CN110117599A - 甘蓝型油菜抗磺酰脲类除草剂突变基因及应用 - Google Patents

甘蓝型油菜抗磺酰脲类除草剂突变基因及应用 Download PDF

Info

Publication number
CN110117599A
CN110117599A CN201910298124.5A CN201910298124A CN110117599A CN 110117599 A CN110117599 A CN 110117599A CN 201910298124 A CN201910298124 A CN 201910298124A CN 110117599 A CN110117599 A CN 110117599A
Authority
CN
China
Prior art keywords
plant
sterile
line
homozygous
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910298124.5A
Other languages
English (en)
Inventor
江建霞
李延莉
蒋美艳
杨立勇
王伟荣
孙超才
周熙荣
张俊英
朱吉风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Academy of Agricultural Sciences
Jiangsu Academy of Agricultural Sciences
Original Assignee
Shanghai Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Academy of Agricultural Sciences filed Critical Shanghai Academy of Agricultural Sciences
Priority to CN201910298124.5A priority Critical patent/CN110117599A/zh
Publication of CN110117599A publication Critical patent/CN110117599A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种甘蓝型油菜抗磺酰脲类除草剂突变基因及其应用,其在ALS1和ALS3两个基因上均发生单位点突变,其中,在ALS1基因的编码序列中第1676位碱基由G突变为T,使第559个氨基酸由色氨酸突变为亮氨酸,具体氨基酸序列如SEQ ID NO.1所示;在ALS3基因的编码序列中,第1667位碱基由G突变为T,使第556个氨基酸由色氨酸突变为亮氨酸,具体氨基酸序列如SEQ ID NO.2所示,将两对显性基因控制的抗除草剂抗性位点转育到甘蓝型油菜隐性核不育纯合两型系及其临保系中,选育甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系,用于生产具有抗除草剂特性的全不育系。

Description

甘蓝型油菜抗磺酰脲类除草剂突变基因及应用
技术领域
本发明属于甘蓝型油菜育种领域,具体涉及一种甘蓝型油菜抗磺酰脲类除草剂突变基因及应用。
背景技术
隐性细胞核雄性不育因其具有不育性彻底且稳定、恢复源广等优点,在国内已经成为油菜杂种优势利用的一个重要途径,但由于得不到100%的不育系,在杂交制种时需人工拔除不育系株行中50%的可育株,限制了其广泛应用,如双隐性核不育S45A和117A等。
20118A是上海市农业科学院孙超才研究员于1997年选育的一种新的隐性细胞核雄性不育系,其不育株花药空瘪,无花粉,套袋自交不结实,且不育性稳定,不受环境条件的影响。
通过普通遗传学研究证明,20118A受3对隐性基因控制,为了便于描述其遗传,将三个隐性基因分别命名为a、b和rf,其中a和b为隐性不育基因,rf为隐性上位基因,能抑制a和b不育基因的表达,使育性恢复可育。根据这一遗传原理,这种核不育材料可以实现“三系化”制种。
参见图1,首先是纯合两型系内的纯合型不育株与可育株杂交,不育株上产生的后代世代间基因型相同,2种基因型始终各占50%,因而能稳定遗传。三隐性纯合体aabbrfrf作为父本,与纯合型不育株杂交获得全不育系,因此三隐性纯合体可以作为临保系。基因型为AA----、--BB--或AABB--的可育株与全不育系的不育株杂交,后代全部可育,因此其可以作为恢复系。这种核不育的优点是能通过“临保系”繁殖不育系,理论上可获得全不育系群体,减少了大面积生产杂交种时要拔去母本行50%可育株的麻烦。
然而,因不育性状、临保系的性状都受隐性基因控制,容易受外来花粉,机械混杂等影响,导致获得高纯度的全不育系非常困难。纯合两型系和临保系中混有外来杂种或受到外来花粉污染,无法对这些杂种进行有效识别和剔除。另外,全不育系的纯度鉴定有两种方式,第一种是利用特异的分子标记鉴定技术,这种方式需要鉴定单位具备分子实验室和相关技术人员;第二种是利用花期的育性调查进行鉴定,这种方式需要在苗期进行低温春化,等到开花后才能进行,周期较长。
发明内容
本发明的目的在于提供一种甘蓝型油菜抗磺酰脲类除草剂突变基因及其应用,将两对显性基因控制的抗除草剂抗性位点转育到甘蓝型油菜隐性核不育纯合两型系及其临保系中,选育甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系,用于生产具有抗除草剂特性的全不育系。
为了达到上述目的,本发明提供如下技术方案:
一种甘蓝型油菜抗磺酰脲类除草剂突变基因,其在ALS1和ALS3两个基因上均发生单位点突变,其中,在ALS1基因的编码序列中第1676位碱基由G突变为T,使第559个氨基酸由色氨酸突变为亮氨酸,具体氨基酸序列如SEQ ID NO.1所示;在ALS3基因的编码序列中,第1667位碱基由G突变为T,使第556个氨基酸由色氨酸突变为亮氨酸,具体氨基酸序列如SEQ ID NO.2所示。
进一步,编码所述ALS1基因的核苷酸序列如SEQ ID NO.3所示;编码所述ALS3基因的具体核苷酸序列如SEQ ID NO.4所示。
本发明提供所述甘蓝型油菜抗磺酰脲类除草剂突变基因的应用,以甘蓝型油菜抗磺酰脲类除草剂突变体亲本材料为供体,与甘蓝型油菜隐性核不育纯合两型系及其临保系进行杂交选育,获得具有抗磺酰脲类除草剂特征的甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系。
进一步,利用所述甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系杂交生产甘蓝型油菜抗除草剂的全不育系,基因型为aabbRfrfR1R1R3R3。
又,利用所述抗除草剂的全不育系与基因型为AA----r1r1r3r3、--BB--r1r1r3r3或AABB--r1r1r3r3的恢复系杂交,生产对磺酰脲类除草剂具有抗性的商用F1杂交种。
一种甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系的选育方法,包括以下步骤:
a)甘蓝型油菜隐性核不育纯合两型系的不育株aabbRfRfr1r1r3r3与甘蓝型油菜抗除草剂突变体5N的可育株AABBRfRfR1R1R3R3杂交,以其F1代抗除草剂可育株AaBbRfRfR1r1R3r3为父本,与甘蓝型油菜隐性核不育纯合两型系的不育株aabbRfRfr1r1r3r3杂交,BC1代分离群体中会分离出3/4的可育株和1/4的不育株,其中,不育株中又包括杂合抗性不育株和敏感型不育株,通过喷施除草剂、利用SNP分子标记辅助检测基因型,筛选,得到杂合抗性不育株aabbRfRfR1r1R3r3;
b)以步骤a)中得到的杂合抗性不育株aabbRfRfR1r1R3r3为母本,与甘蓝型油菜隐性核不育纯合两型系可育株AabbRfRfr1r1r3r3杂交,分离出1:1的可育株和不育株,不育株包含1:1:1:1的杂合抗性不育株aabbRfRfR1r1R3r3、杂合抗性不育株aabbRfRfR1r1r3r3、杂合抗性不育株aabbRfRfr1r1R3r3和敏感型不育株aabbRfRfr1r1r3r3;
c)以步骤b)中的杂合抗性不育株aabbRfRfR1r1R3r3为母本,继续与甘蓝型油菜隐性核不育纯合两型系可育株AabbRfRfr1r1r3r3杂交,分离出1:1的可育株和不育株,可育株包含1:1:1:1的杂合抗性可育株AabbRfRfR1r1R3r3、杂合抗性可育株AabbRfRfR1r1r3r3、杂合抗性可育株AabbRfRfr1r1R3r3和敏感型可育株AabbRfRfr1r1r3r3;将步骤c)的杂合抗性可育株AabbRfRfR1r1R3r3套袋自交,其后代中出现1/64的纯合抗性不育株aabbRfRfR1R1R3R3和1/32的纯合抗性可育株AabbRfRfR1R1R3R3,将这两种基因型植株进行兄妹交,其后代始终按照1:1的比例分离,由此选育出甘蓝型油菜抗除草剂隐性核不育纯合两型系;
d)以步骤c)中的纯合抗性不育株aabbRfRfR1R1R3R3与临保系aabbrfrfr1r1r3r3杂交,杂交后代为杂合高抗性不育株aabbRfrfR1r1R3r3;
e)以步骤d)中的杂合高抗性不育株aabbRfrfR1r1R3r3继续与临保系aabbrfrfr1r1r3r3杂交,杂交后代分离得到1/8的抗性可育株aabbrfrfR1r1R3r3,将其进行自交,自交后代群体全部为可育株,包括1/16的纯合抗性可育株aabbrfrfR1R1R3R3以及1/16的纯合敏感型可育株aabbrfrfr1r1r3r3,剩余的为杂合抗性可育株,筛选出纯合抗性可育株aabbrfrfR1R1R3R3,即为抗除草剂临保系。
优选地,在步骤a)、b)、c)、d)和/或e)中,获得杂交后代后,先在油菜四叶期通过喷施目标除草剂除去敏感型油菜,然后在花期通过育性鉴定区分剩余抗性株中的可育株和不育株,最后利用SNP分子标记辅助检测基因型,区分抗性基因的纯杂合情况,最终筛选获得符合预期的基因型的植株。
又,步骤e)中,通过喷施除草剂除去纯合敏感型可育株,通过SNP分子标记辅助检测基因型,区分杂合抗性可育株和纯合抗性可育株中抗性基因的纯杂合情况。
进一步,其中,SNP分子标记辅助检测基因型时的引物序列如SEQ ID NO.5和SEQID NO.6、SEQ ID NO.7和SEQ ID NO.8所示。
本发明中的抗除草剂突变体材料为ALS1和ALS3两个基因均发生单位点突变的双突变体,总的来说,突变体材料中,ALS1基因的第559个氨基酸和ALS3基因的第556个氨基酸均由色氨酸突变为亮氨酸,是抗性产生的分子基础,而ALS1和ALS3碱基突变位点是SNP分子标记辅助基因型检测的关键,在选育抗除草剂隐性核不育纯合两型系和临保系中起到重要的作用。
本发明将抗磺酰脲类除草剂油菜突变体中因发生单位点突变而对磺酰脲类除草剂产生抗性的ALS1基因简称为R1抗性基因,ALS3基因简称为R3抗性基因,遗传研究表明:R1和R3两个抗性基因对磺酰脲类除草剂的抗性性状为显性性状,当基因位点R1和R3均为纯合或杂合时,即基因型为R1R1R3R3或R1_R3_,植株表现为高抗性;当植株基因型为R1_r3r3或r1r1R3_时,植株表现为低抗性;当植株基因型为隐性纯合r1r1r3r3时,植株表现为除草剂敏感型植株。
本发明利用抗除草剂这一特殊标记可以对全不育系生产全程进行纯度和质量控制,同时也为全不育系纯度鉴定提供一种高效、快捷、简单可行的方法,尤其是利用该标记可实现全不育系的除杂,为商用杂交种的生产节省了大量的用工和时间。
本发明的有益效果:
1)本发明将除草剂抗性基因转育到纯合两型系和临保系中,并以对磺酰脲类除草剂抗性和敏感性作为指示性状,可对纯合两型系和临保系繁殖过程中的机械混杂、外源花粉或次生苗进行有效识别、除杂,从源头上保证全不育系生产的质量;每个步骤中,获得杂交后代后都通过喷施目标除草剂、育性鉴定和分子标记辅助基因型检测筛选出预期基因型的植株。
2)本发明将一对除草剂抗性基因转育到纯合两型系和临保系中,生产具有高抗磺酰脲类除草剂特性的全不育系,利用抗除草剂全不育系和恢复系生产的杂交种对除草剂具有抗性,这样可以简化生产栽培中除草环节,简化杂交育种程序,节约生产成本。
附图说明
图1为现有隐性核不育杂交制种的生产模式。
图2为本发明实施例1中通过分子标记辅助基因型检测抗除草剂突变体和杂交后代植株中ALS1基因的纯合、杂合和野生型情况。
图3为本发明实施例1中通过分子标记辅助基因型检测抗除草剂突变体和杂交后代植株中ALS3基因的纯合、杂合和野生型情况。
图4为本发明实施例2中甘蓝型油菜抗除草剂突变体(左)和不抗除草剂的沪油15(右)在四叶期喷施除草剂24天后植株长势的比较图。
图5为本发明实施例2中甘蓝型油菜抗除草剂隐性核不育纯合两型系选育过程的示意图。
图6为本发明实施例3中甘蓝型油菜抗除草剂临保系选育过程的示意图。
图7为本发明实施例3中利用抗除草剂全不育系生产商用杂交种示意图。
具体实施方式
以下结合具体实施例与附图进一步详细描述本发明的技术方案。
实施例中所需试验材料:
1.隐性核不育纯合两型系
甘蓝型油菜隐性核不育纯合两型系20118AB,20118A基因型为aabbRfRf,20118B基因型为AabbRfRf,其芥酸含量为0.56%,硫甙含量为23.45μmol/g。
2.临保系
临保系M-6029,其基因型为aabbrfrf,可育,与隐性核不育20118A(aabbRfRf)杂交,其后代基因型为aabbRfrf,仍为不育,但是该不育性只能保持一代,其后代会发生育性分离,故称基因型aabbrfrf的M-6029为甘蓝型油菜隐性核不育20118A的临保系。
3.恢复系
因甘蓝型油菜隐性核不育是受三对隐性基因控制的,所以恢复系的选择自由度大,生产上的品系(自交系)基因型大多为AA----、--BB--或AABB--,故均可以用作恢复系。
4.甘蓝型油菜抗除草剂突变体5N
实施例1确定突变位点
对突变体材料5N以及敏感野生型对照油菜品种沪油15中的ALS1、ALS3基因进行克隆,通过测序和序列分析鉴定突变体材料5N中ALS1、ALS3基因的抗性突变位点。
实验材料均成功克隆获得ALS1和ALS3,两个基因的CDS大小分别是1968bp和1959bp,分别编码655和652个氨基酸,经过序列比对发现,抗性突变体材料5N中ALS1和ALS3基因的CDS上均发生了一个点突变,ALS1基因CDS上的第1676个碱基G突变为T,对应编码的第559个氨基酸由色氨酸突变为亮氨酸,具体氨基酸序列如SEQ ID NO.1所示;ALS3基因CDS上的第1667个碱基G突变为T,对应的第556个氨基酸由色氨酸突变为亮氨酸,具体氨基酸序列如SEQ ID NO.2所示。
其中,ALS1和ALS3的核苷酸序列分别如SEQ ID NO.3和SEQ ID NO.4所示,对ALS1进行PCR扩增所用的引物为SEQ ID NO.5和SEQ ID NO.6,将PCR产物利用Bsr DI限制性内切酶进行酶切并将酶切产物通过电泳检测,当酶切产物长度为1694bp时,ALS1基因为纯合型抗性类型,当酶切产物长度为1694bp、1499bp和195bp三种带型时,ALS1基因型为杂合型抗性类型;当酶切产物长度为1499bp和195bp两种带型时,ALS1基因型为纯合敏感性类型(图2)。
同样,利用引物SEQ ID NO.7和SEQ ID NO.8对ALS3进行PCR扩增,利用Bsr DI限制性内切酶进行酶切并利用凝胶电泳检测酶切产物,当酶切产物长度为1686bp时,ALS3基因型为纯合抗性类型;当酶切产物长度为1686bp、1492bp和194bp三种带型时,ALS3基因型为杂合型抗性类型;当酶切产物长度为1492bp和194bp时,ALS3基因型为纯合型敏感性类型(图3)。
实施例2抗性基因R1和R3的遗传研究
甘蓝型油菜一般对磺酰脲类除草剂敏感,即不具备除草剂抗性特点,本发明的抗除草剂突变体材料对磺酰脲类除草剂具有高度抗性,它们对磺酰脲类除草剂,例如苯磺隆、噻吩磺隆、苄嘧磺隆、甲基二磺隆等的抗性是除草剂有效杀草浓度的12~16倍(图4)。
将抗除草剂突变体材料与正常植株进行杂交,F1代植株表现为对磺酰脲类除草剂具有抗性,将F1代植株作为父本与隐性核不育纯合两型系中的不育株杂交获得BC1代,BC1代分离群体中除草剂抗性植株和敏感型植株的单株数分别为358和115,卡方值为0.25,符合3:1的分离比例。
通过育性鉴定、喷施除草剂和分子标记辅助基因型检测筛选出BC1代分离群体中R1和R3抗性位点均杂合的抗性不育植株aabbRfRfR1r1R3r3,大约筛选到27株,以该杂合抗性不育株作为母本,与甘蓝型油菜隐性核不育纯合两型系中可育株杂交,获得BC2分离群体,喷施除草剂发现抗性植株与敏感型植株比例为3:1,观察BC2分离群体的育性可发现可育植株与不育植株比例为1:1,通过分子标记辅助基因型检测发现R1和R3位点均杂合的抗性不育株aabbRfRfR1r1R3r3比例占整个群体数量的1/8,参见图5。
以抗性不育株aabbRfRfR1r1R3r3继续与甘蓝型油菜隐性核不育纯合两型系中可育株杂交,获得BC3分离群体,喷施除草剂可发现BC3分离群体中抗性植株与敏感型植株比例为3:1,通过育性鉴定和分子标记辅助基因型检测筛选R1和R3均杂合的抗性可育株AabbRfRfR1r1R3r3,该基因型植株数量占整个BC3群体数量的1/8。
对BC3中该抗性可育株AabbRfRfR1r1R3r3进行套袋自交,通过喷施目标除草剂、育性鉴定和分子标记辅助基因型检测筛选纯合高抗不育植株aabbRfRfR1R1R3R3和纯合高抗可育植株AabbRfRfR1R1R3R3,这两种基因型植株比例分别为1/64和1/32,这两种基因型植株进行兄妹交,其后代全部为高抗性植株,且始终按照纯合抗性不育株和纯合抗性可育株比例为1:1分离,因此,该两种基因型植株为抗除草剂隐性核不育纯合两型植株。
利用获得的抗除草剂隐性核不育纯合两型系中的不育株aabbRfRfR1R1R3R3与临保系aabbrfrfr1r1r3r3杂交,获得R1和R3杂合的不育株aabbRfrfR1r1R3r3,该类型植株与临保系继续回交,从回交后代中筛选R1和R3杂合的抗性可育株aabbrfrfR1r1R3r3,其占群体植株数量比例为1/8,将该抗性可育株进行自交,从自交后代群体中筛选纯合高抗性可育株aabbrfrfR1R1R3R3,即为抗除草剂临保系。
表明:R1和R3两个抗性基因对磺酰脲类除草剂的抗性性状为显性性状,当基因位点R1和R3均为纯合或杂合时,即基因型为R1R1R3R3或R1_R3_,植株表现为高抗性;当植株基因型为R1_r3r3或r1r1R3_时,植株表现为低抗性;当植株基因型为隐性纯合r1r1r3r3时,植株表现为除草剂敏感型植株。
实施例3甘蓝型油菜抗除草剂隐性核不育纯合两型系的选育
参见图5,以隐性核不育纯合两型系不育株20118A为母本,与甘蓝型油菜抗除草剂突变体AABBRfRfR1R1R3R3为父本杂交,并利用临保系M-6029同时对该不育株进行测交,测交后代全不育,表明当选单株基因型为aabbRfRf。
抗除草剂可育株AABBRfRfR1R1R3R3和该不育株aabbRfRfr1r1r3r3的杂交后代即F1均为抗除草剂可育株,其基因型为AaBbRfRfR1r1R3r3,以F1代为父本,与纯合两型系中的不育株杂交获得BC1,将收获的BC1代种子秋播到田间,在油菜四叶期喷施苯磺隆除草剂除去敏感型植株,在花期进行田间观察,不育性状为明显的指示性状,同时,取抗性不育株的叶片提取DNA进行PCR,利用抗性基因R1和R3的分子标记辅助基因型检测分析R1和R3基因的基因型,有利于选出R1和R3位点杂合的抗除草剂不育株。通过观察,在473个BC1代分离群体中,发现了27株抗性不育株aabbRfRfR1r1R3r3,以该类型抗性不育株aabbRfRfR1r1R3r3与隐性核不育纯合两型系可育株20118B杂交,收获杂交后代种子并秋播到田间,在油菜四叶期喷施除草剂并观察统计抗性苗和除草剂敏感植株比例,发现在475个回交后代中有62株敏感植株慢慢黄化死亡,剩余植株对除草剂具有很强或一定抗性,在花期观察育性发现212个抗性可育株和201个抗性不育株,分离比例约为1:1,对201个抗性不育株叶片取样提取DNA进行PCR,利用抗性基因R1和R3的分子标记辅助基因型检测筛选基因型为aabbRfRfR1r1R3r3的抗性不育株,筛选到57株该类型植株。将筛选到的该基因型抗性不育株继续与隐性核不育纯合两型系可育株20118B回交,通过对回交群体植株在四叶期油菜喷施除草剂、育性鉴定和分子标记辅助基因型检测分析,在342个回交群体中获得46株基因型为AabbRfRfR1r1R3r3的抗性可育株,占整个回交群体植株数量的1/8,将此基因型类型植株进行套袋自交,对1312株的自交后代进行四叶期喷施除草剂、花期的育性鉴定和分子标记辅助基因型检测分析,筛选得到18株基因型为aabbRfRfR1R1R3R3的抗性不育株和45株基因型为AabbRfRfR1R1R3R3的抗性可育株,这两种类型植株进行兄妹交,后代群体中抗性可育株和抗性不育株植株数量比例始终以1:1分离。
本实施例中,将抗除草剂突变体材料与正常植株进行杂交,F1代植株表现为对磺酰脲类除草剂具有抗性,将F1代植株作为父本与隐性核不育纯合两型系中的不育株杂交获得BC1代,BC1代分离群体中除草剂抗性植株和敏感型植株的单株数分别为358和115,卡方值为0.25,符合3:1的分离比例。通过育性鉴定、喷施除草剂和分子标记辅助基因型检测筛选出BC1代分离群体中R1和R3抗性位点均杂合的抗性不育植株aabbRfRfR1r1R3r3,大约筛选到27株,以该杂合抗性不育株作为母本,与甘蓝型油菜隐性核不育纯合两型系中可育株杂交,获得BC2分离群体,喷施除草剂发现抗性植株与敏感型植株比例为3:1,观察BC2分离群体的育性可发现可育植株与不育植株比例为1:1,通过分子标记辅助基因型检测发现R1和R3位点均杂合的抗性不育株aabbRfRfR1r1R3r3比例占整个群体数量的1/8。
以抗性不育株aabbRfRfR1r1R3r3继续与甘蓝型油菜隐性核不育纯合两型系中可育株杂交,获得BC3分离群体,喷施除草剂可发现BC3分离群体中抗性植株与敏感型植株比例为3:1,通过育性鉴定和分子标记辅助基因型检测筛选R1和R3均杂合的抗性可育株AabbRfRfR1r1R3r3,该基因型植株数量占整个BC3群体数量的1/8。
对BC3中该抗性可育株AabbRfRfR1r1R3r3进行套袋自交,通过喷施目标除草剂、育性鉴定和分子标记辅助基因型检测筛选纯合高抗不育植株aabbRfRfR1R1R3R3和纯合高抗可育植株AabbRfRfR1R1R3R3,这两种基因型植株比例分别为1/64和1/32,这两种基因型植株进行兄妹交,其后代全部为高抗性植株,且始终按照纯合抗性不育株和纯合抗性可育株比例为1:1分离,因此该两种基因型植株为选育的抗除草剂隐性核不育纯合两型植株。
本发明利用新获得的抗除草剂隐性核不育纯合两型系中的不育株aabbRfRfR1R1R3R3与临保系aabbrfrfr1r1r3r3杂交,获得R1和R3杂合的不育株aabbRfrfR1r1R3r3,该类型植株与临保系继续回交,从回交后代中筛选R1和R3杂合的抗性可育株aabbrfrfR1r1R3r3,其占群体植株数量比例为1/8,将该抗性可育株进行自交,从自交后代群体中筛选纯合高抗性可育株aabbrfrfR1R1R3R3,即为新获得的抗除草剂临保系。
实施例4甘蓝型油菜抗除草剂临保系的选育和全不育系的生产
参见图6,以实施例1中新获得的抗除草剂纯合两型系中的不育株aabbRfRfR1R1R3R3为母本,与临保系M-6029杂交,杂交后代全部为抗除草剂不育株,基因型为aabbRfrfR1r1R3r3,以该抗性不育株与临保系M-6029回交,在237个回交群体中有33株基因型为aabbrfrfR1r1R3r3的抗性可育株,选择20株该抗性可育株进行套袋自交,将收获的种子进行播种,对自交后代喷施除草剂发现群体出现抗性和敏感性植株分离,在花期进行育性鉴定以及利用分子标记辅助基因型检测从516株自交后代群体中筛选到35株基因型为aabbrfrfR1R1R3R3的抗性可育株,这些抗性可育株即为甘蓝型油菜抗除草剂临保系。
参见图7,将抗除草剂隐性核不育纯合两型系种植在母本行,抗除草剂临保系种植在父本行,父本与母本的行比为1:2,在花期,除去母本行中的抗性可育株AabbRfRfR1R1R3R3,留下抗性不育株aabbRfRfR1R1R3R3,抗除草剂临保系作为唯一授粉源。种子成熟后,收获不育株上的种子,即为甘蓝型油菜抗除草剂全不育系aabbRfrfR1R1R3R3。
序列表
<110> 上海市农业科学院
<120> 甘蓝型油菜抗磺酰脲类除草剂抗性突变体的应用及其方法
<130> 1911066
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 655
<212> PRT
<213> Brassica napus L.
<400> 1
Met Ala Ala Ala Thr Ser Ser Ser Pro Ile Ser Leu Thr Ala Lys Pro
1 5 10 15
Ser Ser Lys Ser Pro Leu Pro Ile Ser Arg Phe Ser Leu Pro Phe Ser
20 25 30
Leu Thr Pro Gln Lys Asp Ser Ser Arg Leu His Arg Pro Leu Ala Ile
35 40 45
Ser Ala Val Leu Asn Ser Pro Val Asn Val Ala Pro Pro Ser Pro Glu
50 55 60
Lys Thr Asp Lys Asn Lys Thr Phe Val Ser Arg Tyr Ala Pro Asp Glu
65 70 75 80
Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala Leu Glu Arg Gln Gly
85 90 95
Val Glu Thr Val Phe Ala Tyr Pro Gly Gly Ala Ser Met Glu Ile His
100 105 110
Gln Ala Leu Thr Arg Ser Ser Thr Ile Arg Asn Val Leu Pro Arg His
115 120 125
Glu Gln Gly Gly Val Phe Ala Ala Glu Gly Tyr Ala Arg Ser Ser Gly
130 135 140
Lys Pro Gly Ile Cys Ile Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu
145 150 155 160
Val Ser Gly Leu Ala Asp Ala Met Leu Asp Ser Val Pro Leu Val Ala
165 170 175
Ile Thr Gly Gln Val Pro Arg Arg Met Ile Gly Thr Asp Ala Phe Gln
180 185 190
Glu Thr Pro Ile Val Glu Val Thr Arg Ser Ile Thr Lys His Asn Tyr
195 200 205
Leu Val Met Asp Val Asp Asp Ile Pro Arg Ile Val Gln Glu Ala Phe
210 215 220
Phe Leu Ala Thr Ser Gly Arg Pro Gly Pro Val Leu Val Asp Val Pro
225 230 235 240
Lys Asp Ile Gln Gln Gln Leu Ala Ile Pro Asn Trp Asp Gln Pro Met
245 250 255
Arg Leu Pro Gly Tyr Met Ser Arg Leu Pro Gln Pro Pro Glu Val Ser
260 265 270
Gln Leu Gly Gln Ile Val Arg Leu Ile Ser Glu Ser Lys Arg Pro Val
275 280 285
Leu Tyr Val Gly Gly Gly Ser Leu Asn Ser Ser Glu Glu Leu Gly Arg
290 295 300
Phe Val Glu Leu Thr Gly Ile Pro Val Ala Ser Thr Leu Met Gly Leu
305 310 315 320
Gly Ser Tyr Pro Cys Asn Asp Glu Leu Ser Leu Gln Met Leu Gly Met
325 330 335
His Gly Thr Val Tyr Ala Asn Tyr Ala Val Glu His Ser Asp Leu Leu
340 345 350
Leu Ala Phe Gly Val Arg Phe Asp Asp Arg Val Thr Gly Lys Leu Glu
355 360 365
Ala Phe Ala Ser Arg Ala Lys Ile Val His Ile Asp Ile Asp Ser Ala
370 375 380
Glu Ile Gly Lys Asn Lys Thr Pro His Val Ser Val Cys Gly Asp Val
385 390 395 400
Lys Leu Ala Leu Gln Gly Met Asn Lys Val Leu Glu Asn Arg Ala Glu
405 410 415
Glu Leu Lys Leu Asp Phe Gly Val Trp Arg Ser Glu Leu Ser Glu Gln
420 425 430
Lys Gln Lys Phe Pro Leu Ser Phe Lys Thr Phe Gly Glu Ala Ile Pro
435 440 445
Pro Gln Tyr Ala Ile Gln Ile Leu Asp Glu Leu Thr Glu Gly Lys Ala
450 455 460
Ile Ile Ser Thr Gly Val Gly Gln His Gln Met Trp Ala Ala Gln Phe
465 470 475 480
Tyr Lys Tyr Arg Lys Pro Arg Gln Trp Leu Ser Ser Ser Gly Leu Gly
485 490 495
Ala Met Gly Phe Gly Leu Pro Ala Ala Ile Gly Ala Ser Val Ala Asn
500 505 510
Pro Asp Ala Ile Val Val Asp Ile Asp Gly Asp Gly Ser Phe Ile Met
515 520 525
Asn Val Gln Glu Leu Ala Thr Ile Arg Val Glu Asn Leu Pro Val Lys
530 535 540
Ile Leu Leu Leu Asn Asn Gln His Leu Gly Met Val Met Gln Trp Glu
545 550 555 560
Asp Arg Phe Tyr Lys Ala Asn Arg Ala His Thr Tyr Leu Gly Asp Pro
565 570 575
Ala Arg Glu Asn Glu Ile Phe Pro Asn Met Leu Gln Phe Ala Gly Ala
580 585 590
Cys Gly Ile Pro Ala Ala Arg Val Thr Lys Lys Glu Glu Leu Arg Glu
595 600 605
Ala Ile Gln Thr Met Leu Asp Thr Pro Gly Pro Tyr Leu Leu Asp Val
610 615 620
Ile Cys Pro His Gln Glu His Val Leu Pro Met Ile Pro Ser Gly Gly
625 630 635 640
Thr Phe Lys Asp Val Ile Thr Glu Gly Asp Gly Arg Thr Lys Tyr
645 650 655
<210> 2
<211> 652
<212> PRT
<213> Brassica napus L.
<400> 2
Met Ala Ala Ala Thr Ser Ser Ser Pro Ile Ser Leu Thr Ala Lys Pro
1 5 10 15
Ser Ser Lys Ser Pro Leu Pro Ile Ser Arg Phe Ser Leu Pro Phe Ser
20 25 30
Leu Thr Pro Gln Lys Pro Ser Ser Arg Leu His Arg Pro Leu Ala Ile
35 40 45
Ser Ala Val Leu Asn Ser Pro Val Asn Val Ala Pro Glu Lys Thr Asp
50 55 60
Lys Ile Lys Thr Phe Ile Ser Arg Tyr Ala Pro Asp Glu Pro Arg Lys
65 70 75 80
Gly Ala Asp Ile Leu Val Glu Ala Leu Glu Arg Gln Gly Val Glu Thr
85 90 95
Val Phe Ala Tyr Pro Gly Gly Ala Ser Met Glu Ile His Gln Ala Leu
100 105 110
Thr Arg Ser Ser Thr Ile Arg Asn Val Leu Pro Arg His Glu Gln Gly
115 120 125
Gly Val Phe Ala Ala Glu Gly Tyr Ala Arg Ser Ser Gly Lys Pro Gly
130 135 140
Ile Cys Ile Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu Val Ser Gly
145 150 155 160
Leu Ala Asp Ala Met Leu Asp Ser Val Pro Leu Val Ala Ile Thr Gly
165 170 175
Gln Val Pro Arg Arg Met Ile Gly Thr Asp Ala Phe Gln Glu Thr Pro
180 185 190
Ile Val Glu Val Thr Arg Ser Ile Thr Lys His Asn Tyr Leu Val Met
195 200 205
Asp Val Asp Asp Ile Pro Arg Ile Val Gln Glu Ala Phe Phe Leu Ala
210 215 220
Thr Ser Gly Arg Pro Gly Pro Val Leu Val Asp Val Pro Lys Asp Ile
225 230 235 240
Gln Gln Gln Leu Ala Ile Pro Asn Trp Asp Gln Pro Met Arg Leu Pro
245 250 255
Gly Tyr Met Ser Arg Leu Pro Gln Pro Pro Glu Val Ser Gln Leu Gly
260 265 270
Gln Ile Val Arg Leu Ile Ser Glu Ser Lys Arg Pro Val Leu Tyr Val
275 280 285
Gly Gly Gly Ser Leu Asn Ser Ser Glu Glu Leu Gly Arg Phe Val Glu
290 295 300
Leu Thr Gly Ile Pro Val Ala Ser Thr Leu Met Gly Leu Gly Ser Tyr
305 310 315 320
Pro Cys Asn Asp Glu Leu Ser Leu Gln Met Leu Gly Met His Gly Thr
325 330 335
Val Tyr Ala Asn Tyr Ala Val Glu His Ser Asp Leu Leu Leu Ala Phe
340 345 350
Gly Val Arg Phe Asp Asp Arg Val Thr Gly Lys Leu Glu Ala Phe Ala
355 360 365
Ser Arg Ala Lys Ile Val His Ile Asp Ile Asp Ser Ala Glu Ile Gly
370 375 380
Lys Asn Lys Thr Pro His Val Ser Val Cys Gly Asp Val Lys Leu Ala
385 390 395 400
Leu Gln Gly Met Asn Lys Val Leu Glu Asn Arg Ala Glu Glu Leu Lys
405 410 415
Leu Asp Phe Gly Val Trp Arg Ser Glu Leu Ser Glu Gln Lys Gln Lys
420 425 430
Phe Pro Leu Ser Phe Lys Thr Phe Gly Glu Ala Ile Pro Pro Gln Tyr
435 440 445
Ala Ile Gln Val Leu Asp Glu Leu Thr Gln Gly Lys Ala Ile Ile Ser
450 455 460
Thr Gly Val Gly Gln His Gln Met Trp Ala Ala Gln Phe Tyr Lys Tyr
465 470 475 480
Arg Lys Pro Arg Gln Trp Leu Ser Ser Ser Gly Leu Gly Ala Met Gly
485 490 495
Phe Gly Leu Pro Ala Ala Ile Gly Ala Ser Val Ala Asn Pro Asp Ala
500 505 510
Ile Val Val Asp Ile Asp Gly Asp Gly Ser Phe Ile Met Asn Val Gln
515 520 525
Glu Leu Ala Thr Ile Arg Val Glu Asn Leu Pro Val Lys Ile Leu Leu
530 535 540
Leu Asn Asn Gln His Leu Gly Met Val Met Gln Trp Glu Asp Arg Phe
545 550 555 560
Tyr Lys Ala Asn Arg Ala His Thr Tyr Leu Gly Asp Pro Ala Arg Glu
565 570 575
Asn Glu Ile Phe Pro Asn Met Leu Gln Phe Ala Gly Ala Cys Gly Ile
580 585 590
Pro Ala Ala Arg Val Thr Lys Lys Glu Glu Leu Arg Glu Ala Ile Gln
595 600 605
Thr Met Leu Asp Thr Pro Gly Pro Tyr Leu Leu Asp Val Ile Cys Pro
610 615 620
His Gln Glu His Val Leu Pro Met Ile Pro Ser Gly Gly Thr Phe Lys
625 630 635 640
Asp Val Ile Thr Glu Gly Asp Gly Arg Thr Lys Tyr
645 650
<210> 3
<211> 1968
<212> DNA
<213> Brassica napus L.
<400> 3
atggcggcgg caacatcgtc ttctccgatc tccttaaccg ctaaaccttc ttccaaatcc 60
cctctaccca tttccagatt ctcccttccc ttctccttaa ccccacagaa agactcctcc 120
cgtctccacc gtcctctcgc catctccgcc gttctcaact cacccgtcaa tgtcgcacct 180
ccttcccctg aaaaaaccga caagaacaag actttcgtct cccgctacgc tcccgacgag 240
ccccgcaagg gtgctgatat cctcgtcgaa gccctcgagc gtcaaggcgt cgaaaccgtc 300
tttgcttatc ccggaggtgc ttccatggag atccaccaag ccttgactcg ctcctccacc 360
atccgtaacg tccttccccg tcacgaacaa ggaggagtct tcgccgccga gggttacgct 420
cgttcctccg gcaaaccggg aatctgcata gccacttcgg gtcccggagc taccaacctc 480
gtcagcgggt tagcagacgc gatgcttgac agtgttcctc ttgtcgccat tacaggacag 540
gtccctcgcc ggatgatcgg tactgacgcc ttccaagaga caccaatcgt tgaggtaacg 600
aggtctatta cgaaacataa ctatttggtg atggatgttg atgacatacc taggatcgtt 660
caagaagctt tctttctagc tacttccggt agacccggac cggttttggt tgatgttcct 720
aaggatattc agcagcagct tgcgattcct aactgggatc aacctatgcg cttacctggc 780
tacatgtcta ggttgcctca gcctccggaa gtttctcagt taggtcagat cgttaggttg 840
atctcggagt ctaagaggcc tgttttgtac gttggtggtg gaagcttgaa ctcgagtgaa 900
gaactgggga gatttgtcga gcttactggg atccccgttg cgagtacttt gatggggctt 960
ggctcttatc cttgtaacga tgagttgtcc ctgcagatgc ttggcatgca cgggactgtg 1020
tatgctaact acgctgtgga gcatagtgat ttgttgctgg cgtttggtgt taggtttgat 1080
gaccgtgtca cgggaaagct cgaggctttc gctagcaggg ctaaaattgt gcacatagac 1140
attgattctg ctgagattgg gaagaataag acacctcacg tgtctgtgtg tggtgatgta 1200
aagctggctt tgcaagggat gaacaaggtt cttgagaacc gggcggagga gctcaagctt 1260
gatttcggtg tttggaggag tgagttgagc gagcagaaac agaagttccc tttgagcttc 1320
aaaacgtttg gagaagccat tcctccgcag tacgcgattc agatcctcga cgagctaacc 1380
gaagggaagg caattatcag tactggtgtt ggacagcatc agatgtgggc ggcgcagttt 1440
tacaagtaca ggaagccgag acagtggctg tcgtcatcag gcctcggagc tatgggtttt 1500
ggacttcctg ctgcgattgg agcgtctgtg gcgaaccctg atgcgattgt tgtggatatt 1560
gacggtgatg gaagcttcat aatgaacgtt caagagctgg ccacaatccg tgtagagaat 1620
cttcctgtga agatactctt gttaaacaac cagcatcttg ggatggtcat gcaattggaa 1680
gatcggttct acaaagctaa cagagctcac acttatctcg gggacccggc aagggagaac 1740
gagatcttcc ctaacatgct gcagtttgca ggagcttgcg ggattccagc tgcgagagtg 1800
acgaagaaag aagaactccg agaagctatt cagacaatgc tggatacacc aggaccatac 1860
ctgttggatg tgatatgtcc gcaccaagaa catgtgttac cgatgatccc aagtggtggc 1920
actttcaaag atgtaataac agaaggggat ggtcgcacta agtactga 1968
<210> 4
<211> 1959
<212> DNA
<213> Brassica napus L.
<400> 4
atggcggcgg caacatcgtc ttctccgatc tccttaaccg ctaaaccttc ttccaaatcc 60
cctctaccca tttccagatt ctcccttccc ttctccttaa ccccacagaa accctcctcc 120
cgtctccacc gtccactcgc catctccgcc gttctcaact cacccgtcaa tgtcgcacct 180
gaaaaaaccg acaagatcaa gactttcatc tcccgctacg ctcccgacga gccccgcaag 240
ggtgctgata tcctcgtgga agccctcgag cgtcaaggcg tcgaaaccgt cttcgcttat 300
cccggaggtg cctccatgga gatccaccaa gccttgactc gctcctccac catccgtaac 360
gtcctccccc gtcacgaaca aggaggagtc ttcgccgccg agggttacgc tcgttcctcc 420
ggcaaaccgg gaatctgcat agccacttcg ggtcccggag ctaccaacct cgtcagcggg 480
ttagccgacg cgatgcttga cagtgttcct ctcgtcgcca tcacaggaca ggtccctcgc 540
cggatgatcg gtactgacgc gttccaagag acgccaatcg ttgaggtaac gaggtctatt 600
acgaaacata actatctggt gatggatgtt gatgacatac ctaggatcgt tcaagaagca 660
ttctttctag ctacttccgg tagacccgga ccggttttgg ttgatgttcc taaggatatt 720
cagcagcagc ttgcgattcc taactgggat caacctatgc gcttgcctgg ctacatgtct 780
aggctgcctc agccaccgga agtttctcag ttaggccaga tcgttaggtt gatctcggag 840
tctaagaggc ctgttttgta cgttggtggt ggaagcttga actcgagtga agaactgggg 900
agatttgtcg agcttactgg gatccctgtt gcgagtacgt tgatggggct tggctcttat 960
ccttgtaacg atgagttgtc cctgcagatg cttggcatgc acgggactgt gtatgctaac 1020
tacgctgtgg agcatagtga tttgttgctg gcgtttggtg ttaggtttga tgaccgtgtc 1080
acgggaaagc tcgaggcgtt tgcgagcagg gctaagattg tgcacataga cattgattct 1140
gctgagattg ggaagaataa gacacctcac gtgtctgtgt gtggtgatgt aaagctggct 1200
ttgcaaggga tgaacaaggt tcttgagaac cgggcggagg agctcaagct tgatttcggt 1260
gtttggagga gtgagttgag cgagcagaaa cagaagttcc cgttgagctt caaaacgttt 1320
ggagaagcca ttcctccgca gtacgcgatt caggtcctag acgagctaac ccaagggaag 1380
gcaattatca gtactggtgt tggacagcat cagatgtggg cggcgcagtt ttacaagtac 1440
aggaagccga ggcagtggct gtcgtcctca ggactcggag ctatgggttt cggacttcct 1500
gctgcgattg gagcgtctgt ggcgaaccct gatgcgattg ttgtggacat tgacggtgat 1560
ggaagcttca taatgaacgt tcaagagctg gccacaatcc gtgtagagaa tcttcctgtg 1620
aagatactct tgttaaacaa ccagcatctt gggatggtca tgcaattgga agatcggttc 1680
tacaaagcta acagagctca cacttatctc ggggacccgg caagggagaa cgagatcttc 1740
cctaacatgc tgcagtttgc aggagcttgc gggattccag ctgcgagagt gacgaagaaa 1800
gaagaactcc gagaagctat tcagacaatg ctggatacac ctggaccgta cctgttggat 1860
gtcatctgtc cgcaccaaga acatgtgtta ccgatgatcc caagtggtgg cactttcaaa 1920
gatgtaataa ccgaagggga tggtcgcact aagtactga 1959
<210> 5
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tccttcccct gaaaaaaccg 20
<210> 6
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
tcacatccaa caggtatggt cct 23
<210> 7
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
cctgaaaaaa ccgacaagat caaga 25
<210> 8
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gacatccaac aggtacggtc ca 22

Claims (9)

1.一种甘蓝型油菜抗磺酰脲类除草剂突变基因,其在ALS1和ALS3两个基因上均发生单位点突变,其中,在ALS1基因的编码序列中第1676位碱基由G突变为T,使第559个氨基酸由色氨酸突变为亮氨酸,具体氨基酸序列如SEQ ID NO.1所示;在ALS3基因的编码序列中,第1667位碱基由G突变为T,使第556个氨基酸由色氨酸突变为亮氨酸,具体氨基酸序列如SEQID NO.2所示。
2.根据权利要求1所述甘蓝型油菜抗磺酰脲类除草剂突变基因,其特征在于,编码ALS1基因的核苷酸序列如SEQ ID NO.3所示;编码ALS3基因的具体核苷酸序列如SEQ ID NO.4所示。
3.如权利要求1所述甘蓝型油菜抗磺酰脲类除草剂突变基因的应用,以甘蓝型油菜抗磺酰脲类除草剂突变体亲本材料为供体,与甘蓝型油菜隐性核不育纯合两型系及其临保系进行杂交选育,获得具有抗磺酰脲类除草剂特征的甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系。
4.根据权利要求2所述应用,其特征在于,利用所述甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系杂交生产甘蓝型油菜抗除草剂的全不育系,基因型为aabbRfrfR1R1R3R3。
5.根据权利要求3所述应用,其特征在于,利用所述抗除草剂的全不育系与基因型为AA----r1r1r3r3、--BB--r1r1r3r3或AABB--r1r1r3r3的恢复系杂交,生产对磺酰脲类除草剂具有抗性的商用F1杂交种。
6.一种甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系的选育方法,包括以下步骤:
a)甘蓝型油菜隐性核不育纯合两型系的不育株aabbRfRfr1r1r3r3与甘蓝型油菜抗除草剂突变体5N的可育株AABBRfRfR1R1R3R3杂交,以其F1代抗除草剂可育株AaBbRfRfR1r1R3r3为父本,与甘蓝型油菜隐性核不育纯合两型系的不育株aabbRfRfr1r1r3r3杂交,BC1代分离群体中会分离出3/4的可育株和1/4的不育株,其中,不育株中又包括杂合抗性不育株和敏感型不育株,通过喷施除草剂、利用SNP分子标记辅助检测基因型,筛选,得到杂合抗性不育株aabbRfRfR1r1R3r3;
b)以步骤a)中得到的杂合抗性不育株aabbRfRfR1r1R3r3为母本,与甘蓝型油菜隐性核不育纯合两型系可育株AabbRfRfr1r1r3r3杂交,分离出1:1的可育株和不育株,不育株包含1:1:1:1的杂合抗性不育株aabbRfRfR1r1R3r3、杂合抗性不育株aabbRfRfR1r1r3r3、杂合抗性不育株aabbRfRfr1r1R3r3和敏感型不育株aabbRfRfr1r1r3r3;
c)以步骤b)中的杂合抗性不育株aabbRfRfR1r1R3r3为母本,继续与甘蓝型油菜隐性核不育纯合两型系可育株AabbRfRfr1r1r3r3杂交,分离出1:1的可育株和不育株,可育株包含1:1:1:1的杂合抗性可育株AabbRfRfR1r1R3r3、杂合抗性可育株AabbRfRfR1r1r3r3、杂合抗性可育株AabbRfRfr1r1R3r3和敏感型可育株AabbRfRfr1r1r3r3;
将步骤c)的杂合抗性可育株AabbRfRfR1r1R3r3套袋自交,其后代中出现1/64的纯合抗性不育株aabbRfRfR1R1R3R3和1/32的纯合抗性可育株AabbRfRfR1R1R3R3,将这两种基因型植株进行兄妹交,其后代始终按照1:1的比例分离,由此选育出甘蓝型油菜抗除草剂隐性核不育纯合两型系;
d)以步骤c)中的纯合抗性不育株aabbRfRfR1R1R3R3与临保系aabbrfrfr1r1r3r3杂交,杂交后代为杂合高抗性不育株aabbRfrfR1r1R3r3;
e)以步骤d)中的杂合高抗性不育株aabbRfrfR1r1R3r3继续与临保系aabbrfrfr1r1r3r3杂交,杂交后代分离得到1/8的抗性可育株aabbrfrfR1r1R3r3,将其进行自交,自交后代群体全部为可育株,包括1/16的纯合抗性可育株aabbrfrfR1R1R3R3以及1/16的纯合敏感型可育株aabbrfrfr1r1r3r3,剩余的为杂合抗性可育株,筛选出纯合抗性可育株aabbrfrfR1R1R3R3,即为抗除草剂临保系。
7.根据权利要求5所述甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系的选育方法,其特征在于,在步骤a)、b)、c)、d)和/或e)中,获得杂交后代后,先在油菜四叶期通过喷施目标除草剂除去敏感型油菜,然后在花期通过育性鉴定区分剩余抗性株中的可育株和不育株,最后利用SNP分子标记辅助检测基因型,区分抗性基因的纯杂合情况,最终筛选获得符合预期的基因型的植株。
8.根据权利要求5所述甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系的选育方法,其特征在于,步骤e)中,通过喷施除草剂除去纯合敏感型可育株,通过SNP分子标记辅助检测基因型,区分杂合抗性可育株和纯合抗性可育株中抗性基因的纯杂合情况。
9.根据权利要求5-7任一项中所述甘蓝型油菜抗除草剂隐性核不育纯合两型系及其临保系的选育方法,其特征在于,其中,SNP分子标记辅助检测基因型时的引物序列如SEQ IDNO.5和SEQ ID NO.6、SEQ ID NO.7和SEQ ID NO.8所示。
CN201910298124.5A 2019-04-15 2019-04-15 甘蓝型油菜抗磺酰脲类除草剂突变基因及应用 Pending CN110117599A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910298124.5A CN110117599A (zh) 2019-04-15 2019-04-15 甘蓝型油菜抗磺酰脲类除草剂突变基因及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910298124.5A CN110117599A (zh) 2019-04-15 2019-04-15 甘蓝型油菜抗磺酰脲类除草剂突变基因及应用

Publications (1)

Publication Number Publication Date
CN110117599A true CN110117599A (zh) 2019-08-13

Family

ID=67520923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910298124.5A Pending CN110117599A (zh) 2019-04-15 2019-04-15 甘蓝型油菜抗磺酰脲类除草剂突变基因及应用

Country Status (1)

Country Link
CN (1) CN110117599A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628783A (zh) * 2019-10-23 2019-12-31 江苏省农业科学院 一种非转基因抗除草剂油菜基因及其应用
CN110679480A (zh) * 2019-11-22 2020-01-14 江苏省农业科学院 一种高抗磺酰脲类除草剂油菜的选育方法
CN111328706A (zh) * 2020-04-26 2020-06-26 浙江省农业科学院 一种提高甘蓝型油菜隐性上位互作核不育的全不育系和杂交种纯度的方法
CN112021176A (zh) * 2020-08-06 2020-12-04 西南大学 甘蓝型黄籽油菜抗草甘膦隐性核不育临保系的选育方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215243A (zh) * 2013-04-07 2013-07-24 深圳兴旺生物种业有限公司 甘蓝型油菜抗除草剂蛋白及其在植物育种中的应用
CN103843654A (zh) * 2014-03-07 2014-06-11 上海市农业科学院 油光叶隐性核不育纯合两型系和油光叶临保系的选育方法和应用
WO2015082413A1 (en) * 2013-12-02 2015-06-11 Bayer Cropscience Nv Als inhibitor herbicide tolerant mutant plants
CN104789682A (zh) * 2015-04-29 2015-07-22 江苏省农业科学院 检测甘蓝型油菜抗磺酰脲类除草剂基因BnALS3R的引物与应用
US20160160232A1 (en) * 2013-07-12 2016-06-09 Bayer Cropscience Lp Als inhibitor herbicide tolerant mutant plants
CN107245480A (zh) * 2017-07-13 2017-10-13 江苏省农业科学院 具有除草剂抗性的乙酰乳酸合酶突变蛋白及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215243A (zh) * 2013-04-07 2013-07-24 深圳兴旺生物种业有限公司 甘蓝型油菜抗除草剂蛋白及其在植物育种中的应用
US20160160232A1 (en) * 2013-07-12 2016-06-09 Bayer Cropscience Lp Als inhibitor herbicide tolerant mutant plants
WO2015082413A1 (en) * 2013-12-02 2015-06-11 Bayer Cropscience Nv Als inhibitor herbicide tolerant mutant plants
CN103843654A (zh) * 2014-03-07 2014-06-11 上海市农业科学院 油光叶隐性核不育纯合两型系和油光叶临保系的选育方法和应用
CN104789682A (zh) * 2015-04-29 2015-07-22 江苏省农业科学院 检测甘蓝型油菜抗磺酰脲类除草剂基因BnALS3R的引物与应用
CN107245480A (zh) * 2017-07-13 2017-10-13 江苏省农业科学院 具有除草剂抗性的乙酰乳酸合酶突变蛋白及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HU MAO-LONG等: "Inheritance and molecular characterization of resistance to AHAS-inhibiting herbicides in rapeseed", 《JOURNAL OF INTEGRATIVE AGRICULTURE》 *
曹墨菊等: "《植物生物技术概论》", 31 October 2014, 中国农业大学出版社 *
胡茂龙等: "我国抗 ALS 类除草剂油菜种质创制与研究进展", 《中国油料作物学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628783A (zh) * 2019-10-23 2019-12-31 江苏省农业科学院 一种非转基因抗除草剂油菜基因及其应用
CN110679480A (zh) * 2019-11-22 2020-01-14 江苏省农业科学院 一种高抗磺酰脲类除草剂油菜的选育方法
CN111328706A (zh) * 2020-04-26 2020-06-26 浙江省农业科学院 一种提高甘蓝型油菜隐性上位互作核不育的全不育系和杂交种纯度的方法
CN112021176A (zh) * 2020-08-06 2020-12-04 西南大学 甘蓝型黄籽油菜抗草甘膦隐性核不育临保系的选育方法

Similar Documents

Publication Publication Date Title
Foroughi-Wehr et al. Rapid production of recombinant barley yellow mosaic virus resistant Hordeum vulgare lines by anther culture
Franzmann et al. Saturating the genetic map of Arabidopsis thaliana with embryonic mutations
Anithakumari et al. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population
CN110117599A (zh) 甘蓝型油菜抗磺酰脲类除草剂突变基因及应用
AU2008263879B2 (en) Improved pepper plant
Lydiate et al. Mapping the Brassica genome
CN107435066A (zh) 水稻柱头外露率主效qtl及其定位方法和应用
Zhang et al. Bulked-segregant analysis identified a putative region related to short internode length in melon
Takeuchi Developing isogenic lines of Japanese rice cultivar ‘Koshihikari’with early and late heading
CN111676229B (zh) 一种玉米雄性核不育基因ms40及其分子标记和应用
EP2244552A1 (en) Methods for improving the yield of cucumber plants
Schlegel Hybrid breeding boosted molecular genetics in rye
US20230247956A1 (en) Melon with red flesh linked to earliness
CN110157828A (zh) 甘蓝型油菜抗磺酰脲类除草剂抗性突变体的应用及其方法
EP2102364B1 (en) Genetic markers for orobanche resistance in sunflower
Ming et al. Genomics of papaya a common source of vitamins in the tropics
Panaud Foxtail millet
Roux et al. Is the cost of herbicide resistance expressed in the breakdown of the relationships between characters? A case study using synthetic-auxin-resistant Arabidopsis thaliana mutants
CN113430209A (zh) 大麦雄性不育基因bms-1及其应用
Wang et al. Fine mapping of a novel major quantitative trait locus, qPAA7, that controls panicle apical abortion in rice
AU2021100424A4 (en) Maize Genic Male Sterility Gene ms40 and Molecular Marker and Application Thereof
Abebrese et al. Mapping chromosomal regions associated with anther indehiscence with exerted stigmas in CRI-48 and Jasmine 85 cross of rice (Oryza sativa L)
Terauchi et al. Sex determination in Dioscorea tokoro, a wild yam species
US20230165212A1 (en) Materials and methods for producing hybrid diploid potato
Abdelrahman et al. Metabolomics and Cytoplasmic Genomics of Allium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Jiang Jianxia

Inventor after: Hu Maolong

Inventor after: Pu Huiming

Inventor after: Li Yanli

Inventor after: Jiang Meiyan

Inventor after: Yang Liyong

Inventor after: Wang Weirong

Inventor after: Sun Chaocai

Inventor after: Zhou Xirong

Inventor after: Zhang Junying

Inventor after: Zhu Jifeng

Inventor before: Jiang Jianxia

Inventor before: Li Yanli

Inventor before: Jiang Meiyan

Inventor before: Yang Liyong

Inventor before: Wang Weirong

Inventor before: Sun Chaocai

Inventor before: Zhou Xirong

Inventor before: Zhang Junying

Inventor before: Zhu Jifeng

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20200116

Address after: 201106 Shanghai city Minhang District North Zhai Road No. 2901

Applicant after: Shanghai Academy of Agricultural Sciences

Applicant after: Jiangsu Academy of Agricultural Sciences

Address before: 201106 Shanghai city Minhang District North Zhai Road No. 2901

Applicant before: Shanghai Academy of Agricultural Sciences

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20190813

RJ01 Rejection of invention patent application after publication