CN110105604B - 一种孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其应用 - Google Patents

一种孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其应用 Download PDF

Info

Publication number
CN110105604B
CN110105604B CN201910384166.0A CN201910384166A CN110105604B CN 110105604 B CN110105604 B CN 110105604B CN 201910384166 A CN201910384166 A CN 201910384166A CN 110105604 B CN110105604 B CN 110105604B
Authority
CN
China
Prior art keywords
polyaryletherketone
porous membrane
adjustable
polymer
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910384166.0A
Other languages
English (en)
Other versions
CN110105604A (zh
Inventor
王贵宾
张重阳
杨砚超
栾加双
张淑玲
张梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201910384166.0A priority Critical patent/CN110105604B/zh
Publication of CN110105604A publication Critical patent/CN110105604A/zh
Application granted granted Critical
Publication of CN110105604B publication Critical patent/CN110105604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其应用,属于高分子材料技术领域。是将可溶性聚芳醚酮前驱体溶液通过浸没相转化法、水蒸气诱导相转化法或模板法制备多孔膜,然后再经酸化和热处理使其结晶,从而制备得到本发明所述的孔径可调的结晶型聚芳醚酮多孔膜;所制备的孔径可调的结晶型聚芳醚酮多孔膜的结晶度为26~29%,孔径范围为0.01~5μm,孔隙率为50~80%,孔形貌为指状孔或海绵状孔,厚度为10~130μm。所述方法操作简单,成本低廉,可规模化生产,并且浸没相转化法、水蒸气诱导相转化法无需外部助剂,进一步节约了工艺成本,可广泛应用于燃料电池、超级电容器、锂离子电池及超滤膜等。

Description

一种孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其应用
技术领域
本发明属于高分子材料技术领域,具体涉及一种孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其在燃料电池、超级电容器、锂离子电池及超滤膜中的应用。
背景技术
高性能膜材料是当代化学工业的核心材料,是解决水资源、能源、环境问题和传统产业技术的战略性材料,已广泛应用于水资源、能源、环境、传统产业和国防等重要领域。与传统材料相比,具有高效率、低能耗、操作简单及环境友好等特点,易于与其他技术集成发挥作用,表现出巨大的优势。
聚芳醚酮是一类半结晶、热塑性的高性能聚合物,主链由醚键、羰基和苯环组成,具有耐热等级高、耐辐射、耐化学腐蚀、耐疲劳、耐冲击、抗蠕变、耐磨损、良好的阻燃性和优异的力学性能。它们的熔点大于等于334℃,玻璃化转变温度大于等于143℃。由于其优异的综合性能,它们是一类应用前景广泛的高分子膜材料基体。然而,优异的耐溶剂性限制了它们加工成型方法的多样性,阻碍了其在实际应用中的广泛性。许多研究和应用通过对其改性而破坏其结晶性或利用浓硫酸对其溶解,但聚芳醚酮的耐溶剂性和机械强度强烈依赖于它们的结晶行为,在改性或硫酸溶解过程中,聚芳醚酮结晶性被破坏,这大大降低了其综合性能和使用性能。
中国专利(CN101234304A)公开了热致相分离法制备的聚醚醚酮多孔膜:将聚醚醚酮与稀释剂混合,通过高温溶解、低温分相的方法形成多孔结构,然而这种方法需要在高温下进行,并且需要耐高温的稀释剂,与本发明中的浸没相转化法及水蒸气诱导相转化法相比,增加了工艺成本和操作难度,并且有些稀释剂在高温下并不稳定,影响工艺效果。中国专利(CN103816820A)公开了一种半结晶型聚醚醚酮多孔膜的制备方法:将聚醚醚酮与聚醚酰亚胺共混挤出成膜,再将聚醚酰亚胺溶解除去得到聚醚醚酮多孔膜,这种方法同样需要在高温下进行,并且需要选择合适的制孔剂,与本发明中的浸没相转化法及水蒸气诱导相转化法相比,增加了工艺成本和操作难度,并且受到制孔剂含量和分散状态的限制,无法得到宽泛的孔径分布,也无法形成可应用于过滤等领域的指状孔形貌,应用十分受限。中国专利(CN107611322A)公开了一种聚醚醚酮锂电隔膜的生产工艺:将卤代甲酮类化合物与双羟基类化合物聚合成聚醚醚酮,并在高温下熔融挤出拉伸成为聚醚醚酮纳米纤维膜,然而这种方法不仅需要在高温下进行,增加了工艺成本和操作难度,并且与本发明中的浸没相转化法、水蒸气诱导相转化法及模板法相比,所得到的聚合物失去了聚醚醚酮原本的结晶性。根据高分子物理的理论,分子链的对称性越高越容易形成结晶,而该发明中聚合物侧链甲基结构的存在使其具有不对称性,因而其制备的多孔膜不具备结晶性,不耐溶剂和高温,会影响在实际应用中的综合性能。
因此,设计孔径可调、形貌可控的结晶型聚芳醚酮多孔膜仍然是许多应用领域亟待解决的难题。
发明内容
本发明的目的是提供孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其在燃料电池、超级电容器、锂离子电池及超滤膜中的应用,以克服聚芳醚酮加工成型和应用受限的问题。
本发明采用聚芳醚酮-1,3-二氧戊环或聚芳醚酮亚胺溶液,利用浸没相转化法、水蒸气诱导相转化法和模板法,制备了一种孔径可调的结晶型聚芳醚酮多孔膜。所述方法操作简单,成本低廉,可规模化生产,并且浸没相转化法、水蒸气诱导相转化法无需外部助剂,进一步节约了工艺成本。
本发明所述的孔径可调的结晶型聚芳醚酮多孔膜的制备方法,其特征在于:将可溶性聚芳醚酮前驱体溶液通过浸没相转化法、水蒸气诱导相转化法或模板法制备多孔膜,然后再经酸化和热处理使其结晶,从而制备得到本发明所述的孔径可调的结晶型聚芳醚酮多孔膜;所制备的孔径可调的结晶型聚芳醚酮多孔膜的结晶度为26~29%,孔径范围为0.01~5μm,孔隙率为50~80%,孔形貌为指状孔或海绵状孔,厚度为10~130μm。
以聚醚醚酮为例,聚醚醚酮-1,3-二氧戊环的反应式如下所示:
Figure BDA0002054271500000021
以聚醚醚酮为例,聚醚醚酮亚胺的反应式如下所示:
Figure BDA0002054271500000022
Figure BDA0002054271500000031
n为正整数,表示聚合度;
通过浸没相转化法制备孔径可调的结晶型聚芳醚酮多孔膜的步骤如下:
(1)将聚芳醚酮-1,3-二氧戊环或聚芳醚酮亚胺溶解于极性聚合物良溶剂中,溶液质量浓度为15~20%,室温下密闭搅拌10~20小时,制备得到澄清透明的铸膜液;
(2)将步骤(1)所得铸膜液浇筑于水平玻璃板表面,用刮板涂布均匀后浸入去离子水中,除去残留的聚合物极性良溶剂,得到聚合物多孔膜;
(3)将步骤(2)得到的聚合物多孔膜置于质子酸中浸泡24~48小时,取出后用去离子水冲洗,除去过量的酸,再于60~120℃、真空下烘干,得到孔径可调的聚芳醚酮多孔膜;
(4)将步骤(3)得到的孔径可调的聚芳醚酮多孔膜于80~220℃下热处理4~8小时使其结晶,从而制得孔径可调的结晶型聚芳醚酮多孔膜。
其中,步骤(1)所述的极性聚合物良溶剂为NMP、DMAc或DMF。
步骤(3)所述的质子酸为盐酸、硫酸、硝酸、醋酸、三氟乙酸、苯磺酸、甲磺酸或三氟甲磺酸。
通过水蒸气诱导相转化法制备孔径可调的结晶型聚芳醚酮多孔膜的步骤如下:
(1)将聚芳醚酮-1,3-二氧戊环或聚芳醚酮亚胺溶解于极性聚合物良溶剂中,溶液质量浓度为15~20%,室温下密闭搅拌10~20小时,制备得到澄清透明的铸膜液;
(2)将步骤(1)所述铸膜液浇筑于水平玻璃板表面,用刮板涂布均匀,然后将其放置在恒湿箱中5~30分钟,制得聚合物多孔膜;
(3)将步骤(2)得到的聚合物多孔膜浸泡于去离子水中40~60小时,取出后于60~120℃、真空下烘干,除去残留的聚合物极性良溶剂;
(4)将步骤(3)得到的聚合物多孔膜置于质子酸中浸泡24~48小时,取出后用去离子水冲洗,除去过量的酸,再于60~120℃、真空下烘干,得到孔径可调的聚醚醚酮多孔膜;
(5)将步骤(4)所述的孔径可调的聚醚醚酮多孔膜于80~220℃下热处理4~8小时使其结晶,从而制得孔径可调的结晶型聚芳醚酮多孔膜。
其中,步骤(1)所述的极性聚合物良溶剂为NMP、DMAc或DMF。
步骤(4)所述的质子酸为盐酸、硫酸、硝酸、醋酸、三氟乙酸、苯磺酸、甲磺酸或三氟甲磺酸。
通过模板法制备孔径可调的结晶型聚芳醚酮多孔膜的步骤如下:
(1)将聚芳醚酮-1,3-二氧戊环或聚芳醚酮亚胺溶解于极性聚合物良溶剂中,溶液质量浓度为10~20%,室温下密闭搅拌10~20小时,制备得到澄清透明的铸膜液;再加入致孔剂,其用量是聚芳醚酮-1,3-二氧戊环或聚芳醚酮亚胺质量的0.9~2.0倍,继续搅拌5~10小时使致孔剂在聚合物溶液中分散均匀;
(2)将步骤(1)所述加入致孔剂的铸膜液浇筑于水平玻璃板表面,于60~130℃下烘干得到聚合物平板膜;
(3)将步骤(2)得到的聚合物平板膜取出后置于索氏提取器中,去离子水、甲醇或乙醇抽提5~12小时,60~80℃下真空干燥;
(4)将步骤(3)得到的聚合物多孔膜于质子酸中浸泡24~48小时,而后用去离子水冲洗,除去过量的酸,于60~120℃真空下烘干,得到孔径可调的聚芳醚酮多孔膜;
(5)将步骤(4)所述的孔径可调的聚芳醚酮多孔膜于80~220℃下热处理4~8小时使其结晶,从而制得孔径可调的结晶型聚芳醚酮多孔膜。
其中,步骤(1)中所述的极性聚合物良溶剂为NMP、DMAc或DMF;
步骤(1)中所述的致孔剂为邻苯二甲酸二丁酯、α-环糊精或β-环糊精;
步骤(4)所述的质子酸为盐酸、硫酸、硝酸、醋酸、三氟乙酸、苯磺酸、甲磺酸或三氟甲磺酸。
本发明还提供了所述的孔径可调的结晶型聚芳醚酮多孔膜在燃料电池、超级电容器、锂离子电池及超滤膜中的应用。
与现有技术相比,本发明的结晶型聚芳醚酮多孔膜具有可控的孔径、形貌和厚度,无需外部助剂和高温处理,能在严苛条件下正常使用。其突出效果在于:突破了聚芳醚酮在有机溶剂中不能溶解带来的加工方法的限制,保留了结晶型聚芳醚酮的耐热、耐辐射、耐化学腐蚀、耐疲劳、耐冲击、抗蠕变、耐磨损、良好的阻燃性和优异的力学性能,制备过程简单易行,无需外部助剂,原料成本低廉可回收,孔的形貌、大小及膜的厚度易于调控,可规模化生产。本发明的孔径可调的结晶型聚芳醚酮多孔膜可广泛应用于燃料电池、超级电容器、锂离子电池及超滤膜等。
附图说明
图1:实施例1制备的聚醚醚酮-1,3-二氧戊环还原得到的聚醚醚酮多孔膜的DSC曲线;该图可说明聚醚醚酮多孔膜的熔点和结晶峰,表明成功将聚醚醚酮-1,3-二氧戊环还原为结晶型聚醚醚酮。
图2:实施例5制备的聚醚醚酮亚胺还原得到的聚醚醚酮多孔膜的DSC曲线;该图可说明聚醚醚酮多孔膜的熔点和结晶峰,表明成功将聚醚醚酮亚胺还原为结晶型聚醚醚酮。
图3:实施例1制备的聚醚醚酮多孔膜的断面SEM图片;该图表明了海绵状孔的成功制备,其中孔径为5μm,孔隙率为50%,膜的厚度为25μm。
图4:实施例2制备的聚醚醚酮多孔膜的断面SEM图片;该图表明了海绵状孔的成功制备,其中孔径为3μm,孔隙率为80%,膜的厚度为10μm。
图5:实施例3制备的聚醚醚酮多孔膜的断面SEM图片;该图表明了海绵状孔的成功制备,其中孔径为0.2μm,孔隙率为78%,膜的厚度为130μm。
图6:实施例4制备的聚醚醚酮多孔膜的断面SEM图片;该图表明了指状孔的成功制备,其中孔径为0.01μm,孔隙率为50%,膜的厚度为130μm。
图7:实施例1制备的燃料电池隔膜在高浓度(10mol/L)甲醇下的电池性能曲线;该图说明基于聚醚醚酮多孔膜制备的燃料电池复合隔膜具有较高的开路电压(0.53V)和功率密度(35mW/cm2),表现出良好的单电池性能。
图8:实施例2制备的超级电容器常规凝胶电解质(GPE-20)和交联型凝胶电解质(NGPE-CL-20)的线性扫描伏安曲线;该图表明NGPE-CL-20和GPE-20在0.0到2.0V之间的电位下都是稳定的,具有较宽的电位窗口,能保证在高电位下的长期稳定性。
图9:实施例3制备的锂离子电池隔膜(PEEK)与商业的锂离子电池隔膜(Cel 2325)的倍率性能曲线;该图表明用聚醚醚酮膜组装的电池与商业隔膜相比具有更好的倍率性能,这是因为其具有高孔隙率、高电解质吸收、高电解质润湿性和更高的离子电导率。
图10:实施例4制备的超滤膜的通量恢复率与添加碳纳米管含量的关系曲线;该图说明掺杂了酸化碳纳米管后的聚醚醚酮超滤膜具有较高的通量恢复率,最高可达95%,说明所制备的聚醚醚酮基超滤膜具有较好的抗污染性。
具体实施方式
下面通过具体实施例对本发明的方法进行说明,所述的实施例只是对本发明的权利要求的具体描述,权利要求包括但不限于所述的实施例内容。
下述实施例中所述的试剂和材料如无特殊说明,均从商业途径获得;所述实验方法,如无特殊说明,均为常规方法。
实施例1
将可溶性聚醚醚酮前驱体—聚醚醚酮-1,3-二氧戊环(制备方法见文献[1、2])(1.0g)溶解于极性聚合物良溶剂NMP(4mL)中,溶液质量浓度为20%,室温下密闭搅拌15小时,制备得到澄清透明的铸膜液;将铸膜液浇筑于水平玻璃板表面,用刮板涂布均匀,然后将其放置在恒湿箱中10分钟,进而制得聚合物多孔膜;将得到的聚合物多孔膜浸泡于去离子水中50小时,取出后于80℃、真空下烘干,除去残留的聚合物极性良溶剂后置于盐酸中浸泡28小时,取出后用去离子水冲洗,除去过量的酸,再于60℃、真空下烘干,得到孔径可调的聚醚醚酮多孔膜;将所述的孔径可调的聚醚醚酮多孔膜于200℃下热处理6小时使其结晶,所制备的孔径可调的结晶型聚芳醚酮多孔膜的结晶度为26%,孔径为5μm,孔隙率为50%,孔形貌为海绵状孔,厚度为25μm。然后将制备的结晶型聚醚醚酮多孔膜按照文献[3]组装成燃料电池膜电极组件进行单电池性能测试,利用Arbin燃料电池工作站在10mol/L甲醇水溶液中于70℃条件下测试。
实施例1所制备的燃料电池隔膜在高浓度(10mol/L)甲醇下的电池性能曲线见附图7;该图说明基于聚醚醚酮多孔膜制备的燃料电池复合隔膜具有较高的开路电压(0.53V)和功率密度(35mW/cm2),具有良好的单电池性能。
实施例2
与实施例1所述结晶型聚醚醚酮多孔膜的制备过程相同,所制备的孔径可调的结晶型聚芳醚酮多孔膜的DSC曲线与实施例1相类似,其结晶度为27%,孔径为3μm,孔隙率为80%,孔形貌为海绵状孔,厚度为10μm。然后将所制备的结晶型聚醚醚酮多孔膜按照文献[4]组装成超级电容器进行循环伏安曲线测试,利用电化学工作站(CHI 660A)在0.0~3.0V的电压范围内、扫描速率为5mV s-1、环境温度下测试。
实施例2所制备的超级电容器常规凝胶电解质(GPE-20)和交联型凝胶电解质(NGPE-CL-20)的线性扫描伏安曲线见附图8;该图表明NGPE-CL-20和GPE-20在0.0到2.0V之间的电位下都是稳定的,具有较宽的电位窗口,能保证在较高电位下的长期稳定性。
实施例3
与实施例1相同,只是将制孔剂邻苯二甲酸二丁酯(0.9g)加入到铸膜液中,其质量用量与聚合物的比例为0.9:1,继续搅拌5小时使致孔剂在聚合物溶液中分散均匀;将加入致孔剂的铸膜液浇筑于水平玻璃板表面,于烘箱中在60℃、80℃、100℃各12小时,再于120℃下真空干燥12小时,完全除去溶剂。取出膜后将膜置于索氏提取器中,乙醇抽提8小时,60℃真空干燥12小时得到聚合物多孔膜;将得到的聚合物多孔膜于盐酸中浸泡28小时,取出后用去离子水冲洗,除去过量的酸,再于60℃、真空下烘干,得到孔径可调的聚醚醚酮多孔膜;将所述的孔径可调的聚醚醚酮多孔膜于200℃下热处理6小时使其结晶,所制备的孔径可调的结晶型聚芳醚酮多孔膜的DSC曲线与实施例1相类似,其结晶度为29%,孔径为0.2μm,孔隙率为78%,孔形貌为海绵状孔,厚度为130μm。然后将制备的结晶型聚醚醚酮多孔膜按照文献[5]组装成锂离子纽扣电池进行循环性能的测试,利用恒电位仪(SolartronAnalytical)在3C、55℃的条件下测试。
实施例3所制备的锂离子电池隔膜(PEEK)与商业的锂离子电池隔膜(Cel 2325)的倍率性能见附图9;该图表明用聚醚醚酮膜组装的电池与商业隔膜相比具有更好的倍率性能,这是因为其具有高孔隙率、高电解质吸收、高电解质润湿性和更高的离子电导率。
实施例4
与实施例1相同,只是将用刮板涂布均匀的膜浸入去离子水中,得到具有指状孔的多孔膜。然后将聚合物多孔膜于盐酸中浸泡28小时,而后用去离子水冲洗,除去过量的盐酸,于60℃真空烘干,最后将聚醚醚酮多孔膜于200℃热处理6小时使其结晶,所制备的孔径可调的结晶型聚芳醚酮多孔膜的DSC曲线与实施例1相类似,其结晶度为28%,孔径为0.01μm,孔隙率为50%,孔形貌为指状孔,厚度为130μm。将制备的结晶型聚醚醚酮多孔膜用于超滤膜进行水通量测试,利用平板错流过滤设备在0.1MPa条件下测试。
实施例4所制备的超滤膜的通量恢复率与添加碳纳米管含量的关系见附图10;该图说明掺杂了酸化碳纳米管后的聚醚醚酮超滤膜具有较高的通量恢复率,最高可达95%,这是因为酸化碳管的添加增加了膜的亲水性,说明所制备的聚醚醚酮基超滤膜具有较好的抗污染性。
实施例5
如实施例1~4所述,只是将聚醚醚酮-1,3-二氧戊环更换成聚醚醚酮亚胺(其制备方法见文献[6,7]),也制备得到了孔径可调的结晶型聚醚醚酮多孔膜。
实施例6
如实施例1~5所述,只是将溶剂更换为DMAc或DMF,也制备得到了孔径可调的结晶型聚醚醚酮多孔膜。
实施例7
如实施例1~6所述,只是将盐酸更换硫酸、硝酸、醋酸、三氟乙酸、苯磺酸、甲磺酸或三氟甲磺酸,也制备得到了孔径可调的结晶型聚醚醚酮多孔膜。
参考文献:
[1]Howard M.Colquhoun,Philip Hodge,Francois P.V.Paoloni,P.TerryMcGrail,Paul Cross,Reversible,Nondegradative Conversion of CrystallineAromatic Poly(ether ketone)s into Organo-Soluble Poly(ether dithioketal)s,Macromolecules,42(2009)1955-1963.
[2]Ioannis Manolakis,Paul Cross,Howard M.Colquhoun,Exchange Reactionsof Poly(arylene ether ketone)Dithioketals with Aliphatic Diols:Formation andDeprotection of Poly(arylene ether ketal)s,Macromolecules,50(2017)9561-9568.
[3]C.Ru,Z.Li,C.Zhao,Y.Duan,Z.Zhuang,F.Bu,H.Na,Enhanced ProtonConductivity of Sulfonated Hybrid Poly(arylene ether ketone)Membranes byIncorporating an Amino-Sulfo Bifunctionalized Metal-Organic Framework forDirect Methanol Fuel Cells,ACS Appl Mater Interfaces,10(2018)7963-7973.
[4]N.Lu,X.Zhang,R.Na,W.Ma,C.Zhang,Y.Luo,Y.Mu,S.Zhang,G.Wang,Highperformance electrospun Li(+)-functionalized sulfonated poly(ether etherketone)/PVA based nanocomposite gel polymer electrolyte for solid-stateelectric double layer capacitors,J Colloid Interface Sci,534(2019)672-682.
[5]D.Li,D.Shi,Y.Xia,L.Qiao,X.Li,H.Zhang,Superior Thermally Stable andNonflammable Porous Polybenzimidazole Membrane with High Wettability forHigh-Power Lithium-Ion Batteries,ACS Appl Mater Interfaces,9(2017)8742-8750.
[6]Jacques Roovers,J.David Cooney,Paul M.Toporowski,Synthesis andCharacterization of Narrow Molecular Weight Distribution Fractions of Poly(ary1ether ether ketone),Macromolecules,23(1990)1611-1618.
[7]I.Manolakis,P.Cross,H.M.Colquhoun,Direct Iminization of PEEK,Macromolecules,44(2011)7864-7867。

Claims (5)

1.一种孔径可调的结晶型聚芳醚酮多孔膜的制备方法,其特征在于:将可溶性聚芳醚酮前驱体溶液通过浸没相转化法、水蒸气诱导相转化法或模板法制备多孔膜,然后再经酸化和热处理使其结晶,从而制备得到孔径可调的结晶型聚芳醚酮多孔膜;所制备的孔径可调的结晶型聚芳醚酮多孔膜的结晶度为26~29%,孔径范围为0.01~5μm,孔隙率为50~80%,孔形貌为指状孔或海绵状孔,厚度为10~130μm;所述的可溶性聚芳醚酮前驱体为聚芳醚酮-1,3-二氧戊环或聚芳醚酮亚胺;
所述的通过浸没相转化法的步骤如下,
(1a)将聚芳醚酮-1,3-二氧戊环或聚芳醚酮亚胺溶解于极性聚合物良溶剂中,溶液质量浓度为15~20%,室温下密闭搅拌10~20小时,制备得到澄清透明的铸膜液;
(2a)将步骤(1a)所得铸膜液浇筑于水平玻璃板表面,用刮板涂布均匀后浸入去离子水中,除去残留的聚合物极性良溶剂,得到聚合物多孔膜;
(3a)将步骤(2a)得到的聚合物多孔膜置于质子酸中浸泡24~48小时,取出后用去离子水冲洗,除去过量的酸,再于60~120℃、真空下烘干,得到孔径可调的聚芳醚酮多孔膜;
(4a)将步骤(3a)得到的孔径可调的聚芳醚酮多孔膜于80~220℃下热处理4~8小时使其结晶,从而制得孔径可调的结晶型聚芳醚酮多孔膜;
所述的水蒸气诱导相转化法的步骤如下,
(1b)将聚芳醚酮-1,3-二氧戊环或聚芳醚酮亚胺溶解于极性聚合物良溶剂中,溶液质量浓度为15~20%,室温下密闭搅拌10~20小时,制备得到澄清透明的铸膜液;
(2b)将步骤(1b)所述铸膜液浇筑于水平玻璃板表面,用刮板涂布均匀,然后将其放置在恒湿箱中5~30分钟,制得聚合物多孔膜;
(3b)将步骤(2b)得到的聚合物多孔膜浸泡于去离子水中40~60小时,取出后于60~120℃、真空下烘干,除去残留的聚合物极性良溶剂;
(4b)将步骤(3b)得到的聚合物多孔膜置于质子酸中浸泡24~48小时,取出后用去离子水冲洗,除去过量的酸,再于60~120℃、真空下烘干,得到孔径可调的聚醚醚酮多孔膜;
(5b)将步骤(4b)所述的孔径可调的聚醚醚酮多孔膜于80~220℃下热处理4~8小时使其结晶,从而制得孔径可调的结晶型聚芳醚酮多孔膜;
所述模板法的步骤如下,
(1c)将聚芳醚酮-1,3-二氧戊环或聚芳醚酮亚胺溶解于极性聚合物良溶剂中,溶液质量浓度为10~20%,室温下密闭搅拌10~20小时,制备得到澄清透明的铸膜液;再加入致孔剂,其用量是聚芳醚酮-1,3-二氧戊环或聚芳醚酮亚胺质量的0.9~2.0倍,继续搅拌5~10小时使致孔剂在聚合物溶液中分散均匀; 致孔剂为邻苯二甲酸二丁酯、α-环糊精或β-环糊精;
(2c)将步骤(1c)所述加入致孔剂的铸膜液浇筑于水平玻璃板表面,于60~130℃下烘干得到聚合物平板膜;
(3c)将步骤(2c)得到的聚合物平板膜取出后置于索氏提取器中,去离子水、甲醇或乙醇抽提5~12小时,60~80℃下真空干燥;
(4c)将步骤(3c)得到的聚合物多孔膜于质子酸中浸泡24~48小时,而后用去离子水冲洗,除去过量的酸,于60~120℃真空下烘干,得到孔径可调的聚芳醚酮多孔膜;
(5c)将步骤(4c)所述的孔径可调的聚芳醚酮多孔膜于80~220℃下热处理4~8小时使其结晶,从而制得孔径可调的结晶型聚芳醚酮多孔膜。
2.如权利要求1所述的一种孔径可调的结晶型聚芳醚酮多孔膜的制备方法,其特征在于:所述的极性聚合物良溶剂为NMP、DMAc或DMF。
3.如权利要求1所述的一种孔径可调的结晶型聚芳醚酮多孔膜的制备方法,其特征在于:所述的质子酸为盐酸、硫酸、硝酸、醋酸、三氟乙酸、苯磺酸、甲磺酸或三氟甲磺酸。
4.一种孔径可调的结晶型聚芳醚酮多孔膜,其特征在于:是由权利要求1~3任何一项所述的方法制备得到。
5.权利要求4所述的一种孔径可调的结晶型聚芳醚酮多孔膜在燃料电池、超级电容器、锂离子电池或超滤膜中的应用。
CN201910384166.0A 2019-05-09 2019-05-09 一种孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其应用 Active CN110105604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910384166.0A CN110105604B (zh) 2019-05-09 2019-05-09 一种孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910384166.0A CN110105604B (zh) 2019-05-09 2019-05-09 一种孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110105604A CN110105604A (zh) 2019-08-09
CN110105604B true CN110105604B (zh) 2022-02-01

Family

ID=67489045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910384166.0A Active CN110105604B (zh) 2019-05-09 2019-05-09 一种孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110105604B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110841493B (zh) * 2019-11-25 2021-08-03 吉林大学 一种具有可调孔径的聚芳醚酮分离膜或磺化聚芳醚酮分离膜及其制备方法
CN111952648B (zh) * 2020-08-25 2022-03-11 吉林大学 一种增强型复合高分子电解质膜及其制备方法和应用
CN113088074B (zh) * 2021-04-01 2022-06-10 吉林大学 一种聚苯胺/聚芳醚酮复合材料、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357040A (en) * 1993-02-24 1994-10-18 The Center For Innovative Technology Fine powders of ketone-containing aromatic polymers and process of manufacture
CN101234304A (zh) * 2007-02-02 2008-08-06 中国科学院化学研究所 一种聚醚醚酮多孔膜及其制备方法
CN105322119A (zh) * 2014-07-28 2016-02-10 中国科学院大连化学物理研究所 一种多孔隔膜在锂硫二次电池中的应用
CN108134032A (zh) * 2016-12-01 2018-06-08 中国科学院大连化学物理研究所 一种锂离子电池用聚醚醚酮多孔隔膜及其制备和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1401559B1 (en) * 2001-06-26 2010-05-05 Victrex Manufacturing Limited Method of making membranes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357040A (en) * 1993-02-24 1994-10-18 The Center For Innovative Technology Fine powders of ketone-containing aromatic polymers and process of manufacture
CN101234304A (zh) * 2007-02-02 2008-08-06 中国科学院化学研究所 一种聚醚醚酮多孔膜及其制备方法
CN105322119A (zh) * 2014-07-28 2016-02-10 中国科学院大连化学物理研究所 一种多孔隔膜在锂硫二次电池中的应用
CN108134032A (zh) * 2016-12-01 2018-06-08 中国科学院大连化学物理研究所 一种锂离子电池用聚醚醚酮多孔隔膜及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Exchange Reactions of Poly(arylene ether ketone) Dithioketals with Aliphatic Diols: Formation and Deprotection of Poly(arylene ether ketal)s;Ioannis Manolakis等;《Macromolecules》;20171204;第50卷;第9561-9568页 *

Also Published As

Publication number Publication date
CN110105604A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
US9136034B2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
KR101376362B1 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
CN110105604B (zh) 一种孔径可调的结晶型聚芳醚酮多孔膜、制备方法及其应用
Wang et al. Novel sulfonated poly (ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications
CN104659395B (zh) 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法
CN105789668A (zh) 金属有机骨架材料/聚合物复合质子交换膜的制备方法
CN109755613B (zh) 一种三维骨架与磺化芳香族聚合物复合质子交换膜及其制备方法
KR102295383B1 (ko) 고분자 전해질 막, 막 전극 접합체 및 고체 고분자형 연료 전지
CN108122687A (zh) 一种柔性自支撑多孔电极及其制备和应用
Ji et al. Cellulose and poly (vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors
Ye et al. Ion selectivity and stability enhancement of SPEEK/lignin membrane for vanadium redox flow battery: the degree of sulfonation effect
CN110184744B (zh) 一种结晶型聚芳醚酮纳米纤维膜、制备方法及其应用
Jin et al. Tree leaves-derived three-dimensional porous networks as separators for graphene-based supercapacitors
Heng et al. Raw cellulose/polyvinyl alcohol blending separators prepared by phase inversion for high-performance supercapacitors
CN101768283A (zh) 一种适用于钒电池的磺化聚合物复合膜的制备方法
Shi et al. Advanced porous polyphenylsulfone membrane with ultrahigh chemical stability and selectivity for vanadium flow batteries
JP2013229325A (ja) 高分子電解質膜、膜電極接合体および燃料電池
CN111969232B (zh) 一种燃料电池隔膜材料的制备方法
Li et al. Porous nanocomposite polymer electrolyte prepared by a non-solvent induced phase separation process
Zhao et al. Preparing 3D Perovskite Li0. 33La0. 557TiO3 Nanotubes Framework Via Facile Coaxial Electro‐Spinning Towards Reinforced Solid Polymer Electrolyte
KR101560422B1 (ko) 다공성 나노섬유 웹
CN111261822B (zh) 一种热稳定性电池隔膜及其在电池中应用
Ji et al. Preparation and electrochemical properties of SPEEK/PSF based membrane for supercapacitors
CN109873189B (zh) 质子交换膜及其制备方法
Wang et al. Pure cellulose nanofiber separator with high ionic conductivity and cycling stability for lithium-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant