CN110110370A - 基于极限分析下限定理的任意多面楔形体安全系数求解方法 - Google Patents

基于极限分析下限定理的任意多面楔形体安全系数求解方法 Download PDF

Info

Publication number
CN110110370A
CN110110370A CN201910270497.1A CN201910270497A CN110110370A CN 110110370 A CN110110370 A CN 110110370A CN 201910270497 A CN201910270497 A CN 201910270497A CN 110110370 A CN110110370 A CN 110110370A
Authority
CN
China
Prior art keywords
sphenoid
interface
lower bound
bound limit
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910270497.1A
Other languages
English (en)
Other versions
CN110110370B (zh
Inventor
汪小刚
凌永玉
林兴超
王玉杰
赵宇飞
孙平
冷合勤
姜龙
皮进
张强
刘立鹏
曹瑞琅
段庆伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Water Resources and Hydropower Research
Original Assignee
China Institute of Water Resources and Hydropower Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Water Resources and Hydropower Research filed Critical China Institute of Water Resources and Hydropower Research
Priority to CN201910270497.1A priority Critical patent/CN110110370B/zh
Publication of CN110110370A publication Critical patent/CN110110370A/zh
Application granted granted Critical
Publication of CN110110370B publication Critical patent/CN110110370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种基于极限分析下限定理的任意多面楔形体安全系数求解方法,首先确定楔形体空间几何特征和组成楔形体的边界,生成楔形体模型;然后,根据极限分析下限定理特征,结合楔形体材料特性,建立基于组成楔形体边界的变量体系;根据极限分析下限定理的基本条件建立约束方程,推导出楔形体极限分析下限解法的优化算法表达式;最后通过优化算法表达式,求解楔形体安全系数,评价楔形体稳定性。本发明根据极限分析下限定理,不引入任何假定,通过优化方法得到最优解,真实、客观地反应了楔形体的安全性、稳定性;另外,本方法不受组成楔形体边界形状和数量限制,具有更好的适用性可以适应更为复杂的楔形体稳定性分析问题。

Description

基于极限分析下限定理的任意多面楔形体安全系数求解方法
技术领域
本发明涉及一种岩石力学中评价任意多面楔形体稳定性的方法,具体地说,本发明涉及一种通过建立基于组成任意多面楔形体边界的变量体系,根据极限分析下限定理基本条件建立约束方程,推导任意多面楔形体极限分析下限解法的优化算法表达式,通过该优化算法表达式求解任意多面楔形体安全系数的方法。本发明属于岩石力学楔形体极限分析领域。
背景技术
楔形体破坏是岩体工程(如边坡、地下洞室等)的主要破坏形式之一,其稳定性分析是进行楔形体防护、治理、预警的前提和基础,直接关系到整个岩体工程的安全与经济。因此,对楔形体稳定性分析方法的研究显得尤为重要。
目前,业内设计人员主要通过简化方法进行楔形体稳定性的分析评价。这些不同的简化方法对应不同的假定,这些假定在多数情况下是合理的,可以获得可靠的稳定分析结果。但在一些特殊情况下,这些假定可能会违背固体力学的基本原则,比如屈服准则、平衡条件,得出错误的分析结果,导致设计人员的错误判断,使得设计的边坡工程过于保守或偏于危险。因此,进一步深入研究楔形体稳定性分析方法,减少不合理假定对稳定性分析结果的影响、提高分析方法适用范围是非常必要的。
发明内容
鉴于上述原因,本发明的目的是提供一种基于极限分析下限定理的任意多面楔形体安全系数求解方法。该方法对组成楔形体的边界面数量没有限制,建立基于组成楔形体边界的变量体系,根据极限分析下限定理基本条件建立约束方程,推导求解楔形体的安全系数的优化算法表达式,通过该优化算法表达式求解楔形体的安全系数,根据该安全系数评价分析楔形体的稳定性。
为实现上述目的,本发明采用以下技术方案:一种基于极限分析下限定理的任意多面楔形体安全系数求解方法,该方法包括如下步骤:
S1:确定任意多面楔形体的空间几何特征和组成楔形体的边界,生成任意多面楔形体模型;
S2:基于极限分析下限定理特征,结合楔形体材料特性,建立基于组成楔形体边界的变量体系;
S3:根据极限分析下限定理的基本条件建立约束方程,推导出任意多面楔形体安全系数极限分析下限解法的优化算法表达式;
S4:通过该优化算法表达式,求解任意多面楔形体安全系数。
优选地,所述步骤S2基于极限分析下限定理特征,结合楔形体材料特性,建立基于组成楔形体边界的变量体系,方法如下;
S2.1:根据强度储备的概念,引入描述边坡强度的折减系数F,通过该变量描述边坡安全储备,如下式所示;
ce=c/F (2)
式中c、为边坡材料实际凝聚力和内摩擦系数,ce、fe为边坡材料进行折减后的凝聚力和内摩擦系数,ce、fe通过式(2)、(3)计算获得;
S2.2为描述楔形体界面力的方向特性,在每个结构面上建立局部坐标系;
楔形体任一结构面的作用力包括法向力和位于该界面的切向力,其量值分别为Nk、Tmk和Tlk;并以该面的法线向量nk为N轴正向;以界面任一边界线段的内法线向量tmk为Tm轴正向,通常取界面上第一条线段;Tl轴正向则可根据N轴、Tm轴通过右手螺旋法则确定tlk=tmk×nk。则界面上所受的界面力可表示为:
k为组成任意多面楔形体的界面的编号;
S2.3确定边界作用点坐标rk
楔形体编号为k的边界面上的力的作用点rk可用其空间坐标(rxk,ryk,rzk)表示,为保证作用点始终位于界面内部,必须满足如下条件:
条件1,作用点在界面所在平面上:
(rk-apk)·nk=0 (5)
式中apk为界面上任一确定点;
条件2:作用点位于界面凸多边形区域内:
式中,k为楔形体界面的编号,i为构成界面k的多边形线段编号。为界面k边界线段i的内法向量,为界面k边界线段i上任一确定点。h1为组成界面的多边形线段总数。
优选地,所述步骤S3根据极限分析下限定理的基本条件建立约束方程,推导出任意多面楔形体安全系数极限分析下限解法的优化算法表达式,包括如下步骤:
S3.1:根据极限分析下限定理,建立边坡安全系数f目标函数;
f=max(F) (7)
S3.2:根据极限分析下限定理中平衡方程的约束条件,建立楔形体力和力矩的平衡方程,具体计算公式如下:
式中,k为楔形体界面的编号,Nk、Tlk、Tmk通过式(4)确定,RFk为界面力到力矩点PG的力臂矢量,通过rk-PG计算得到,h2为组成楔形体界面的总数;i为作用于楔形体的外部荷载编号,Qi为外部荷载量值并为已知量,RQi为荷载作用点PQi到力矩点PG的力臂矢量,通过PQi-PG计算得到,h3为外部荷载的总数;G为楔形体自重,RG为楔形体自重对应的力矩矢量。lp为力或力矩求和方向,并有:
S3.3:根据极限分析下限定理中条件(b)屈服准则,楔形体每一个界面上的作用力应不违反摩尔库仑屈服准则,如下式所示:
式中,k为楔形体界面的编号,Nk、Tlk、Tmk通过式(4)确定,ck分别为界面k的黏聚力和内摩擦角,Ak分别为界面k的面积;
S3.4建立一般性约束条件:通常认为岩土体材料不受拉力,数学表达为法向力总是指向块体内部约束条件如下式所示:
Nk≥0 (12)
式中,k为楔形体界面的编号,Nk通过式(4)确定。
本发明根据极限分析下限定理,不引入任何假定,通过优化方法得到最优解,真实、客观地反应了楔形体的安全性、稳定性;另外,本方法不受组成楔形体边界形状和数量限制,具有更好的适用性可以适应更为复杂的楔形体稳定性分析问题。
附图说明
图1是本发明基于极限分析下限定理的任意多面楔形体安全系数求解方法流程图;
图2是本发明确定楔形体模型及界面的示意图;
图3是构建图2所示楔形体的各顶点编号系统和楔形体高度示意图;
图4A和图4B是构建图3所示楔形体的力的平衡示意图;
图5是本发明根据极限分析下限定理优化求解楔形体安全系数的方法流程图;
图6是利用本发明评价图2所示楔形体的实施例图。
具体实施方式
下面结合附图进一步阐明本发明,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
楔形体破坏是岩体工程(如高边坡、地下洞室等)的主要破坏形式之一,其稳定性分析是进行楔形体防护、治理、预警的前提和基础,直接关系到整个岩体工程的安全。
如图1所示,本发明提供的基于极限分析下限定理的任意多面楔形体安全系数求解方法为:
S1:确定任意多面楔形体的空间几何特征和组成楔形体的边界,生成任意多面楔形体模型。
由于楔形体破坏主要发生在边坡、地下洞室等岩土工程中,故,通常根据地下洞室、边坡等岩体工程的结构特征,确定其内部存在的楔形体,进一步确定楔形体的空间几何特征和组成楔形体的边界,生成楔形体模型。
为准确地评价任意多面楔形体的安全性/稳定性,在确定组成楔形体边界数量时,本发明不限定组成楔形体的边界数量,其数量可是任意的。
S2:基于极限分析下限定理特征,结合楔形体材料特性,建立基于组成楔形体边界的变量体系;
S3:根据极限分析下限定理的基本条件建立约束方程,推导出任意多面楔形体安全系数极限分析下限解法的优化算法表达式;
S4:通过该优化算法表达式,求解任意多面楔形体安全系数。
本发明评价所设计的岩体工程(如边坡、地下洞室等)稳定性的原理是:首先,根据所设计的岩体工程的结构特征确定任意多面楔形体空间几何特征和组成楔形体的边界,生成任意多面楔形体模型;然后,根据极限分析下限定理特征,结合楔形体材料特性,建立基于组成楔形体边界的变量体系;根据极限分析下限定理的基本条件建立约束方程,推导出任意多面楔形体极限分析下限解法的优化算法表达式;最后通过该优化算法表达式,求解任意多面楔形体安全系数,评价楔形体稳定性,进而确定所设计的岩体工程的稳定性。本发明根据极限分析下限定理,不引入任何假定,通过优化算法得到最优解,真实、客观地反应了任意楔形体的安全性、稳定性。
本发明步骤S1:确定任意多面楔形体空间几何特征及组成楔形体的边界,生成任意多面楔形体模型。
根据地下洞室、边坡等岩体工程的结构特征,确定其内部存在的任意多面楔形体,进一步确定该任意多面楔形体的空间几何特征和组成楔形体的边界,生成楔形体模型。为准确地评价任意多面楔形体的安全性/稳定性,在确定组成楔形体边界数量时,本发明不限定组成楔形体的边界数量,其数量可是任意的。
生成楔形体模型的方法较多,例如:
方法一:
通过直接输入描述楔形体边界面的信息生成楔形体模型。
对于楔形体来说,其边界面分为临空面和结构面,边界面法向量指向楔形体内部,根据楔形体的形状可直观地确定其空间几何特征及组成楔形体的边界面,通过直接输入描述组成楔形体的各边界面的点、面的信息即可生成楔形体模型。
如图2、图3所示的楔形体,该楔形体由左滑面1、右滑面2、顶面3、边坡面4和后缘面5组成,该楔形体的顶点为a0、a1、a2、a3、a4、a5
左滑面1为由a0a1a2组成的三角形;右滑面2为由a0a1a3组成的三角形;顶面3为由a1a2a3组成的三角形,边坡面4为由a0a2a3组成的三角形;后缘面5为由a3a4a5组成的三角形。
图2、图3所示的楔形体,由于楔形体的后缘拉裂缝高度H2=0,顶点a3、a4、a5重合,无后缘面5。
确定了楔形体的空间几何特征及组成楔形体的边界面后,直接将边界面的点、面信息输入通过C#自编写的建模程序中即可自动生成楔形体模型,数据输入文件中几何信息部分如下:
需要指出的是,通过数据文件输入楔形体几何信息对界面数量没有限制,可以为任意多面楔形体。
方法二:
S1.1确定组成任意多面楔形体的各边界面以及该楔形体的各顶点。
传统的楔形体稳定性分析,为分析方便,通常将复杂的任意多面楔形体简化为4个界面或5个界面后,再进行稳定性分析,这势必降低了楔形体稳定性评价的准确性和可靠性,为克服现有技术的弊端,本发明在确定组成任意多面楔形体的边界面数量时不做任何限制,组成楔形体的边界面数量可以是任意的。
为了便于说明、理解本发明,在如图2、图3所示的实施例中,本发明以5个界面组成的楔形体为例进行说明,但不表明在分析楔形体稳定性、求解楔形体安全系数时,要将楔形体简化成5个界面,本发明适用于任意边界面数量的楔形体。
首先,根据岩体工程如边坡、地下洞室中存在的楔形体形状,确定组成该楔形体的各边界面。如图2所示,在本发明具体实施例中,该楔形体由左滑面1、右滑面2、顶面3、边坡面4和后缘面5组成。
然后,确定该楔形体的各顶点。如图3所示,在本发明具体实施例中,该楔形体包括顶点a0、a1、a2、a3、a4、a5
S1.2根据组成楔形体各边界面的空间倾向、倾角及楔形体高度计算楔形体各顶点坐标,根据楔形体各顶点坐标形成各边界面进而自动生成楔形模型;具体计算方法
式中,nk为组成任意多面楔形体的界面的法向量,通过该界面倾向αk和倾角βk直接求得,k为组成任意多面楔形体的界面的编号;各界面的倾向αk和倾角βk通过测量而得;
式中,eij为楔形体各交线的方向向量;其中,ni和nj的计算方法与nk的计算方法相同;
式中,a0、a1、a2、a3、a4、a5为组成楔形体的各顶点坐标,通过各交线方向向量eij及楔形体高度H1,后缘拉裂缝高度H2求得,其中,楔形体高度H1,后缘拉裂缝高度H2通过测量而得。
在图2、图3所示的本发明具体实施例中,n1为左滑面法向量,n2为右滑面法向量,n3为顶面法向量,n4为边坡面法向量,n5为后缘面法向量;各边界面的倾向αk和倾角βk及楔形体高度H1经测量而得,如下表所示,
后缘拉裂缝高度H2=0
通过上述式(1)可以求得:
由于本发明图2、图3所示实施例,H2=0,故,顶点a3、a4、a5重合。
根据计算得出的楔形体各顶点坐标形成各边界面进而自动生成楔形模型。
如图2、图3所示,左滑面1为由a0a1a2组成的三角形;右滑面2为由a0a1a3组成的三角形;边坡面4为由a0a2a3组成的三角形;顶面3为由a1a2a3组成的三角形。由于图2、图3所示实施例,后缘拉裂缝高度H2=0,故,无后缘面5。
本发明步骤S2:基于极限分析下限定理特征,结合楔形体材料特性,建立基于组成楔形体边界的变量体系,方法如下;
S2.1:根据强度储备的概念,引入描述边坡强度的折减系数F,通过该变量描述边坡安全储备,如下式所示;
ce=c/F (2)
式中c、为边坡材料实际凝聚力和内摩擦系数,ce、fe为边坡材料进行折减后的凝聚力和内摩擦系数,ce、fe通过式(2)、(3)计算获得。
S2.2为描述楔形体界面力的方向特性,在每个结构面上建立局部坐标系。
楔形体任一结构面的作用力包括法向力和位于该界面的切向力(可用两个分量表示),其量值分别为Nk、Tmk和Tlk。并以该面的法线向量nk为N轴正向;以界面任一边界线段的内法线向量tmk为Tm轴正向,通常取界面上第一条线段;Tl轴正向则可根据N轴、Tm轴通过右手螺旋法则确定tlk=tmk×nk。则界面上所受的界面力可表示为:
以图2、图3所示楔形体为例,顶面3的局部坐标系的方向向量(如图4A、图4B所示)分别为:
其它界面局部坐标系的方向向量同理可通过局部坐标系定义直接求得,在此不赘述。
S2.3确定边界作用点坐标rk
楔形体编号为k的边界面上的力的作用点rk可用其空间坐标(rxk,ryk,rzk)表示,为保证作用点始终位于界面内部,必须满足如下条件:
条件1,作用点在界面所在平面上:
(rk-apk)·nk=0 (5)
式中apk为界面上任一确定点。
以图2、图3所示楔形体中的边坡面4为例,有n3=(0,1,0),并取
ap3=a0=(0,0,0)则式(5)转变为:
(r3-a0)·n3=0即0*rx3+ry3+0*rz3=0
条件2:作用点位于界面凸多边形区域内:
式中,k为楔形体界面的编号,i为构成界面k的多边形线段编号。为界面k边界线段i的内法向量,为界面k边界线段i上任一确定点。h1为组成界面的多边形线段总数。
以图2、图3所示楔形体中边坡面4为例,界面由3条边界组成,边界内法向量分别为
并取分别为:
则式(6)转化为
本发明步骤S3:根据极限分析下限定理的基本条件建立约束方程,推导出任意多面楔形体安全系数极限分析下限解法的优化算法表达式,如图5所示,包括如下步骤:
S3.1:根据极限分析下限定理,建立边坡安全系数f目标函数;
f=max(F) (7)
S3.2:根据极限分析下限定理中平衡方程的约束条件,建立楔形体力和力矩的平衡方程,具体计算公式如下:
式中,k为楔形体界面的编号,Nk、Tlk、Tmk通过式(4)确定,RFk为界面力到力矩点PG的力臂矢量,通过rk-PG计算得到,h2为组成楔形体界面的总数;i为作用于楔形体的外部荷载编号,Qi为外部荷载量值并为已知量,RQi为荷载作用点RQi到力矩点PG的力臂矢量,通过RQi-RG计算得到,h3为外部荷载的总数;G为楔形体自重,RG为楔形体自重对应的力矩矢量。lp为力或力矩求和方向,并有:
以图2、图3所示楔形体为例,其力和力矩平衡方程可表示如下:
(N1+Tl1+Tm1+N2+Tl2+Tm2+Q1+G)·lp=0
[(r1-PG)×(N1+Tl1+Tm1)+(r2-PG)×(N2+Tl2+Tm2)+(PQ1-PG)×Q1]·lm=0
S3.3:根据极限分析下限定理中条件(b)屈服准则,楔形体每一个界面上的作用力应不违反摩尔库仑屈服准则,如下式所示:
式中,k为楔形体界面的编号,Nk、Tlk、Tmk通过式(4)确定,ck分别为界面k的黏聚力和内摩擦角,Ak分别为界面k的面积。
以图2所示楔形体为例,其力和力矩平衡方程可表示如下:
S3.4建立一般性约束条件:通常认为岩土体材料不受拉力,数学表达为法向力总是指向块体内部约束条件如下式所示:
Nk≥0 (12)
式中,k为楔形体界面的编号,Nk通过式(4)确定。
以图2所示楔形体为例,式(12)约束条件可转化为
经上述步骤S1-S3推导出来的任意多面楔形体安全系数极限分析下限解法的优化算法表达式,本发明步骤S4:通过输出常用的优化求解算法计算文件,也可通过编程软件(C、C++、C#等)编制优化算法表达式,求得任意多面楔形体安全系数。
图6是利用本发明公开的一种基于极限定理的任意多面楔形体安全系数求解方法的实施例图。从图中结果可以看出,对于经典的楔形体问题,相应于不同的底滑面强度参数,利用本发明公开的基于极限分析下限定理求解任意多面楔形体安全系数的方法计算的结果略小于基于极限分析上限求解方法(如文献1,Wang,Y.-J.,J.-H.Yin and C.F.Lee(2001)."The influence of a non-associated low rule on the calculation of thefactor of safetyof soil slopes."INTERNATIONAL JOURNAL FOR NUMERICAL ANDANALYTICAL METHODS IN GEOMECHANICS 25:1351-1359.和文献2,Chen,J.,J.-H.Yin andC.F.Lee(2003)."Upper bound limit analysis of slope stability using rigidfinite elements and nonlinear programming."Canadian Geotechnical Journal 40(4):742-752.)的分析结果,从上限、下限的概念来看本发明是完全合理的,也说明了本发明的可行性。

Claims (3)

1.一种基于极限分析下限定理的任意多面楔形体安全系数求解方法,其特征在于:它包括如下步骤:
S1:确定任意多面楔形体空间几何特征和组成楔形体的边界,生成任意多面楔形体模型;
S2:基于极限分析下限定理特征,结合楔形体材料特性,建立基于组成楔形体边界的变量体系;
S3:根据极限分析下限定理的基本条件建立约束方程,推导出任意多面楔形体安全系数的极限分析下限解法的优化算法表达式;
S4:通过该优化算法表达式,求解任意多面楔形体安全系数。
2.根据权利要求1所述的基于极限分析下限定理的任意多面楔形体安全系数求解方法,其特征在于:所述步骤S2基于极限分析下限定理特征,结合楔形体材料特性,建立基于组成楔形体边界的变量体系,方法如下:
S2.1:根据强度储备的概念,引入描述边坡强度的折减系数F,通过该变量描述边坡安全储备,如下式所示;
ce=c/F (2)
式中c、为边坡材料实际凝聚力和内摩擦系数,ce、fe为边坡材料进行折减后的凝聚力和内摩擦系数,ce、fe通过式(2)、(3)计算获得;
S2.2 为描述楔形体界面力的方向特性,在每个结构面上建立局部坐标系;
楔形体任一结构面的作用力包括法向力和位于该界面的切向力,其量值分别为Nk、Tmk和Tlk;并以该面的法线向量nk为N轴正向;以界面任一边界线段的内法线向量tmk为Tm轴正向,通常取界面上第一条线段;Tl轴正向则可根据N轴、Tm轴通过右手螺旋法则确定tlk=tmk×nk,则界面上所受的界面力可表示为:
k为组成任意多面楔形体的界面的编号;
S2.3 确定边界作用点坐标rk
楔形体编号为k的边界面上的力的作用点rk可用其空间坐标(rxk,ryk,rzk)表示,为保证作用点始终位于界面内部,必须满足如下条件:
条件1,作用点在界面所在平面上:
(rk-apk)·nk=0 (5)
式中apk为界面上任一确定点;
条件2:作用点位于界面凸多边形区域内:
式中,k为楔形体界面的编号,i为构成界面k的多边形线段编号,为界面k边界线段i的内法向量,为界面k边界线段i上任一确定点,h1为组成界面的多边形线段总数。
3.根据权利要求2所述的基于极限分析下限定理的任意多面楔形体安全系数求解方法,其特征在于:所述步骤S3根据极限分析下限定理的基本条件建立约束方程,推导出任意多面楔形体安全系数极限分析下限解法的优化算法表达式,包括如下步骤:
S3.1:根据极限分析下限定理,建立边坡安全系数f目标函数;
f=max(F) (7)
S3.2:根据极限分析下限定理中平衡方程的约束条件,建立楔形体力和力矩的平衡方程,具体计算公式如下:
式中,k为楔形体界面的编号,Nk、Tlk、Tmk通过式(4)确定,RFk为界面力到力矩点PG的力臂矢量,通过rk-PG计算得到,h2为组成楔形体界面的总数;i为作用于楔形体的外部荷载编号,Qi为外部荷载量值并为已知量,RQi为荷载作用点PQi到力矩点PG的力臂矢量,通过PQi-PG计算得到,h3为外部荷载的总数;G为楔形体自重,RG为楔形体自重对应的力矩矢量,lp为力或力矩求和方向,并有:
S3.3:根据极限分析下限定理中条件(b)屈服准则,楔形体每一个界面上的作用力应不违反摩尔库仑屈服准则,如下式所示:
式中,k为楔形体界面的编号,Nk、Tlk、Tmk通过式(4)确定,ck分别为界面k的黏聚力和内摩擦角,Ak分别为界面k的面积;
S3.4 建立一般性约束条件:通常认为岩土体材料不受拉力,数学表达为法向力总是指向块体内部约束条件如下式所示:
Nk≥0 (12)
式中,k为楔形体界面的编号,Nk通过式(4)确定。
CN201910270497.1A 2019-04-04 2019-04-04 基于极限分析下限定理的任意多面楔形体安全系数求解方法 Active CN110110370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910270497.1A CN110110370B (zh) 2019-04-04 2019-04-04 基于极限分析下限定理的任意多面楔形体安全系数求解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910270497.1A CN110110370B (zh) 2019-04-04 2019-04-04 基于极限分析下限定理的任意多面楔形体安全系数求解方法

Publications (2)

Publication Number Publication Date
CN110110370A true CN110110370A (zh) 2019-08-09
CN110110370B CN110110370B (zh) 2021-02-12

Family

ID=67485238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910270497.1A Active CN110110370B (zh) 2019-04-04 2019-04-04 基于极限分析下限定理的任意多面楔形体安全系数求解方法

Country Status (1)

Country Link
CN (1) CN110110370B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111368458A (zh) * 2020-03-23 2020-07-03 青岛理工大学 一种基坑开挖边坡安全系数的计算方法
CN111506956A (zh) * 2020-05-25 2020-08-07 中铁第六勘察设计院集团有限公司 一种特大跨洞室支护结构可控性设计方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001348A2 (en) * 2006-06-26 2008-01-03 Ben-Gurion University Of The Negev Research And Development Authority Method for estimating the strength of bodies and structures
EP2077561A1 (en) * 2008-01-01 2009-07-08 Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan Thermal limit analysis with hot-channel model for boiling water reactors
CN101858829A (zh) * 2009-04-10 2010-10-13 中国科学院武汉岩土力学研究所 一种反倾边坡稳定性评价的方法
CN103266617A (zh) * 2013-05-30 2013-08-28 昆明理工大学 岩质边坡楔形体最优锚固角的计算方法
CN106126796A (zh) * 2016-06-20 2016-11-16 昆明理工大学 一种带岩桥的岩质边坡极限承载力的塑性极限分析下限法
CN106557608A (zh) * 2016-09-26 2017-04-05 昆明理工大学 一种基于混合数值离散的非贯通节理岩体的塑性极限分析上限法
CN108563608A (zh) * 2018-03-16 2018-09-21 重庆交通大学 基于赤平极射投影和变形分析的楔形体稳定性分析方法
CN109357943A (zh) * 2018-09-30 2019-02-19 中铁第四勘察设计院集团有限公司 一种基于楔形体裂隙水压力分布规律的边坡监测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001348A2 (en) * 2006-06-26 2008-01-03 Ben-Gurion University Of The Negev Research And Development Authority Method for estimating the strength of bodies and structures
EP2077561A1 (en) * 2008-01-01 2009-07-08 Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan Thermal limit analysis with hot-channel model for boiling water reactors
CN101858829A (zh) * 2009-04-10 2010-10-13 中国科学院武汉岩土力学研究所 一种反倾边坡稳定性评价的方法
CN103266617A (zh) * 2013-05-30 2013-08-28 昆明理工大学 岩质边坡楔形体最优锚固角的计算方法
CN106126796A (zh) * 2016-06-20 2016-11-16 昆明理工大学 一种带岩桥的岩质边坡极限承载力的塑性极限分析下限法
CN106557608A (zh) * 2016-09-26 2017-04-05 昆明理工大学 一种基于混合数值离散的非贯通节理岩体的塑性极限分析上限法
CN108563608A (zh) * 2018-03-16 2018-09-21 重庆交通大学 基于赤平极射投影和变形分析的楔形体稳定性分析方法
CN109357943A (zh) * 2018-09-30 2019-02-19 中铁第四勘察设计院集团有限公司 一种基于楔形体裂隙水压力分布规律的边坡监测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘兵兵: "右手螺旋定则的应用", 《中学物理教学参考》 *
叶落卡农: "摩尔-库仑屈服准则", 《百度百科》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111368458A (zh) * 2020-03-23 2020-07-03 青岛理工大学 一种基坑开挖边坡安全系数的计算方法
CN111506956A (zh) * 2020-05-25 2020-08-07 中铁第六勘察设计院集团有限公司 一种特大跨洞室支护结构可控性设计方法
CN111506956B (zh) * 2020-05-25 2022-09-30 中铁第六勘察设计院集团有限公司 一种特大跨洞室支护结构可控性设计方法

Also Published As

Publication number Publication date
CN110110370B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
Tschuchnigg et al. Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part I: Numerical studies considering non-associated plasticity
Wells et al. Simulating the propagation of displacement discontinuities in a regularized strain‐softening medium
Buchner et al. Dynamic stall in vertical axis wind turbines: comparing experiments and computations
CN110110370A (zh) 基于极限分析下限定理的任意多面楔形体安全系数求解方法
Karekal et al. Application of a mesh-free continuum method for simulation of rock caving processes
CN110110371A (zh) 基于极限分析下限定理的三维边坡安全系数迭代求解方法
CN110083883A (zh) 基于极限分析下限定理的三维边坡安全系数求解方法
Feist et al. An embedded strong discontinuity model for cracking of plain concrete
Kusano et al. Reliability based design optimization for bridge girder shape and plate thicknesses of long-span suspension bridges considering aeroelastic constraint
CN107180125A (zh) 预测混凝土坝坝体裂缝扩展的分析方法
Ozturk et al. The estimation of uniaxial compressive strength conversion factor of trona and interbeds from point load tests and numerical modeling
Dong et al. Theoretical and case studies of interval nonprobabilistic reliability for tailing dam stability
CN110210084A (zh) 基于时间融合的力学变化判断滑坡可能性的方法及系统
CN111022119A (zh) 一种基于模式识别的盾构隧道结构抗震安全评价方法
Du et al. New nonlocal multiscale damage model for modelling damage and cracking in quasi-brittle materials
Phansalkar et al. A spatially adaptive phase-field model of fracture
CN109902345A (zh) 基于极限分析下限定理的二维边坡极限荷载求解方法
Losev et al. Methodological approaches to increase the fault tolerance of software system in multiversion environments
Feng et al. Online prediction of loader payload based on a multi-stage progressive model
Zhang et al. Voronoi cell finite element model to simulate crack propagation in porous materials
Ma et al. Numerical modeling of the behavior of an elastic capsule in a microchannel flow: The initial motion
Li et al. Application of physics-informed machine learning for excavator working resistance modeling
CN113255029B (zh) 一种活载作用下悬索桥结构变形及内力的确定方法
CN115563779A (zh) 基于强度参数弱化特性的地震边坡稳定性分析方法
Raeesi et al. Aerodynamic characteristics of generic ice shells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant