CN110094314B - 一种以碱液作为燃料驱动的球形微纳米马达的制备方法 - Google Patents
一种以碱液作为燃料驱动的球形微纳米马达的制备方法 Download PDFInfo
- Publication number
- CN110094314B CN110094314B CN201910322807.XA CN201910322807A CN110094314B CN 110094314 B CN110094314 B CN 110094314B CN 201910322807 A CN201910322807 A CN 201910322807A CN 110094314 B CN110094314 B CN 110094314B
- Authority
- CN
- China
- Prior art keywords
- micro
- liquid metal
- nano motor
- alkali liquor
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/001—Coating on a liquid substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/005—Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Nanotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Fuel Cell (AREA)
Abstract
本发明提供了一种以碱液作为燃料驱动的球形微纳米马达的制备方法,其包括以下步骤:步骤S1,将GaInSn液态金属置于乙醇溶液中进行超声粉碎,得到GaInSn液态金属微球;步骤S2,将得到的GaInSn液态金属微球干燥后进行离子溅射,再在水溶液中进行超声分散得到GaInSn液态金属球形微纳米马达。采用本发明的技术方案得到的GaInSn液态金属球形Janus微纳米马达尺寸在微米范围内,其在碱性环境中表现出良好的运动性能,并且具有可降解的优点。
Description
技术领域
本发明属于纳米马达的技术领域,尤其涉及一种以碱液作为燃料驱动的球形微纳米马达的制备方法。
背景技术
现有技术中,已知的化学驱动微纳米马达主要为高分子材料,如聚苯乙烯微球等,并且大部分微纳米马达是利用金属催化剂分解双氧水产生化学能来推动马达的。目前的现有技术主要存在以下缺点:首先,这种高分子马达应用在人体或者环境中难以去除,难以降解。 其次,双氧水是具有生物毒性的,在大多数场景特别是生物医用领域不适合。而且关于GaInSn液态金属马达的研究不多,并且多停留在毫米等宏观尺寸范围。
发明内容
针对以上技术问题,本发明公开了一种以碱液作为燃料驱动的球形微纳米马达的制备方法,得到的微纳米马达具有流体的性质,优良的生物相容性和可变形性,而且可以在碱液中进行驱动。
对此,本发明采用的技术方案为:
一种GaInSn液态金属球形微纳米马达的制备方法,其包括以下步骤:
步骤S1,将GaInSn液态金属置于乙醇溶液中进行超声粉碎,得到GaInSn液态金属微球;
步骤S2,将得到的GaInSn液态金属微球干燥后进行离子溅射,再在水溶液中进行超声分散得到GaInSn液态金属球形微纳米马达。
作为本发明的进一步改进,所述离子溅射的材料为Pt、Au或Ag。进一步优选的,所述离子溅射的材料为Pt。
作为本发明的进一步改进,所述GaInSn液态金属球形微纳米马达的粒径为2-4 μm。
作为本发明的进一步改进,步骤S1得到的GaInSn液态金属微球的粒径为1~10μm。
作为本发明的进一步改进,所述离子溅射的溅射时间为190~210s。进一步的,溅射时间为200 s。
进一步的,步骤S1中,所述超声粉碎为脉冲超声。进一步的,所述超声粉碎的过程为超声1-3s,停1-3s。进一步优选的,所述超声粉碎的过程为超声2s,停2s。进一步的,总超声粉碎的时间为2~4min。所述超声粉碎的功率为350~400W。进一步的,所述超声粉碎的功率为360W。该步骤在超声细胞粉碎机中进行。
进一步的,步骤S2中,超声分散的时间为10s,超声频率为40 KHz。该步骤在超声清洗机中进行超声分散。
进一步的,步骤S1中,将GaInSn液态金属加入到乙醇或水溶液中,将其置于冰水浴中进行超声粉碎。
进一步的,步骤S1中,每1mL的乙醇或者水加入4~6mg的液态金属,即步骤S1得到的GaInSn液态金属的浓度为4~6mg/mL,进一步的,每1mL的乙醇或者水加入5mg的液态金属。
本发明还公开了一种采用如上任意一项所述的制备方法制备的微纳米马达。
本发明还公开了一种以碱液作为燃料驱动的球形微纳米马达的应用,所述GaInSn液态金属球形微纳米马达在碱液中驱动。进一步的,所述微纳米马达的粒径为1-10μm。进一步优选的,所述微纳米马达的粒径为2-4μm。
进一步的,所述碱液为NaOH。所述碱液的浓度为0.5~5 mM。进一步优选的,所述碱液的浓度为1 mM。采用此技术方案,马达的粒径为2-4μm,碱液的浓度为1 mM,具有最优的驱动效果。
与现有技术相比,本发明的有益效果为:
采用本发明的技术方案得到的GaInSn液态金属球形Janus微纳米马达尺寸在微米范围内,其在碱性环境中表现出良好的运动性能,并且材料具有可降解的优点。
附图说明
图1是本发明的GaInSn液态金属球形Janus微纳米马达的制备示意图。
图2是本发明一种实施例的GaInSn液态金属球形Janus微纳米马达的电镜及能谱图。
图3是本发明一种实施例的不同粒径的GaInSn液态金属球形Janus微纳米马达的运动速度统计图。
图4是本发明一种实施例的不同粒径的GaInSn液态金属球形Janus微纳米马达的视频截图。
图5是本发明一种实施例的GaInSn液态金属球形Janus微纳米马达在不同浓度的碱液中的运动速度影响图。
具体实施方式
下面对本发明的较优的实施例作进一步的详细说明。
一种以碱液作为燃料驱动的球形微纳米马达的制备方法,如图1所示,其包括以下步骤:
步骤S1,将GaInSn液态金属加入乙醇溶液中,按每1mL的乙醇加入5mg的液态金属,并置于冰水浴中进行超声粉碎,该超声为脉冲超声,即超声2s、停2s,总超声时间为3 min,得到微纳米尺寸的GaInSn液态金属微球。超声粉碎使用的设备为超声细胞粉碎机,功率为900W,本步骤使用的功率为该设备功率的40%,即360W。
步骤S2,将得到的GaInSn液态金属微球置于盖玻片上干燥后进行离子溅射,所述离子溅射的材料为Pt、Au或Ag,本实施例中选用Pt,离子溅射的溅射时间为200s;再在水溶液中放入超声清洗机中进行超声分散得到GaInSn液态金属球形微纳米马达;该步骤中超声分散的时间为10s,超声频率为40 KHz。
将得到的GaInSn液态金属球形微纳米马达进行检测,如图2的GaInSn液态金属球形Janus微纳米马达的电镜及能谱图所示,从图中可以很明显的看出,得到的Janus结构的GaInSn液态金属球形马达,一半为离子溅射材料Pt,一半为GaInSn液态金属。
将得到的GaInSn液态金属球形Janus微纳米马达加入到碱性溶液,检测其运动速度等性能,并与粒径大于4μm的微纳米马达进行对比,结果如图3和图4所示。可见,本实施例的粒径为2-4 μm的GaInSn液态金属球形Janus微纳米马达在碱性环境中表现出更好的运动性能,更加活跃。
将得到的GaInSn液态金属球形Janus微纳米马达加入到不同浓度的NaOH碱性溶液,检测其运动速度性能,如图5所示,当NaOH浓度为1mM时,马达表现出更好的运动性能,更加活跃。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims (8)
1.一种以碱液作为燃料驱动的球形微纳米马达的制备方法,其特征在于:其包括以下步骤:
步骤S1,将GaInSn液态金属加入到乙醇或水溶液中进行超声粉碎,得到GaInSn液态金属微球;
步骤S2,将得到的GaInSn液态金属微球干燥后进行离子溅射,再在水溶液中进行超声分散得到GaInSn液态金属球形Janus微纳米马达;
所述离子溅射的材料为Pt、Au或Ag。
2.根据权利要求1所述的以碱液作为燃料驱动的球形微纳米马达的制备方法,其特征在于:所述离子溅射的溅射时间为190~210s。
3.根据权利要求1所述的以碱液作为燃料驱动的球形微纳米马达的制备方法,其特征在于:所述GaInSn液态金属球形微纳米马达的粒径为2-4 μm。
4.根据权利要求1所述的以碱液作为燃料驱动的球形微纳米马达的制备方法,其特征在于:步骤S1中,将GaInSn液态金属加入到乙醇或水溶液中,将其置于冰水浴中进行超声粉碎,所述超声粉碎为脉冲超声,超声1-3s,停1-3s,总超声时间为2~4min,超声功率为350~400W,得到微纳米尺寸的微球。
5.根据权利要求4所述的以碱液作为燃料驱动的球形微纳米马达的制备方法,其特征在于:步骤S1中,每1mL的乙醇或者水加入4~6mg的液态金属。
6.一种采用如权利要求1~5任意一项所述的以碱液作为燃料驱动的球形微纳米马达的制备方法制备的微纳米马达。
7.一种如权利要求6所述的以碱液作为燃料驱动的球形微纳米马达的应用,其特征在于:所述微纳米马达在碱液中驱动,所述微纳米马达的粒径为1-10μm。
8.根据权利要求7所述的以碱液作为燃料驱动的球形微纳米马达的应用,其特征在于:所述碱液为NaOH,碱液的浓度为0.5~5mM。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910322807.XA CN110094314B (zh) | 2019-04-22 | 2019-04-22 | 一种以碱液作为燃料驱动的球形微纳米马达的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910322807.XA CN110094314B (zh) | 2019-04-22 | 2019-04-22 | 一种以碱液作为燃料驱动的球形微纳米马达的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110094314A CN110094314A (zh) | 2019-08-06 |
CN110094314B true CN110094314B (zh) | 2020-10-23 |
Family
ID=67445466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910322807.XA Active CN110094314B (zh) | 2019-04-22 | 2019-04-22 | 一种以碱液作为燃料驱动的球形微纳米马达的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110094314B (zh) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104526702B (zh) * | 2014-12-17 | 2016-03-30 | 清华大学 | 一种自驱动型液态金属机器及其应用 |
CN105309477B (zh) * | 2015-10-22 | 2019-04-02 | 苏州大学 | 自推进杀菌微米马达 |
US10648460B2 (en) * | 2015-12-16 | 2020-05-12 | The University Of Hong Kong | Nanomotor propulsion |
CN106987012B (zh) * | 2017-03-30 | 2019-06-18 | 华南理工大学 | 一种气泡驱动的Janus微球-水凝胶二级马达及其制备方法 |
CN107639228B (zh) * | 2017-09-04 | 2019-08-09 | 哈尔滨工业大学 | 镓铟锡合金纳米棒的制备方法及其做为纳米马达的应用 |
-
2019
- 2019-04-22 CN CN201910322807.XA patent/CN110094314B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110094314A (zh) | 2019-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109434120A (zh) | 用于降解染料废液的铁基非晶合金粉末及其制备方法与应用 | |
CN102887562A (zh) | 一种采用纳米压电材料超声降解染料废水的方法 | |
CN103319737B (zh) | 一种纤维素/氧化锌纳米粒子复合材料的制备方法 | |
JP2011056456A (ja) | バイオナノファイバーの製造方法 | |
CN110094314B (zh) | 一种以碱液作为燃料驱动的球形微纳米马达的制备方法 | |
CN106119750A (zh) | 激光冲击与微弧氧化结合在镁合金表面制备生物涂层方法 | |
CN204182917U (zh) | 一种采用脉冲激光液相烧蚀法制备纳米结构装置 | |
Puapattanakul et al. | Improvement of zinc-air fuel cell performance by gelled koh | |
JP5995239B2 (ja) | 水晶振動子微量天秤用バイオセンサー及びその製造方法 | |
CN105309477A (zh) | 自推进杀菌微米马达 | |
CN104271228A (zh) | 纳米粒子分散液、纳米粒子承载粉末、及其制造方法 | |
JP5525231B2 (ja) | 溶射材料の製造方法及び溶射皮膜の製造方法 | |
CN101508790B (zh) | 一种利用脉冲电场制备低分子量壳聚糖的方法 | |
CN103491806B (zh) | 携带用清洗器 | |
JP5292764B2 (ja) | 燃料電池用カソード触媒、その製造方法及び固定化方法、並びに燃料電池 | |
CN107740083A (zh) | 一种镁合金表面超疏水氟转化涂层的制备方法 | |
CN105218701B (zh) | 超声波/微波联用制备低聚窄分子量分布壳聚糖的设备 | |
WO2008038134A1 (en) | Method for preparing chitosan nano-particles | |
WO2007004274A1 (ja) | 清掃対象物の清掃方法 | |
Zhang et al. | Enhanced enzymatic hydrolysis of poplar after combined dilute NaOH and fenton pretreatment | |
Cheng et al. | Self-supporting copper electrode prepared by ultrasonic impact for hydrogen evolution reaction | |
CN108774289A (zh) | 高羧基含量几丁质纳米纤维分散液的制备方法、高羧基含量几丁质纳米纤维分散液和应用 | |
CN112371122A (zh) | 一种表面负载金属的压电材料及其制备方法与应用 | |
CN102774927B (zh) | 一种超声协同脉冲电场处理含酚废水的降解法 | |
CN109518246A (zh) | 利用电沉积技术原位制备纳米银/羧化壳聚糖复合膜的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |