固体电化质层与所有的电极,因此可缩短制备时间。
与此同时,根据本发明,可易于进行电池单元的薄板化,并且可提高电池堆的输出密度。
以上,基于阳极接合法,说明了可通过两次的电压施加工序来接合所有的固体电化质层与所有的电极的事情。本发明人进行了进一步的研究,其结果发现,在上述步骤S1中,在层叠固体电解质层及电极而形成在固体电解质层的两面配置了电极的层叠体时,在电极的表面具有氧化物层且通过氧化物层而在固体电解质层的两面配置电极并进行步骤S2及步骤S3的电压施加工序的话,在与不具有氧化物层的情况相反的表面形成接合。
具体地,在图2中,电极2及电极3在其表面不具有氧化物层的情况下,将电极2连接在电压施加装置V的正极侧且将电极3连接在负极侧,并对固体电解质层1、电极2、电极3进行加热的同时向电极2与电极3之间施加直流电压的话,则固体电解质层1与电极2得以接合。但是,如图25所示,电极2及电极3在其表面具有氧化物层2a、氧化物层3a的情况下,固体电解质层1与电极3通过氧化物层3a而得以接合。
上述现象在反转施加电压的极性的情况下也相同,电极2及电极3的表面不具有氧化物层时的固体电解质层1与电极3得以接合,与此相对,在电极2及电极3的表面具有氧化物层2a、氧化物层3a的情况下,固体电解质层1与电极2通过氧化物层2a而得以接合。
像这样,在电极2、电极3具有氧化物层2a、氧化物层3a的情况下,固体电解质层1与阴极侧的电极之间形成接合。认为这种接合形成的原因如下:向固体电解质层1与电极2、电极3之间施加电压的话,在固体电解质层(X-O)1与氧化物层(R-O)2、氧化物层(R-O)3之间会发生如下式(1)所示的还原反应。
X-O+R-O+2e→X-O-R+O2- (1)
根据上述还原反应,构成电极2的氧化物层(R-O)2a、电极3的氧化物层(R-O)3a的氧化物被还原,被还原的氧化物的材料(R)与固体电解质层(X-O)1之间形成键(X-O-R),从而固体电解质层1与电极2、电极3在抵接面处牢固地接合。另一方面,在上述还原反应中所生成的O2-离子在固体电解质层1中移动并移动到阳极侧而被排出。像这样,认为在阴极侧的电极中发生还原反应的结果,在固体电解质层1与电极2、电极3之间形成牢固的接合。
认为上述式(1)所表示的还原反应是与以往的阳极接合法中发生的电化学反应相对比的反应。即,认为在利用阳极接合法来接合固体电解质层(X-O)1与电极(M)2、电极(M)3的情况下,固体电解质层(X-O)1与电极(M)2、3之间会发生如下式(2)~(4)所示的氧化反应。
X-O+O2-+M→X-O2-M+2e (2)
O2-+M→M-O+2e (3)
X-O+O2-+M-O→X-O3-M+2e (4)
根据上述氧化反应,在固体电解质层(R-O)1与电极(M)2、电极(M)3的抵接面处,进入到氧空位的氧离子释放电子而重新与电极(M)2、电极(M)3以及固体电解质层(X-O)1形成牢固的键(X-O3-M),从而在抵接面处形成牢固的接合。
像这样,基于阴极中的还原反应的接合是与基于阳极中的氧化反应的以往的阳极接合相对比的且新颖的接合法,并相对于以往的阳极接合法被称之为“阴极接合法”。根据上述阴极接合法,可通过氧化物层2a、氧化物层3a而将固体电解质层1与表面具有氧化物层2a、氧化物层3a的电极2、电极3牢固地接合。
在阴极接合法中,除了在电极2、电极3的表面具有氧化物层2a、氧化物层3a以外,能够照样适用基于上述的阳极接合法的有关固体电解质层1或电极2、电极3的条件。以下,对设置于电极2a、3a的表面的氧化物层2a、氧化物层3a进行说明。
氧化物层2a、氧化物层3a可以为例如对电极2、电极3的表面进行热氧化处理而形成的热氧化膜、利用化学气相沉积(Chemical Vapor Deposition;CVD)法或物理气相沉积(Physical Vapor Deposition;PVD)法而在电极2、电极3的表面形成的氧化膜。此外,可使用形成于电极2、电极3的表面的自然氧化膜。
优选地,氧化物层2a、氧化物层3a具有电子传导性。由此,可对构成氧化物层2a、氧化物层3a的氧化物有效地进行还原。作为这种具有电子传导性的氧化物层2a、氧化物层3a,可由N型的氧化物半导体形成。即,在N型的氧化物半导体中,N型掺杂剂(dopant)的电子在低于本征温度的温度下激发到传导带中而具有电子传导性。于是,优选地,氧化物层2a、氧化物层3a由在接合时的温度下显示出电子传导性的N型的氧化物半导体构成。作为掺杂于这种N型中的氧化物半导体,可使用ZnO(氧化锌:ZincOxide)、ITO(氧化铟锡:Indium TinOxide)、TiO(氧化钛:Tin Oxide)等。
此外,即使在氧化物层2a、氧化物层3a为不具有电子传导性的绝缘膜的情况下,也可通过将氧化物层2a、氧化物层3a构成为电子可向其厚度方向穿过的程度的薄度,来利用隧道效应(tunnel effect)而使氧化物层2a、氧化物层3a具有电子传导性。这种情况下的氧化物层2a、氧化物层3a的具体厚度取决于施加电压、构成氧化物层2a、氧化物层3a的氧化物材料的特性,因此不可一概而定。但是,若电子穿过的有效隧道厚度为
Figure BDA0002010076330000111
左右,则电子可在其厚度方向上穿过。随着膜的电场变强,有效隧道厚度变薄,因此随着施加电压变高,隧道电流易于流动。即,当电压非常低时(1V左右),若绝缘体的厚度为
Figure BDA0002010076330000112
左右,则电流流动,但在
Figure BDA0002010076330000113
的情况下不流动。可是,随着电压升高,绝缘体的电场上升,发生所谓的电场协助隧穿(Fowler-Nordheim tunneling)的现象,并且电流在绝缘体中流动。这表明绝缘体的有效厚度相当于减少了
Figure BDA0002010076330000114
此外,当电极2、电极3具有如图4C中所示的冲孔金属板6时,如图26所示,氧化物层2a、氧化物层3a设置于至少与固体电解质层1相接触的电极材5的表面(即,与固体电解质层1的抵接面)。
由此,当电极2、电极3在其表面具有氧化物层2a、氧化物层3a时,可根据如图1中所示的流程图进行两次的电压施加来使所有的固体电解质层1与电极2、电极3接合。
此外,在形成如图7A及图7B中所示的燃料电池具备多个固体电解质层的电池堆的情况下,除了在电极2、电极3的表面形成氧化物层以外,也可通过相同的工序、即通过两次的电压施加来接合所有的固体电解质层1与电极2、电极3。
(燃料电池)
本发明的燃料电池为通过上述的本发明的燃料电池的制备方法来制备的燃料电池。如上所述,本发明的燃料电池的制备方法的特征在于,利用阳极接合法或阴极接合法来接合固体电解质层与电极而制备电池单元或电池堆。阳极接合法及阴极接合法的工序与湿法相比是低温的工序,因此所得到的本发明的燃料电池对伴随着启动及停止的热循环的反复具有高的耐久性。
实施例1
以下,关于电池堆的结构例举若干个具体例来进行说明,但本发明不限定于此。
首先,关于利用阳极接合法来制备电池堆的方法来进行说明。如图8中所示的电池堆30包括固体电解质层21及电极22。电极22具有平板部23、平板部24及立板部25,由此电极22的截面形状构成为矩形波状。平板部23、平板部24由冲孔金属板构成,平板部23作为空气极来发挥作用,平板部24作为燃料极来发挥作用,并有助于发电。此外,立板部25作为隔开固体电解质层21的隔板来发挥作用。并且,固体电解质层21及配置于其表面的平板部23、平板部24构成接合体(电池单元),该电池单元在层叠方向上串联连接而构成电池堆30。
将这种矩形波状的电极22与固体电解质层21层叠而在固体电解质层21与电极22之间形成氧化剂气体或燃料气体的流路。在如图8中所示的电池堆30中,在夹着固体电解质层21而相向的电极22之间这些截面形状为矩形波的朝向相互平行,并且相位对齐。并且,氧化剂气体流路26及燃料气体流路27在水平方向上交替区划。
如图8中所示的电池堆30以如下方式获得。首先,将固体电解质层21及电极22以如图8中所示的方式层叠来形成多个层叠体。接着,对整体进行加热的同时在夹着固体电解质层21而相向的电极22之间施加第一极性的电压。接着,施加与第一极性相反的极性的第二电压。就这样,固体电解质层21与电极22得以阳极接合,并整体成一体而获得电池堆30。
在这里,对电池堆30的动作进行说明。首先,在氧化剂气体流路26中流通空气等的氧化剂气体的同时,在燃料气体流路27中流通氢气等的燃料气体。利用燃烧器等而对电池堆30进行加热。于是,在平板部(空气层)23中,包含于氧化剂气体中的氧气从未图示的外部回路接收电子而成为氧离子。所生成的氧离子穿过固体电解质层21而向斜上方的燃料气体流路27移动,并与燃料气体进行反应。此时,电子被释放并提供至外部回路。就这样,进行发电。
图9为示出具有与图8相同的结构的电池堆40。此外,在图9中,在与图8相同的结构标注相同附图标记。图9中所示的电池堆40与图8中所示的电池堆30之间的区别在于,在电池堆40中,夹着固体电解质层21而相向的电极22的矩形波的相位相互反转。由此,成为氧化剂气体流路26的正上方配置有燃料气体流路27的结构,在平板部(空气极)23中所生成的氧离子可通过固体电解质层21而向正上方的燃料气体流路27移动,并与燃料气体进行反应。在该电池堆40中,由于氧离子的移动距离短,因而与图8中所示的电池堆30相比离子传导的电阻小。
在上述电池堆40中,由于在夹着固体电解质层21而相向的平板部23与平板部24之间进行发电,因此固体电解质层21的面积利用率约为50%。
此外,在图8中所示的电池堆30及图9中所示的电池堆40中,夹着固体电解质层21而相向的电极22的截面形状为矩形波的朝向如图10A所示的那样相互平行,但是还可如图10B所示,使矩形波的朝向相互交错。由此,由于从外部的各自的气体导入口(未图示)不用汇集于一处而配置于各自的地方,因此可提高包括气体配管的电池堆整体的布局的自由度。
图11中所示的电池堆50具备有固体电解质层31、电极32、电极33以及隔板34。电极32、电极33由冲孔金属板构成,电极32作为燃料极来发挥作用,电极33作为空气极来发挥作用。此外,隔板34通过例如压力成型(press-forming)而其截面形状构成为三角波状。在固体电解质层31的一侧的表面配置有电极32且在另一侧的表面配置有电极33而构成接合体(电池单元),该电池单元在层叠方向上串联连接而构成电池堆50。
层叠这种截面形状为三角波状的隔板34与固体电解质层31及电极32、电极33的层叠体而在固体电解质层31与电极32、电极33之间形成氧化剂气体或燃料气体的流路。在图11中,三角波的朝向在夹着层叠体而相向的隔板34之间相互平行,并且三角波的相位对齐。氧化剂气体流路35及燃料气体流路36在水平方向上交替区划。
图11中所示的电池堆50以如下方式获得。首先,将固体电解质层31、电极32、电极33及隔板34以如图11中所示的方式层叠成多个层叠体。接着,对整体进行加热的同时在夹着固体电解质层31额相向的电极32、电极33之间施加第一极性的电压。接着,在电极32、电极33之间施加电压,该电压为与第一极性相反的极性的第二电压。就这样,固体电解质层31与电极32、电极33得以阳极接合。此外,隔板34的端部通过束焊(beam welding)等而焊接到电极32或33的端部,使得整体成一体化而获得电池堆50。
在这里,对所获得的电池堆50的动作进行说明。首先,在氧化剂气体流路35中流通空气等的氧化剂气体,在燃料气体流路36中流通氢气等的燃料气体。对电池堆50进行加热。于是,在电极(空气极)33中,包含于氧化剂气体中的氧气从未图示的外部回路接收电子而成为氧离子。所生成的氧离子穿过固体电解质层31而向电极(燃料极)32移动,并与燃料气体进行反应。此时,释放电子提供至外部回路。这样,进行发电。
在上述电池堆50中,在夹着固体电解质层31而相向的电极32、电极33之间进行发电,因此固体电解质层31的面积利用率约为100%。
图12为示出具有与图11相同的结构的电池堆60。此外,在图12中,与图11相同的结构标注相同的附图标记。图12中所示的电池堆60与图11中所示的电池堆50之间的区别在于,在电池堆60中,夹着固体电解质层31及电极32、电极33的层叠体而相向的隔板34的三角波的相位相互反转。由此,成为氧化剂气体流路35的正上方配置有燃料气体流路36,在电极(空气极)33中所生成的氧离子可通过固体电解质层31而向正上方的燃料气体流路36移动,并与燃料气体进行反应。由此,在图12中所示的电池堆60中,由于氧离子的移动距离短,因而与图11中所示的电池堆50相比离子传导的电阻小。
在上述电池堆60中,也在夹着固体电解质层31而相向的电极32、电极33之间进行发电,固体电解质层31的面积利用率约为100%。
此外,在图11中所示的电池堆50及图12中所示的电池堆60中,夹着固体电解质层31及电极32、电极33的层叠体而相向的隔板34的截面形状为三角波的朝向如图13A所示的那样相互平行,但是如图13B所示,还可根据气体配管配置的布局的情况,使三角波的朝向相互交错。图8~图13中所示的电池堆作为电池而呈串联连接的结构。电池单元的输出为1V左右,但可通过这种以串联方式重叠电池单元来获得高电压。
图14中所示的电池堆70为在想要增大发电容量的情况下所适用的发明的实施例。电池堆70具备固体电解质层41与电极体52、电极体53,电极体52为具有冲孔金属板44的两个电极42隔开规定的间隔并在周缘部处接合的电极体,并且作为燃料极来发挥作用。此外,在电极体52中的两个电极42之间区划有燃料气体流路38。同样地,电极体53为具有冲孔金属板44的两个电极43隔开规定的间隔并在周缘部处接合的电极体,并且作为空气极来发挥作用。此外,在电极体53中的两个电极43之间区划有氧化剂气体流路37。固体电解质层41的一侧的表面配置电极42且另一侧的表面配置电极43而形成电池单元,并且层叠该电池单元而构成电池堆70。此外,电极体52及电极体53中的接合部J作为上述电池单元的隔板来发挥作用。电极42及电极43的每一个分别集成到公共引出电极(未图示)而构成并联连接。通过这种配置,尽管电压低,但可获得紧凑且大容量的电池堆。
图14中所示的电池堆70以如下方式获得。首先,将两个电极42隔开规定的间隔而配置,并通过束焊等将他们周缘部焊接而制作电极体52。准备多个该电极体52。相同地,准备多个焊接了两个电极43的周缘部的电极体53。接着,将固体电解质层41及电极体52、电极体53如图14中所示的那样层叠。接着,对整体进行加热的同时在夹着固体电解质层41而相向的电极体52、电极体53之间施加第一极性的电压。接着,在电极体52、电极体53之间施加与第一极性相反的极性的第二电压。就这样,固体电解质层41与电极体52、电极体53得以阳极接合,并整体成一体而获得电池堆70。
在这里,对所获得的电池堆70的动作进行说明。首先,在氧化剂气体流路37中流通空气等的氧化剂气体,并在燃料气体流路38中流通氢气等的燃料气体。并且,利用燃烧器等而对电池堆70进行加热。于是,在电极体(空气极)53中,包含于氧化剂气体中的氧气从未图示的外部回路接收电子而成为氧离子。所生成的氧离子穿过固体电解质层41而向电极体(燃料极)52移动,并与燃料气体进行反应。此时,电子被释放并提供至外部回路。就这样,进行发电。
以下,以电池堆70为例,更加详细地说明电池堆的制备工序。图15示出电极42、电极43的更加详细的结构。在该图中所示的电极42中,在四个角部设置有气体流通口42a~42d。同样地,电极43也在四个角部设置有气体流通口43a~43d。
图16A及图16B示出配置于两个电极42(43)之间的隔板,图16A示出立体图,图16B示出剖视图。图16A及图16B中所示的隔板45包括上部面45a、下部面45b及侧面45c,并具有贯通上部面45a及下部面45b的两个贯通孔45d、贯通孔45e。此外,隔板45在侧面45c具有与两个贯通孔的任何一个(在图中为贯通孔45d)相连通的开口部45f。
如图17A及图17B所示,将两个隔板45配置于两个电极42(43)之间(即,层叠体之间)。此时,如在图17C中示出图17A的B-B剖视图、在图17D中示出图17A的C-C剖视图那样,将两个隔板45以如下方式配置:(i)相邻的气体流通口(图中为42d)通过隔板45的贯通孔45d相互连通的同时,(ii)开口部45f以相向的方式配置,(iii)在层叠体的层叠方向上相邻的隔板45以朝向上下相互倒置的方式配置。
根据上述条件(ii),如图17A所示,与开口部45f连通的贯通孔45d存在于电极42上相互对角的位置。由此,从开口部45f导入的氧化剂气体或燃料气体在电极42(43)上如图18所示的那样向对角线方向流通,因此可增加与电极42(43)相接触的气体的量,并且可提高发电效率。此外,根据上述条件(iii),在层叠方向上相邻的电极体52、电极体53中,使通过其内部的气体相互不同。
图19A示出配置于夹着固体电解质层41而相向的电极42、43之间的垫片(gasket)。该图中所示的垫片46具有上部面46a及下部面46b,并具有贯通上部面46a及下部面46b的贯通孔46c。垫片46对后续插入贯通于贯通孔46c的气体导入配管与气体流通口42a~42d之间进行密封。如图19B所示,将该垫片46以在所有的电极体52与电极体53之间使层叠方向上相邻的气体流通口42a、42b、42c及42d通过垫片的贯通孔46c而相互连通的方式配置。
上述垫片46被加热至发电时的温度时,可能存在如下问题:热膨胀而贯通孔46c扩大,垫片46从气体导入配管脱离而气体导入配管与气体流通口42a~42d之间的密封成为不完整的问题。于是,如图20A所示,在电极42中设置凹部C,并将垫片46配置于该凹部C内,从而可防止贯通孔46c的扩大。
或者,如图20B所示,还可准备具有环状的基部47a及筒状的凸部47b的垫片47,并在隔板45设置扩径部L,并且向该扩径部L插入垫片47的筒状的凸部47b。
图21A及图21B示出导筒于电极42的气体流通口42a~42d中的两种气体导入配管。图21A中所示的气体导入配管48具有上部面48a、下部面48b、外部面48c及内部面48d,并具有贯通外部面48c及内部面48d的开口部48e。此外,图21B中所示的气体导入配管49具有上部面49a、下部面49b、外部面49c及内部面49d,并具有贯通外部面49c及内部面49d的开口部49e。
图21A中所示的气体导入配管48及图21B中所示的气体导入配管49在开口部的轴方向上的位置互相不同,一侧的配管用于燃料气体的导入,另一侧的配管用于氧化剂气体的导入,分别用两个。
将气体导入配管48、气体导入配管49以通过隔板45的贯通孔45d、贯通孔45e及垫片46的贯通孔46c且气体导入配管48的开口部48e、气体导入配管49的开口部49e和隔板45的开口部45f相重合的方式插入贯通于电极42的气体流通口42a~42d及电极43的气体流通口43a~43d。
图22示出将气体导入配管48、气体导入配管49插入贯通于电极42的气体流通口42a~42d及电极43的气体流通口43a~43d之后所获得的电池堆80。如上所述,在气体导入配管48和气体导入配管49中,开口部48e、开口部49e的轴方向上的位置互相不同,并且开口部48e、开口部49e分别与不同的气体流路相连接。在图22中所示的电池堆80中,从气体导入配管48导入氧化剂气体A,从气体导入配管49导入燃料气体F。
从气体导入配管48导入的氧化剂气体A通过氧化剂气体流路55,在电极(空气极)42中,包含于氧化剂气体A中的氧气从未图示的外部回路接收电子而成为氧离子。该氧离子穿过固体电解质层41,并向电极(燃料极)43移动。反应后的氧化剂废气从未图示的另一个气体导入配管48的开口部48e向电池堆80的外部排气。
另一方面,从气体导入配管49导入的燃料气体F通过燃料气体流路56,在电极(燃料极)43中,穿过固体电解质层41的氧离子与燃料气体F进行反应。此时,电子被释放并提供至外部回路。就这样,进行发电。反应后的燃料废气从未图示的另一个气体导入配管49的开口部49e向电池堆80的外部排气。
如图23所示,如上所述所获得的电池堆80被两个端板61夹住,将螺栓62穿过端板61并用螺母63紧固,由此最终获得电池堆200。
图24示出所获得的电池堆200中的气体的流动。如该图所示,从气体导入配管48的一侧导入的氧化剂气体A经由未图示的气体导入配管48的开口部而通过电池堆200内的氧化剂气体流路,并氧化剂废气A’从气体导入配管48的另一侧排气。此外,从气体导入配管49的一侧导入的燃料气体F通过电池堆200内的燃料气体流路,并燃料废气F’从气体导入配管49的另一侧排气。
实施例2
接着,说明利用阴极接合法来制备电池堆的方法。图27示出具有与图8中所示的电池堆30相同的结构的电池堆130。此外,在图27中,与图8相同结构标注相同附图标记,并省略说明。图27中所示的电池堆130与图8中所示的电池堆30之间的区别在于,在电池堆130中,电极22的平板部23、平板部24的表面之中的与固体电解质层21相接触的部分设置有氧化物层23a、氧化物层24a。由此,可通过上述的阴极接合法并利用两次的电压施加工序来获得电池堆130。
具体地,首先,通过热氧化处理等来电极22的平板部23、平板部24的表面之中的与固体电解质层21相接触的部分形成氧化物层23a、氧化物层24a。接着,将固体电解质层21及电极22如图27中所示的那样层叠而形成多个层叠体。对就这样获得的多个层叠体整体进行加热的同时,在夹着固体电解质层21而相向的电极22之间施加第一极性的电压。接着,施加与第一极性相反的极性的第二电压。这样,固体电解质层21和电极22通过氧化物层23a、氧化物层24a而得以阴极接合,整体成一体化而获得电池堆130。此外,电池堆130的动作与图8中所示的电池堆30相同,因此省略说明。
图28示出具有与图27中所示的电池堆130相同的结构的电池堆140。此外,在图28中,与图27相同结构标注相同的附图标记。图28中所示的电池堆140与图27中所示的电池堆130之间的区别在于,在电池堆140中,夹着固体电解质层21而相向的电极22的矩形波的相位相互反转。由此,成为燃料气体流路27配置于氧化剂气体流路26的正上方的结构,并且可在平板部(空气极)23中所生成的氧离子通过固体电解质层21向正上方的燃料气体流路27移动,并与燃料气体进行反应。在该电池堆140中,由于氧离子的移动距离短,因而与图27中所示的电池堆130相比离子传导的电阻小。
在上述电池堆140中,由于在夹着固体电解质层21而相向的平板部23与平板部24之间进行发电,因此固体电解质层21的面积利用率约为50%。
此外,在图27中所示的电池堆130及图28中所示的电池堆140中,夹着固体电解质层121而相向的电极22的截面形状为矩形波的朝向如图10A中所示的那样相互平行,但还可如图10B中所示,使矩形波的朝向相互交错。由此,由于从外部的各自的气体导入口(未图示)不用汇集于一处而配置于各自的地方,因此可提高包括气体配管的电池堆整体的布局的自由度。
图29示出具有与图11中所示的电池堆50相同的结构的电池堆150。此外,在图29中,与图11相同结构中标记相同附图标记,并省略说明。图29中所示的电池堆150与图11中所示的电池堆50的区别在于,在电池堆150中,电极32、电极33的表面之中的与固体电解质层31相接触的部分设置有氧化物层32a、氧化物层33a。由此,可通过上述的阴极接合法并利用两次的电压施加工序来获得电池堆150。
具体地,首先,通过热氧化处理等来电极32、电极33的表面之中的与固体电解质层31相接触的部分形成氧化物层32a、氧化物层33a。接着,将固体电解质层31、电极32、电极33及隔板34如图29中所示的那样层叠而形成多个层叠体。对这样获得的多个层叠体整体进行加热的同时,在夹着固体电解质层31而相向的电极32、电极33之间施加第一极性的电压。接着,在电极32、电极33之间施加电压,该电压为与第一极性相反的极性的第二电压。这样,固体电解质层31及电极32、电极33通过氧化物层32a、氧化物层33a而得以阴极接合。此外,隔板34的端部通过束焊等而焊接到电极32或33的端部,使得整体成一体化而获得电池堆150。此外,电池堆150的动作与图11中所示的电池堆50相同,因此省略说明。
在上述电池堆150中,在夹着固体电解质层31而相向的电极32、电极33之间进行发电,因此固体电解质层31的面积利用率约为100%。
图30示出具有与图29中所示的电池堆150相同的结构的电池堆160。此外,在图30中,与图29相同结构标注相同附图标记。图30中所示的电池堆160与图29中所示的电池堆150之间的区别在于,在电池堆160中,夹着固体电解质层31及电极32、电极33的层叠体而相向的隔板34的三角波的相位相互反转。由此,成为氧化剂气体流路35的正上方配置有燃料气体流路36,在电极(空气极)33中所生成的氧离子可通过固体电解质层31而向正上方的燃料气体流路36移动,并与燃料气体进行反应。由此,在图30中所示的电池堆160中,由于氧离子的移动距离短,因而与图29中所示的电池堆150相比离子传导的电阻小。
在上述电池堆160中,也在夹着固体电解质层31而相向的电极32、电极33之间发电,固体电解质层31的面积利用率约为100%。
此外,在图29中所示的电池堆150及图30中所示的电池堆160中,夹着固体电解质层31及电极32、电极33的层叠体而相向的隔板134的截面形状为三角波的朝向如图13A中所示的那样相互平行,但是如图13B中所示,还可根据气体配管配置的布局的情况,使三角波的朝向相互交错。
图31示出具有与图14中所示的电池堆70相同的结构的电池堆170。此外,在图31中,与图14相同结构标记相同的附图标记,并省略说明。图31中所示的电池堆170与图14中所示的电池堆70之间的区别在于,在电池堆170中,电极体52、电极体53的表面之中的与固体电解质层41相接触的部分设置有氧化物层52a、氧化物层53a。由此,可通过上述的阴极接合法并利用两次的电压施加工序来获得电池堆170。
具体地,首先,将两个电极42隔开规定的间隔而配置,并通过束焊等来焊接将它们的周缘部而形成电极体52。准备多个该电极体52。相同地,准备多个焊接了两个电极43的周缘部的电极体53。接着,电极体52,53的表面之中的与固体电解质层41相接触的部分形成氧化物层52a、氧化物层53a。接着,将固体电解质层41及电极体52、电极体53如图31中所示的那样层叠而形成多个层叠体。由此,对就这样获得的多个层叠体整体进行加热的同时,在夹着固体电解质层41而相向的电极体52、电极体53之间施加第一极性的电压。接着,在电极体52、电极体53之间施加与第一极性相反的极性的第二电压。就这样,固体电解质层41和电极体52、电极体53通过氧化物层52a、氧化物层53a而得以阴极接合,整体成一体化而获得电池堆170。此外,电池堆170的动作与图14中所示的电池堆70相同,因此省略说明。
以下,以电池堆170为例,更加详细说明电池堆的制备工序。首先,准备图15中所示的电极42(43)及图16中所示的隔板45,并将隔板45如图17A中所示的那样配置。接着,通过束焊等来将电极42(43)的周缘部焊接而形成如图17B中所示的电极体52。接着,如图32所示,电极体52(53)的表面形成氧化物层52a(53a)。
接着,将如上所述的那样获得的电极体52(53)、固体电解质层41及图19A中所示的垫片46如图33所示的那样配置。在这里,垫片46配置在所有的电极体52与电极体53之间,并使在层叠方向上相邻的气体流通口42a、42b、42c及42d通过垫片的贯通孔46c而相互连通。此外,氧化物层52a、氧化物层53a设置于与固体电解质层41相接触的部分。
接着,将图21中所示的两种气体导入配管48、气体导入配管49以通过隔板45的贯通孔45d、贯通孔45e及垫片46的贯通孔46c且气体导入配管48的开口部48e、气体导入配管49的开口部49e与隔板45的开口部45f相重合的方式插入贯通于电极42的气体流通口42a~42d及电极43的气体流通口43a~43d。
图34示出将气体导入配管48、气体导入配管49插入贯通于电极42的气体流通口42a~42d及电极43的气体流通口43a~43d之后所获得的电池堆180。在气体导入配管48和气体导入配管49中,开口部48e、开口部49e的轴方向上的位置互相不同,并且开口部48e、开口部49e分别与不同的气体流路相连接。在图34中所示的电池堆180中,从气体导入配管48导入氧化剂气体A,从气体导入配管49导入燃料气体F。此外,电池堆180的动作与图22中所示的电池堆80相同,因此省略说明。
如图23中所示,如上所述获得的电池堆180被两个端板61夹住,将螺栓62穿过端板61并用螺母63紧固,由此最终获得电池堆。
(附图标记的说明)
1、21、31、41:固体电解质层
2、3、22、32、33、42、43、122、132、133、142、143:电极
2a、3a、23a、24a、32a、33a、52a、53a:氧化物层
4:支撑体
5:电极层
6,44:冲孔金属板
6a:开口部
6b、6c:填充于开口部的材料
10:接合体(电池单元)
11:上腔室
12:下腔室
13:氧化剂气体导入管
14:氧化剂废气排气管
15、26、35、37、55:氧化剂气体流路
16:燃料气体导入管
17:燃料废气排气管
18、27、36、38、56:燃料气体流路
20、30、40、50、60、70、80、200:电池堆
23、24:平板部
25:立板部
34、45:隔板
42a、42b、42c、42d、43a、43b、43c、43d:气体流通口
45a、46a、48a、49a:上部面
45b、46b、48b、49b:下部面
45c:侧面
45d、45e、46c:贯通孔
46f、48e、49e:开口部
46、47:垫片
47a:基部
47b:凸部
48、49:气体导入配管
48c、49c:外部面
48d、49d:内部面
52、53:电极体
61:端板
62:螺栓
63:螺母
A:氧化剂气体
A’:氧化剂废气
B:隔板的谷
C:凹部
F:燃料气体
F’:燃料废气
J:接合部
L:扩径部
P:电极板
T:隔板的峰
V:电压施加装置

Claims (27)

1.一种固体电解质层与电极的接合方法,用于将在燃料电池中所用的一个以上的固体电解质层和阴极及阳极接合起来,其特征在于,包括:
层叠工序,以上述阴极及上述阳极之间夹着上述固体电解质层的方式层叠上述固体电解质层和上述阴极及上述阳极;
第一直流电压施加工序,通过在夹着上述固体电解质层的上述阴极及上述阳极之间施加第一极性的直流电压,在上述固体电解质层与夹着上述固体电解质层的上述阴极及上述阳极中的一个电极之间的界面进行共价键结合;以及
第二直流电压施加工序,在上述固体电解质层与夹着上述固体电解质层的上述阴极及上述阳极中的一个电极共价键结合之后,通过在夹着上述固体电解质层的上述阴极及上述阳极之间施加与上述第一极性相反的第二极性的直流电压,在上述固体电解质层与夹着上述固体电解质层的上述阴极及上述阳极中的另一个电极之间的界面进行共价键结合。
2.根据权利要求1所述的固体电解质层与电极的接合方法,其特征在于,
上述阴极及上述阳极中的各电极具有支撑体以及该支撑体上的电极层。
3.根据权利要求2所述的固体电解质层与电极的接合方法,其特征在于,
上述支撑体具有冲孔金属板。
4.根据权利要求3所述的固体电解质层与电极的接合方法,其特征在于,
上述支撑体仅在上述电极层与上述固体电解质层相接触的部分具有冲孔金属板。
5.根据权利要求2所述的固体电解质层与电极的接合方法,其特征在于,
上述支撑体具有不锈钢。
6.根据权利要求2所述的固体电解质层与电极的接合方法,其特征在于,
上述电极层具有非晶硅或镍。
7.根据权利要求3所述的固体电解质层与电极的接合方法,其特征在于,
在夹着上述固体电解质层的上述阴极及上述阳极之中的一个电极的冲孔金属板的开口部中填充作为燃料极来发挥作用的多孔质材料,在另一个电极的冲孔金属板的开口部中填充作为空气极来发挥作用的多孔质材料。
8.根据权利要求1所述的固体电解质层与电极的接合方法,其特征在于,
上述层叠工序包括:将多个上述固体电解质层与多对上述阴极及上述阳极层叠而形成多个层叠体,
每个层叠体具备夹着一个上述固体电解质层的一对上述阴极及上述阳极。
9.根据权利要求8所述的固体电解质层与电极的接合方法,其特征在于,
上述阴极及上述阳极的截面形状为矩形波状。
10.根据权利要求9所述的固体电解质层与电极的接合方法,其特征在于,
上述层叠工序以如下方式执行:对于夹着上述固体电解质层的上述阴极及上述阳极,使得它们的截面形状为矩形波的朝向相互平行。
11.根据权利要求10所述的固体电解质层与电极的接合方法,其特征在于,
上述层叠工序是以上述矩形波的相位相互对齐的方式执行的。
12.根据权利要求10所述的固体电解质层与电极的接合方法,其特征在于,
上述层叠工序是以上述矩形波的相位相反的方式执行的。
13.根据权利要求9所述的固体电解质层与电极的接合方法,其特征在于,
上述层叠工序以如下方式执行:使得夹着上述固体电解质层的上述阴极及上述阳极的截面形状为矩形波的朝向相互交错。
14.根据权利要求8所述的固体电解质层与电极的接合方法,其特征在于,
上述燃料电池在各层叠体之间还具备截面形状为三角波状的隔板。
15.根据权利要求14所述的固体电解质层与电极的接合方法,其特征在于,
上述层叠工序以如下方式执行:使得夹着上述层叠体而相向的上述隔板的截面形状为三角波的朝向相互平行。
16.根据权利要求15所述的固体电解质层与电极的接合方法,其特征在于,
上述层叠工序是以上述三角波的相位相互对齐的方式执行的。
17.根据权利要求15所述的固体电解质层与电极的接合方法,其特征在于,
上述层叠工序是以上述三角波的相位相反的方式执行的。
18.根据权利要求14所述的固体电解质层与电极的接合方法,其特征在于,
上述层叠工序以如下方式执行:使得夹着上述层叠体而相向的上述隔板的截面形状为三角波的朝向相互交错。
19.根据权利要求8所述的固体电解质层与电极的接合方法,其特征在于,
相邻的上述层叠体的相向的阴极及阳极在它们的周缘部相互接合。
20.根据权利要求19所述的固体电解质层与电极的接合方法,其特征在于,
上述阴极及上述阳极具有四个气体流通口。
21.根据权利要求20所述的固体电解质层与电极的接合方法,其特征在于,
上述燃料电池还具备具有上部面、下部面以及侧面的多个隔板,上述隔板具有贯通上述上部面和上述下部面的两个贯通孔、以及设置于上述侧面并与上述两个贯通孔中的任何一个相连通的开口部,
在上述层叠工序中,将两个上述隔板以如下方式配置于各层叠体间:在上述层叠体的层叠方向上相邻的上述气体流通口经由上述隔板的贯通孔相互连通,并且上述开口部彼此面对,并且在上述层叠体的层叠方向上相邻的上述隔板以朝向上下相互倒置的方式配置。
22.根据权利要求21所述的固体电解质层与电极的接合方法,其特征在于,
上述燃料电池还具备具有上部面和下部面且具有贯通上述上部面和上述下部面的贯通孔的多个垫片,
在上述层叠工序中,将上述垫片以在层叠方向上相邻的上述气体流通口经由上述垫片的贯通孔相互连通的方式配置于夹着上述固体电解质层的上述阴极及上述阳极之间。
23.根据权利要求22所述的固体电解质层与电极的接合方法,其特征在于,
上述阴极、上述阳极和上述垫片中的至少一个具有用于抑制上述垫片的贯通孔的扩大的部分。
24.根据权利要求22或23所述的固体电解质层与电极的接合方法,其特征在于,
上述燃料电池还具备具有上部面、下部面、外部面以及内部面且具有贯通上述外部面和上述内部面的多个开口部的四个气体导入配管,在上述四个气体导入配管中的两个和另外两个中,上述多个开口部的轴方向上的位置互相不同,
上述固体电解质层与电极的接合方法还包括配管插入贯通工序,将上述气体导入配管经由上述隔板的贯通孔和上述垫片的贯通孔、且以上述气体导入配管的开口部与上述隔板的开口部相重合的方式插入贯通于上述气体流通口。
25.根据权利要求24所述的固体电解质层与电极的接合方法,其特征在于,
上述燃料电池还具备两个端板,上述固体电解质层与电极的接合方法还包括利用上述两个端板夹住上述多个层叠体而固定的固定工序。
26.一种燃料电池的制备方法,其特征在于,
通过权利要求1至25中任一项所述的固体电解质层与电极的接合方法将一个以上的固体电解质层和多个阴极及阳极接合起来,来制备具备上述一个以上的固体电解质层和上述多个阴极及阳极的燃料电池。
27.一种燃料电池,其特征在于,
通过权利要求26所述的燃料电池的制备方法制备而成。
CN201780060130.6A 2016-11-22 2017-11-14 燃料电池的制备方法及燃料电池 Active CN110121806B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016226953 2016-11-22
JP2016-226953 2016-11-22
JP2017143030A JP6472842B2 (ja) 2016-11-22 2017-07-24 固体電解質層と電極との接合方法、及び、燃料電池の製造方法
JP2017-143030 2017-07-24
PCT/JP2017/040859 WO2018096971A1 (ja) 2016-11-22 2017-11-14 燃料電池の製造方法及び燃料電池

Publications (2)

Publication Number Publication Date
CN110121806A CN110121806A (zh) 2019-08-13
CN110121806B true CN110121806B (zh) 2022-07-12

Family

ID=62493665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780060130.6A Active CN110121806B (zh) 2016-11-22 2017-11-14 燃料电池的制备方法及燃料电池

Country Status (3)

Country Link
JP (1) JP6472842B2 (zh)
CN (1) CN110121806B (zh)
DE (1) DE112017005905T5 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276705B (zh) * 2020-01-06 2021-01-26 南京理工大学 金属支撑型氧化物燃料电池半电池的制备方法
CN111900458A (zh) * 2020-08-27 2020-11-06 中南大学 一种复合固态电解质及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051332A (ja) * 2001-08-07 2003-02-21 Nissan Motor Co Ltd 燃料電池及び燃料電池発電システム
JP2008098152A (ja) * 2006-09-11 2008-04-24 Toray Ind Inc 膜電極複合体の製造方法
CN101330151A (zh) * 2007-06-11 2008-12-24 松下电器产业株式会社 燃料电池用电极-膜-框接合体及其制造方法
CN101868875A (zh) * 2007-11-30 2010-10-20 京瓷株式会社 横条纹型固体氧化物形燃料电池单元组及燃料电池
CN103534855A (zh) * 2011-05-11 2014-01-22 日本特殊陶业株式会社 固体氧化物型燃料电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049458A (en) * 1988-08-31 1991-09-17 Nkk Corporation Fuel cell
JP3891131B2 (ja) * 2002-03-29 2007-03-14 カシオ計算機株式会社 化学反応装置及び電源システム
JP2008159448A (ja) * 2006-12-25 2008-07-10 Shinko Electric Ind Co Ltd 固体酸化物型燃料電池発電装置
JP5057142B2 (ja) * 2007-08-15 2012-10-24 日産自動車株式会社 セラミックス部材と金属部材との接合方法及び燃料電池スタック構造体の製造方法並びに燃料電池スタック構造体
JP5448382B2 (ja) * 2008-07-22 2014-03-19 三菱重工業株式会社 固体電解質型燃料電池の発電膜の製造方法
JP5097159B2 (ja) * 2009-04-01 2012-12-12 東海ゴム工業株式会社 燃料電池モジュールの製造方法、および燃料電池の製造方法
JP2013206684A (ja) * 2012-03-28 2013-10-07 Toshiba Corp 固体酸化物燃料電池の電極活性化方法
JP6218021B2 (ja) * 2013-08-09 2017-10-25 日産自動車株式会社 固体酸化物形燃料電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051332A (ja) * 2001-08-07 2003-02-21 Nissan Motor Co Ltd 燃料電池及び燃料電池発電システム
JP2008098152A (ja) * 2006-09-11 2008-04-24 Toray Ind Inc 膜電極複合体の製造方法
CN101330151A (zh) * 2007-06-11 2008-12-24 松下电器产业株式会社 燃料电池用电极-膜-框接合体及其制造方法
CN101868875A (zh) * 2007-11-30 2010-10-20 京瓷株式会社 横条纹型固体氧化物形燃料电池单元组及燃料电池
CN103534855A (zh) * 2011-05-11 2014-01-22 日本特殊陶业株式会社 固体氧化物型燃料电池

Also Published As

Publication number Publication date
CN110121806A (zh) 2019-08-13
JP2018088392A (ja) 2018-06-07
DE112017005905T5 (de) 2019-08-08
JP6472842B2 (ja) 2019-02-20

Similar Documents

Publication Publication Date Title
WO2018096971A1 (ja) 燃料電池の製造方法及び燃料電池
US7816055B2 (en) Compact fuel cell
JP2014504778A (ja) 金属支持体型固体酸化物燃料電池の単位電池及びその製造方法とこれを用いた固体酸化物燃料電池スタック
US20050100770A1 (en) Electrolyte-electrode assembly and method for producing the same
CA2833343C (en) Fuel cell and fuel cell stack including inclined side surface
JP2014060028A (ja) 固体酸化物型燃料電池
JP5079991B2 (ja) 燃料電池セル及び燃料電池
JP2017016909A (ja) 燃料電池スタックおよび燃料電池単セル
CN110121806B (zh) 燃料电池的制备方法及燃料电池
JP5709670B2 (ja) 燃料電池セル装置
KR20120021850A (ko) 연료극 지지체식 평관형 고체산화물 연료전지 및 그 제조방법
JP2004265734A (ja) 燃料電池セル
JP2006253071A (ja) 燃料極支持形固体酸化物形燃料電池の構造
KR101277893B1 (ko) 금속 지지체형 고체 산화물 연료전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택
JPH09129252A (ja) 高耐久性固体電解質燃料電池およびその製造方法
JP2004303455A (ja) 固体電解質型燃料電池セル
JP7368402B2 (ja) 電気化学反応単セルおよび電気化学反応セルスタック
KR20130077489A (ko) 금속지지체형 고체산화물 연료전지용 셀의 제조방법 및 금속지지체형 고체산화물 연료전지용 셀
CN110710038B (zh) 电化学反应电池组、互连器-电化学反应单体电池复合体以及电化学反应电池组的制造方法
JPH02168568A (ja) 固体電解質型燃料電池
JP6048974B2 (ja) 固体酸化物形燃料電池
JP5417548B2 (ja) 燃料電池の構造体
JP7121083B2 (ja) 空気極材料、電気化学反応単セルおよび電気化学反応セルスタック
JP7278241B2 (ja) 電気化学反応単セル
JP2014072115A (ja) 燃料電池の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant