CN110117031A - 一种高结晶性二硫化铼圆形纳米晶的一步法制备技术 - Google Patents
一种高结晶性二硫化铼圆形纳米晶的一步法制备技术 Download PDFInfo
- Publication number
- CN110117031A CN110117031A CN201810112402.9A CN201810112402A CN110117031A CN 110117031 A CN110117031 A CN 110117031A CN 201810112402 A CN201810112402 A CN 201810112402A CN 110117031 A CN110117031 A CN 110117031A
- Authority
- CN
- China
- Prior art keywords
- nanocrystalline
- round
- res2
- step method
- preparing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- USWJSZNKYVUTIE-UHFFFAOYSA-N bis(sulfanylidene)rhenium Chemical compound S=[Re]=S USWJSZNKYVUTIE-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 238000005516 engineering process Methods 0.000 title claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims description 10
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004570 mortar (masonry) Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims 3
- 239000007788 liquid Substances 0.000 claims 2
- 230000007547 defect Effects 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 16
- 239000006185 dispersion Substances 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 abstract 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 abstract 1
- 239000002159 nanocrystal Substances 0.000 description 25
- 230000000694 effects Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 239000002086 nanomaterial Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000002135 nanosheet Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000002525 ultrasonication Methods 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- YSZJKUDBYALHQE-UHFFFAOYSA-N rhenium trioxide Chemical compound O=[Re](=O)=O YSZJKUDBYALHQE-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G47/00—Compounds of rhenium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/78—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种高结晶二硫化铼圆形纳米晶的一步法制备技术,其特征为通过一步法制备出分散性好、尺寸小、结晶度高、兼具荧光特性的ReS2圆形纳米晶。针对当前新型二维材料二硫化铼纳米晶的研究较少,且工艺设备要求较高,操作流程较繁琐等现状,本发明采用一步法制得ReS2圆形纳米晶,该产物在紫外‑可见光谱中有288nm和376nm的吸收峰,根据吸收值表明其带隙可调;高分辨透射电镜图显示其晶格间距为0.273nm,平均粒径为2.7nm,表明ReS2圆形纳米晶的一步法制备技术高效、可行,同时图像也表明一步法制备的ReS2圆形纳米晶具有高结晶度。
Description
技术领域
本发明涉及一种高结晶二维材料二硫化铼圆形纳米晶的一步法制备技术,具体涉及用简单的技术制备出尺寸可控的二硫化铼圆形纳米晶,促进其在材料、能源、生物、医药等方面的发展与应用。
背景技术
作为二维原子晶体材料家族的重要成员,二硫化铼(ReS2)具有不同于传统二维材料的结构和性质,低的晶格对称性赋予其独特的二维面内各向异性光学和电学性质,在场效应晶体管、光电探测器和新概念器件等方面具有极大应用价值。此外,ReS2有着半导体特性并且具有适合器件应用的带隙,这使得它们有望作为石墨烯的补充。单层ReS2纳米片具有1.6e V的直接带隙以及1×106的高电流开/关比,引起了人们极大的研究兴趣。与二维纳米片相比,零维的纳米晶具有更强的量子限域效应及边界效应,因而出现一些更优异的物理 、化学性质。
当纳米晶的几何尺寸小于或接近波尔激子半径时,电子与空穴的运动将在空间三个维度上受到限制,原来连续的能带结构将分裂为独立的能级随着纳米晶尺寸进一步减小,载流子动能的增加,能级之间的能隙将增大,吸收光谱上表现为蓝移,即量子限域效应。量子限域效应是低维半导体纳米材料物理性质的基础。衡量材料量子限域效应的指标是波尔激子半径,具体可以描述如下:。其中为波尔激子半径,e为电子电荷,为约化普朗克常量,为材料的真空介电常数,和分别为有效电子和空穴质量。当半导体材料的尺寸小于其体相材料的波尔激子半径时,载流子的运动受到限制,电子由原来的局域化共有状态逐渐转变为离域态。层状材料原有的能带结构将被取代为类似分子的分立能级。相对于体相材料,纳米晶的晶体结构并没有改变,而其电子结构发生了改变,即在三维空间上载流子的自由运动受到了限制,使得能带结构出现分立轨道能级,提高了激子形成能量,引起了吸收谱的蓝移。这一效应将会展现出比多层的ReS2纳米片更独特的光电性质。因而 ReS2纳米晶这一类新型的零维纳米材料,在光电子、能源、催化、生物、医疗等方面有着巨大的发展潜力。尽管如此,严格控制ReS2纳米晶的厚度和横向尺寸,实现ReS2圆形纳米晶的可控制备仍然面临很大的挑战。
随着纳米制备技术的发展,合成纳米材料的新方法层出不穷,化学溶液法是近几年来一种新颖化学制备纳米材料的方法。其在化学方法的基础上外加超声波,利用超声波的声空化作用来控制纳米粒子的尺寸和形貌。该方法能有效的控制材料尺寸,形状,分布且具有简单、快速、污染小等优点已成为制备纳米材料的一种有效方法,现已成为制备纳米材料常用方法。一般用于化学中的超声波波速约为
1500m/s,波长为 10nm~0.01cm,频率范围一般在 10~106kHz。其在溶液中产生的效应主要分为化学作用和物理作用。其制备的材料的尺寸更小、更具均匀性,是ReS2圆形纳米晶的制备和研究荧光量子效应更为实用的方法。
中国专利号为:201610494152.0,名称为:一种二硫化铼单晶的生长方法。其特征在于在真空石英管中以三氧化铼和硫粉制备二硫化铼单晶。本发明的材料与上述不同,本发明ReS2粉末是原料不是产物,使用化学溶液超声法制得尺寸可控均匀的ReS2圆形纳米晶,并研究这种新型二维材料的光学、电学等性能。
发明内容
本发明要解决的是ReS2纳米晶的尺寸大小和能级问题,通常当材料尺寸减小到能够与其体材料的有效玻尔半径相当或更小时,其能隙相应的增加,纳米晶内的电子、空穴数目急剧的减少,电子结构由原先的准连续的能级分布转变成离散的能级,将导致发射峰位置蓝移,因此光学行为与一些大分子(如:苯、奈、蒽等)很相似,具有荧光效应,结合TEM图1制备出的ReS2纳米晶来看其结晶性良好,尺寸小且呈现圆形。
本发明所使用方法是化学溶液超声一步法制备出ReS2纳米晶。
本发明提供了一种高结晶二硫化铼圆形纳米晶的一步法制备技术,按照以下步骤进行:
第一步,取适量ReS2固体粉末0.5g于玛瑙研钵中充分研磨1.5~2小时;
第二步,在第一步研磨好的粉末样品中加入50ml 1-甲基-2-吡咯烷酮(NMP)溶剂后混合密封。再将上述混合液置于超声仪中超声,累计超声4小时;
第三步,将第二部中超声后的悬浮液转移到离心机中进行离心,然后收集上层澄清溶液即为小尺寸的ReS2纳米晶溶液。
本发明的ReS2 纳米晶晶格间距为0.273nm,平均粒径为2.66nm,其晶格条纹较窄,尺寸小,再结合HRTEM图能看出其结晶度良好。
本发明一种高结晶ReS2圆形纳米晶的一步法制备技术与传统相比具有以下创新点:
(1)选材新颖:当前还没有化学溶液超声工艺一步法制备ReS2纳米晶的报道,本发明具有独创性;
(2)工艺简单:以ReS2粉末为原材料一步法制备出ReS2纳米晶,其尺寸小,结晶度高。
本发明采用一步超声工艺制备出尺寸均匀、分散性好、结晶度高,且具有荧光特性的ReS2圆形纳米晶。可以广泛应用在半导体光电器件、生物荧光标记、LED投影、高效催化剂等领域,其应用前景非常广阔。
附图说明
图1是ReS2圆形纳米晶的TEM图。
图2是ReS2圆形纳米晶晶格条纹图。
图3是ReS2圆形纳米晶水溶液紫外-可见光吸收光谱图。
图4是ReS2圆形纳米晶Raman图。
具体实施例
实施例1:用天平称取0.5克ReS2固体粉末置于玛瑙研钵中充分研磨1.5小时左右,再将研磨好的粉末转移到烧杯中,向其中加入50 毫升1-甲基-2-吡咯烷酮(NMP)溶剂后混合密封,得到的混合液置于超声仪超声4小时。取超声后的溶液置于离心机中离心25分钟,离心转速为5000转/分钟,离心后取上层澄清溶液即可得到ReS2圆形纳米晶。
Claims (5)
1.在一种高结晶二硫化铼圆形纳米晶的一步法制备技术,其特征在于该制备方法以ReS2粉末为原料,并对其充分研磨,然后向其中加入适量的1-甲基-2-吡咯烷酮(NMP)溶剂,最后使用超声法制备ReS2圆形纳米晶。
2.如权利1要求所述,一种高结晶二硫化铼圆形纳米晶的一步法制备技术,其ReS2粉末的质量与NMP溶剂的体积比为0.5g:50ml。
3.如权利1要求所述,一种高结晶二硫化铼圆形纳米晶的一步法制备技术,其步骤包括:
(1)取一定量ReS2固体粉末于玛瑙研钵中充分研磨;
(2)在研磨好的粉末中加入1-甲基-2-吡咯烷酮(NMP)溶剂后混合密封,然后将上述混合液置于超声仪中超声;
(3) 将超声后的溶液转移到离心机中离心,收集上层澄清溶液即为ReS2圆形纳米晶溶液。
4.根据权利要求3所述,一种ReS2圆形纳米晶的制备方法,其特征在于:步骤(1)中,研磨的时间为1.5h~2h,研磨是为了引入缺陷,利于ReS2圆形纳米晶的形成。
5.根据权利要求3所述,一种ReS2圆形纳米晶的制备方法,其特征在于:步骤(3)中,超声后的溶液要进行离心处理。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810112402.9A CN110117031A (zh) | 2018-02-05 | 2018-02-05 | 一种高结晶性二硫化铼圆形纳米晶的一步法制备技术 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810112402.9A CN110117031A (zh) | 2018-02-05 | 2018-02-05 | 一种高结晶性二硫化铼圆形纳米晶的一步法制备技术 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110117031A true CN110117031A (zh) | 2019-08-13 |
Family
ID=67519171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810112402.9A Pending CN110117031A (zh) | 2018-02-05 | 2018-02-05 | 一种高结晶性二硫化铼圆形纳米晶的一步法制备技术 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110117031A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105819410A (zh) * | 2015-11-25 | 2016-08-03 | 云南师范大学 | 一种碲化铋量子点的制备方法 |
CN106905973A (zh) * | 2017-01-20 | 2017-06-30 | 云南师范大学 | 一种超声制备碲化镍量子点的方法 |
CN106905965A (zh) * | 2017-01-20 | 2017-06-30 | 云南师范大学 | 一种制备二硫化钨量子点的方法 |
CN106904579A (zh) * | 2017-01-20 | 2017-06-30 | 云南师范大学 | 一种制备二硒化钼量子点的方法 |
-
2018
- 2018-02-05 CN CN201810112402.9A patent/CN110117031A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105819410A (zh) * | 2015-11-25 | 2016-08-03 | 云南师范大学 | 一种碲化铋量子点的制备方法 |
CN106905973A (zh) * | 2017-01-20 | 2017-06-30 | 云南师范大学 | 一种超声制备碲化镍量子点的方法 |
CN106905965A (zh) * | 2017-01-20 | 2017-06-30 | 云南师范大学 | 一种制备二硫化钨量子点的方法 |
CN106904579A (zh) * | 2017-01-20 | 2017-06-30 | 云南师范大学 | 一种制备二硒化钼量子点的方法 |
Non-Patent Citations (2)
Title |
---|
DONG MAO等: "Passively Q-Switched and Mode-Locked Fiber Laser Based on an ReS2 Saturable Absorber", 《IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS》 * |
NAKTAL AL-DULAIMI等: "Sequential bottom-up and top-down processing for the synthesis of transition metal dichalcogenide nanosheets: the case of rhenium disulfide (ReS2)", 《CHEM. COMMUN.》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: A novel van der Waals heterostructure for lithium-ion batteries | |
O'Dwyer et al. | Nano-urchin: the formation and structure of high-density spherical clusters of vanadium oxide nanotubes | |
Keller et al. | Effect of size and shape on electrochemical performance of nano-silicon-based lithium battery | |
Gao et al. | ZnO-based hollow microspheres: biopolymer-assisted assemblies from ZnO nanorods | |
Yu et al. | Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties | |
Wang et al. | Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies | |
CN105624643B (zh) | 一种大面积硒掺杂二硫化钼薄膜材料的制备方法 | |
Zhai et al. | Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity | |
Zhang et al. | Synthesis and electrochemical properties of Zn2SiO4 nano/mesorods | |
CN103820121B (zh) | 过渡族金属化合物层状量子点溶液的制备方法 | |
Wu et al. | Hierarchical ZnO aggregates assembled by orderly aligned nanorods for dye-sensitized solar cells | |
Yang et al. | Atom-Thin SnS2–x Se x with Adjustable Compositions by Direct Liquid Exfoliation from Single Crystals | |
Ma et al. | Bi 2 S 3 nanomaterials: morphology manipulation and related properties | |
Wang et al. | Ti3C2T X MXene Beaded SiC Nanowires for Efficient Microwave Absorption | |
CN108394879A (zh) | 一种黑磷烯及其制备方法和应用 | |
Qin et al. | Humidity sensors realized via negative photoconductivity effect in nanodiamonds | |
Liao et al. | Solid-phase sintering and vapor-liquid-solid growth of BP@ MgO quantum dot crystals with a high piezoelectric response | |
CN113059174A (zh) | 一种二维金属锑纳米片的制备方法 | |
CN106830080B (zh) | Cu2MoS4纳米材料及其制备方法 | |
CN106905973A (zh) | 一种超声制备碲化镍量子点的方法 | |
Zhou et al. | Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates | |
Hao et al. | Monolayer single crystal two-dimensional quantum dots via ultrathin cutting and exfoliating | |
CN105152226A (zh) | 磁性纳米环微波吸收剂的制备与应用 | |
Cho et al. | MWCNT-embedded Li4Ti5O12 microspheres interfacially modified with polyaniline as ternary composites for high-performance lithium ion battery anodes | |
Wang et al. | Carbon nanotube templated synthesis of CeF3 nanowires |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190813 |
|
RJ01 | Rejection of invention patent application after publication |