CN110093420B - 白血病znf384基因断裂探针检测试剂盒 - Google Patents

白血病znf384基因断裂探针检测试剂盒 Download PDF

Info

Publication number
CN110093420B
CN110093420B CN201910384745.5A CN201910384745A CN110093420B CN 110093420 B CN110093420 B CN 110093420B CN 201910384745 A CN201910384745 A CN 201910384745A CN 110093420 B CN110093420 B CN 110093420B
Authority
CN
China
Prior art keywords
znf384
gene
chromosome
bac
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910384745.5A
Other languages
English (en)
Other versions
CN110093420A (zh
Inventor
岳志霞
高超
刘曙光
田硕
郑胡镛
张瑞东
陈绍宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Childrens Hospital
Original Assignee
Beijing Childrens Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Childrens Hospital filed Critical Beijing Childrens Hospital
Priority to CN201910384745.5A priority Critical patent/CN110093420B/zh
Publication of CN110093420A publication Critical patent/CN110093420A/zh
Application granted granted Critical
Publication of CN110093420B publication Critical patent/CN110093420B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/142Toxicological screening, e.g. expression profiles which identify toxicity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了白血病ZNF384基因断裂探针检测试剂盒。本发明提供了用于检测染色体ZNF384基因断裂的荧光原位杂交多克隆分离探针,由定位于染色体ZNF384基因着丝粒侧的两个BAC克隆片段(CTD‑2640D15和RP11‑256J20)和定位于染色体ZNF384基因端粒侧的两个BAC克隆片段组成(RP11‑687D2和RP11‑773K10)组成。本发明利用FISH技术检测ZNF384基因断裂相关的白血病,对患者进行个体化治疗,本发明探针可以全面检测涉及到ZNF384基因的全部易位,发现新的易位,应用的准确率高、特异性高、成功率高,荧光信号强,操作简便,能辅助优化ZNF384基因断裂相关的白血病的治疗和预后评估。

Description

白血病ZNF384基因断裂探针检测试剂盒
技术领域
本发明涉及生物技术领域,具体涉及白血病ZNF384基因断裂探针检测试剂盒。
背景技术
急性B淋巴细胞白血病(B-cell acute lymphoblastic leukemia,B-ALL)是儿童期最常见的恶性肿瘤。基于遗传学异常(基因融合、非整倍体)的分子分型有助于指导临床诊断、危险度分层以及靶向治疗,使B-ALL治愈率得以大幅提高。但是目前仍有约20%的患儿复发,究其原因在于风险分级指标不足、靶向治疗缺乏,发病机制研究不够深入。融合基因是儿童B-ALL发病的重要原因之一,并与ALL风险分级及靶向治疗相关[1,2]。因此,发现新的融合基因,并阐明其作用机制,对于揭示白血病发生发展机制、以及B-ALL危险度分层和靶向治疗具有重要意义。
儿童B-ALL中大量的染色体重排导致多种融合基因的形成,融合蛋白常发生功能异常。TEL-AML1、E2A-PBX1、BCR-ABL、MLL重排等发生于白血病早期,通过干扰造血发育、激酶通路、染色体重构等信号通路导致白血病发生。融合基因已广泛用于B-ALL的临床危险度分层,例如预后较好的TEL-AML1+、E2A-PBX1+患儿划为标危,预后差的BCR-ABL1+、MLL重排患儿划为高危。另外融合基因是重要的治疗靶点,酪氨酸激酶抑制剂(TKI)靶向治疗BCR-ABL1+或费城染色体样(Ph-like)患儿,极大地提高了治愈率[3]。因此研究者们一直致力于发现新的融合基因。近年来,国内外多个研究组报道了B-ALL中DUX4、MEF2D、ZNF384分别与伴侣基因发生融合[1,2,4-9]
转录因子锌指蛋白384(zinc-finger protein 384,ZNF384)最初被鉴定为一种结合BRCA1/p130Cas的SH3结构域蛋白,通过与其相互作用并转录激活MMP-1、3、7等基因表达,参与骨代谢及精子形成。此外,ZNF384还可以通过抑制Gadd34表达水平调节核糖体生物合成及非折叠蛋白反应[10,11]。目前发现ZNF384融合与儿童B-ALL相关。已报道9个伴侣基因可与ZNF384发生融合(EWSR1、TAF15、TCF3、EP300、CREBBP、BMP2K、SYNRG、ARID1B、SMARCA2),融合后的基因仍保留ZNF384的编码区全长。ZNF384融合基因多报道于亚洲国家,在亚洲人群的发生频率约4%[4-7,12]。研究发现ZNF384融合阳性B-ALL患儿具有祖B细胞(Pro-B)特征性免疫表型,提示B细胞分化阻滞在这个阶段。进行聚类分析时发现,尽管ZNF384与不同伴侣基因发生融合,ZNF384融合阳性的所有标本能够聚类到一起,具有不同于其他已知ALL亚型独特的表达谱[4-7]。ZNF384融合+患儿较TEL-AML+亚型预后差。体外B-细胞分化实验显示EP300-ZNF384融合基因阻滞小鼠B细胞分化,小鼠移植实验显示EP300-ZNF384融合基因能够导致白血病发生。基因集富集分析(GSEA)显示ZNF384融合样品伴有JAK-STAT通路活化[4]。Yasuda等也发现EP300-ZNF384融合基因能够使NIH3T3细胞发生转化;过表达EP300-ZNF384融合基因的小鼠Pro-B细胞能够导致小鼠白血病发生[7]
目前检测ZNF384易位的传统的PCR方法,具有明确、快速的特点。在断裂位点上下游设计引物,利用PCR方法对该片段进行扩增。目前,可检测已知的6种ZNF384易位[13-16]。PCR方法的缺点在于仅能检测ZNF384易位的已知伙伴基因,并且断裂位点检测比较单一,因此不能全面检测涉及到ZNF384基因的全部易位,更不能发现新的易位。且该项技术检测的为RNA,由于RNA容易降解,PCR扩增易污染,故可能会出现假阴性或者假阳性的错误结果。
另外,现有的检测ZNF384易位的方法还有RNA测序联合PCR验证法。利用高通量RNA测序技术,可以发现已知和未知的ZNF384易位。该方法,先通过RNA测序技术完成序列测定,再通过生物信息学方法对所测的序列片段与人类基因信息库进行拼接和比对,再通过软件开发的算法,进行基因易位分析。得到计算机分析结果后,再利用PCR方法,在断裂点附近设计引物,进行PCR方法的验证[13-16]。该方法的缺点在于:RNA测序对样本质量的要求极高,如若提取的RNA质控不达标,将无法进行后续实验。由于高通量测序获得的片段仅有100-300bp长度,因此且该方法对数据分析人员的要求极高,即使同一个样本,应用不同分析软件及标准,都会得出不同的结果。即使有经验的分析人员,也可能对同一样本的解读结果产生差异。因此,在临床应用中,很难独立应用该技术,必须联合PCR方法对分析出的阳性结果进行验证。由于该方法的操作复杂,用时长,很难满足临床诊断快速的需求。另外,该方法检测成本昂贵,都是限制其推广应用的瓶颈问题。
参考文献:
[1]Zhang J,McCastlain K,Yoshihara H,Xu B,Chang Y,Churchman ML,Wu G,LiY,Wei L,Iacobucci I,Liu Y,Qu C,Wen J,Edmonson M,Payne-Turner D,Kaufmann KB,Takayanagi SI,Wienholds E,Waanders E,Ntziachristos P,Bakogianni S,Wang J,Aifantis I,Roberts KG,Ma J,Song G,Easton J,Mulder HL,Chen X,Newman S,Ma X,Rusch M,Gupta P,Boggs K,Vadodaria B,Dalton J,Liu Y,Valentine ML,Ding L,Lu C,Fulton RS,Fulton L,Tabib Y,Ochoa K,Devidas M,Pei D,Cheng C,Yang J,Evans WE,Relling MV,Pui CH,Jeha S,Harvey RC,Chen IL,Willman CL,Marcucci G,BloomfieldCD,Kohlschmidt J,Mrózek K,Paietta E,Tallman MS,Stock W,Foster MC,Racevskis J,Rowe JM,Luger S,Kornblau SM,Shurtleff SA,Raimondi SC,Mardis ER,Wilson RK,DickJE,Hunger SP,Loh ML,Downing JR,Mullighan CG;St.Jude Children's ResearchHospital–Washington University Pediatric Cancer Genome Project.Deregulationof DUX4and ERG in acute lymphoblastic leukemia.Nat Genet.2016;48(12):1481-1489.
[2]
Figure BDA0002054464370000021
Henningsson R,Hyrenius-Wittsten A,Olsson L,Orsmark-Pietras C,von Palffy S,Askmyr M,Rissler M,Schrappe M,Cario G,Castor A,PronkCJ,Behrendtz M,Mitelman F,Johansson B,Paulsson K,Andersson AK,Fontes M,Fioretos T.Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes inpaediatric B-cell precursor acute lymphoblastic leukaemia.Nat Commun.2016;7:11790.
[3]Papadantonakis N,Advani AS.Recent advances and novel treatmentparadigms in acute lymphocytic leukemia.Ther Adv Hematol.2016;7(5):252-269.
[4]Liu YF,Wang BY,Zhang WN,Huang JY,Li BS,Zhang M,Jiang L,Li JF,WangMJ,Dai YJ,Zhang ZG,Wang Q,Kong J,Chen B,Zhu YM,Weng XQ,Shen ZX,Li JM,Wang J,Yan XJ,Li Y,Liang YM,Liu L,Chen XQ,Zhang WG,Yan JS,Hu JD,Shen SH,Chen J,GuLJ,Pei D,Li Y,Wu G,Zhou X,Ren RB,Cheng C,Yang JJ,Wang KK,Wang SY,Zhang J,MiJQ,Pui CH,Tang JY,Chen Z,Chen SJ.Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia.EBioMedicine.2016;8:173-183.
[5]Hirabayashi S,Ohki K,Nakabayashi K,Ichikawa H,Momozawa Y,OkamuraK,Yaguchi A,Terada K,Saito Y,Yoshimi A,Ogata-Kawata H,Sakamoto H,Kato M,Fujimura J,Hino M,Kinoshita A,Kakuda H,Kurosawa H,Kato K,Kajiwara R,MoriwakiK,Morimoto T,Nakamura K,Noguchi Y,Osumi T,Sakashita K,Takita J,Yuza Y,MatsudaK,Yoshida T,Matsumoto K,Hata K,Kubo M,Matsubara Y,Fukushima T,Koh K,Manabe A,Ohara A,Kiyokawa N;Tokyo Children’s Cancer Study Group(TCCSG).ZNF384-relatedfusion genes define a subgroup of childhood B-cell precursor acute leukemiawith a characteristic immunotype.Haematologica.2017;102(1):118-129.
[6]Qian M,Zhang H,Kham SK,Liu S,Jiang C,Zhao X,Lu Y,Goodings C,LinTN,Zhang R,Moriyama T,Yin Z,Li Z,Quah TC,Ariffin H,Tan AM,Shen S,Bhojwani D,Hu S,Chen S,Zheng H,Pui CH,Yeoh AE,Yang JJ.Whole-transcriptome sequencingidentifies a distinct subtype of acute lymphoblastic leukemia withpredominant genomic abnormalities of EP300 and CREBBP.Genome Res.2017;27(2):185-195.
[7]Yasuda T,Tsuzuki S,Kawazu M,Hayakawa F,Kojima S,Ueno T,Imoto N,Kohsaka S,Kunita A,Doi K,Sakura T,Yujiri T,Kondo E,Fujimaki K,Ueda Y,AoyamaY,Ohtake S,Takita J,Sai E,Taniwaki M,Kurokawa M,Morishita S,Fukayama M,KiyoiH,Miyazaki Y,Naoe T,Mano H.Recurrent DUX4 fusions in B cell acutelymphoblastic leukemia of adolescents and young adults.Nat Genet.2016;48(5):569-574.
[8]Gu Z,Churchman M,Roberts K,Li Y,Liu Y,Harvey RC,McCastlain K,Reshmi SC,Payne-Turner D,Iacobucci I,Shao Y,Chen IM,Valentine M,Pei D,MungallKL,Mungall AJ,Ma Y,Moore R,Marra M,Stonerock E,Gastier-Foster JM,Devidas M,Dai Y,Wood B,Borowitz M,Larsen EE,Maloney K,Mattano LA Jr,Angiolillo A,SalzerWL,Burke MJ,Gianni F,Spinelli O,Radich JP,Minden MD,Moorman AV,Patel B,Fielding AK,Rowe JM,Luger SM,Bhatia R,Aldoss I,Forman SJ,Kohlschmidt J,MrózekK,Marcucci G,Bloomfield CD,Stock W,Kornblau S,Kantarjian HM,Konopleva M,Paietta E,Willman CL,Loh ML,Hunger SP,Mullighan CG.Genomic analyses identifyrecurrent MEF2D fusions in acute lymphoblastic leukaemia.Nat Commun.2016;7:13331.
[9]Suzuki K,Okuno Y,Kawashima N,Muramatsu H,Okuno T,Wang X,Kataoka S,Sekiya Y,Hamada M,Murakami N,Kojima D,Narita K,Narita A,Sakaguchi H,SakaguchiK,Yoshida N,Nishio N,Hama A,Takahashi Y,Kudo K,Kato K,Kojima S.MEF2D-BCL9Fusion Gene Is Associated With High-Risk Acute B-Cell PrecursorLymphoblasticLeukemia in Adolescents.J Clin Oncol.2016;34(28):3451-3459.
[10]Young SK,Shao Y,Bidwell JP,Wek RC.Nuclear Matrix Protein 4Is aNovel Regulator of Ribosome Biogenesis and Controls the Unfolded ProteinResponse via Repression of Gadd34Expression.J Biol Chem.2016;291(26):13780-13788.
[11]Nakamoto T,Izu Y,Kawasaki M,Notomi T,Hayata T,Noda M,Ezura Y.MiceDeficient in CIZ/NMP4Develop an Attenuated Form of K/BxN-Serum InducedArthritis.J Cell Biochem.2016;117(4):970-977.
[12]Gocho Y,Kiyokawa N,Ichikawa H,Nakabayashi K,Osumi T,Ishibashi T,Ueno H,Terada K,Oboki K,Sakamoto H,Shioda Y,Imai M,Noguchi Y,Arakawa Y,KojimaY,Toyama D,Hata K,Yoshida T,Matsumoto K,Kato M,Fukushima T,Koh K,Manabe A,Ohara A;Tokyo Children’s Cancer Study Group..A novel recurrent EP300-ZNF384gene fusion in B-cell precursor acute lymphoblasticleukemia.Leukemia.2015;29(12):2445-2448.
[13]Hirabayashi S,Ohki K,Nakabayashi K,Ichikawa H,Momozawa Y,OkamuraK,Yaguchi A,Terada K,Saito Y,Yoshimi A,Ogata-Kawata H,Sakamoto H,Kato M,Fujimura J,Hino M,Kinoshita A,Kakuda H,Kurosawa H,Kato K,Kajiwara R,MoriwakiK,Morimoto T,Nakamura K,Noguchi Y,Osumi T,Sakashita K,Takita J,Yuza Y,MatsudaK,Yoshida T,Matsumoto K,Hata K,Kubo M,Matsubara Y,Fukushima T,Koh K,Manabe A,Ohara A,Kiyokawa N;Tokyo Children’s Cancer Study Group(TCCSG).ZNF384-relatedfusion genes define a subgroup of childhood B-cell precursor acutelymphoblastic leukemia with a characteristic immunotype.Haematologica.2017Jan;102(1):118-129.
[14]Shago M,Abla O,Hitzler J,Weitzman S,Abdelhaleem M.Frequency andoutcome of pediatric acute lymphoblastic leukemia with ZNF384generearrangements including a novel translocation resulting in an ARID1B/ZNF384gene fusion.Pediatr Blood Cancer.2016Nov;63(11):1915-21.
[15]Nyquist KB,Thorsen J,Zeller B,Haaland A,
Figure BDA0002054464370000041
Heim S,MicciF.Identification of the TAF15-ZNF384fusion gene in two new cases of acutelymphoblastic leukemiawith a t(12;17)(p13;q12).Cancer Genet.2011Mar;204(3):147-52.
[16]Thorsen J,Micci F,Heim S.Identification of chromosomalbreakpoints of cancer-specific translocations by rolling circle amplificationand long-distance inverse PCR.Cancer Genet.2011Aug;204(8):458-61.
发明内容
本发明的目的在于针对白血病ZNF384基因断裂检测,建立一种基于荧光原位杂交法的ZNF384基因断裂的检测探针及应用试剂盒。
第一方面,本发明要求保护一种用于检测染色体ZNF384基因断裂的荧光原位杂交多克隆分离探针。
本发明所要求保护的用于检测染色体ZNF384基因断裂的荧光原位杂交多克隆分离探针,由定位于染色体ZNF384基因着丝粒侧的两个BAC克隆片段和定位于染色体ZNF384基因端粒侧的两个BAC克隆片段组成;
所述定位于染色体ZNF384基因着丝粒侧的两个BAC克隆片段为BAC克隆片段CTD-2640D15和BAC克隆片段RP11-256J20;
所述定位于染色体ZNF384基因端粒侧的两个BAC克隆片段为BAC克隆片段RP11-687D2和BAC克隆片段RP11-773K10。
进一步地,所述BAC克隆片段CTD-2640D15定位于GRCh37/hg19人类基因组的第12号染色体的第6,799,526-7,022,040位。所述BAC克隆片段RP11-256J20定位于GRCh37/hg19人类基因组的第12号染色体的第6,913,426-7,123,259位。所述BAC克隆片段RP11-687D2定位于GRCh37/hg19人类基因组的第12号染色体的第6,505,434-6,709,070位。所述BAC克隆片段RP11-773K10定位于GRCh37/hg19人类基因组的第12号染色体的第6,224,133-6,428,122位。
进一步地,所述BAC克隆片段CTD-2640D15和所述BAC克隆片段RP11-256J20标记有相同颜色的荧光信号;所述BAC克隆片段RP11-687D2和所述BAC克隆片段RP11-773K10标记有另一种相同颜色的荧光信号。
在本发明中,所述BAC克隆片段CTD-2640D15和所述BAC克隆片段RP11-256J20标记有绿色荧光信号;所述BAC克隆片段RP11-687D2和所述BAC克隆片段RP11-773K10标记有红色荧光信号。
在本发明的具体实施例方式中,所述绿色荧光信号和所述红色荧光信号均为采用缺口平移法标记到相应探针上的。利用缺口平移法,将相应的BAC克隆片段用Sptectrumgreen-dUTP标记为绿色荧光,将相应的BAC克隆片段用Sptectrum orange-dUTP标记为红色荧光。
第二方面,本发明要求保护用于检测染色体ZNF384基因断裂的试剂盒。
本发明所要求保护的用于检测染色体ZNF384基因断裂的试剂盒,含有前文第一方面中所述的用于检测染色体ZNF384基因断裂的荧光原位杂交多克隆分离探针。
进一步地,所述试剂盒中含有探针杂交液和4’,6-二脒基-2-苯基吲哚复染剂(DAPI染色剂)。
所述探针杂交液由前文第一方面所述用于检测染色体ZNF384基因断裂的荧光原位杂交多克隆分离探针与Human Cot-1DNA、杂交缓冲液和纯水按比例配合而成。
所述4’,6-二脒基-2-苯基吲哚复染剂(DAPI染色剂)主要用于细胞核DNA染色。
第三方面,本发明要求保护前文第一方面所述的用于检测染色体ZNF384基因断裂的荧光原位杂交多克隆分离探针或前文第二方面所述的试剂盒在检测染色体ZNF384基因断裂中的应用。
第四方面,本发明要求保护前文第一方面所述的用于检测染色体ZNF384基因断裂的荧光原位杂交多克隆分离探针或前文第二方面所述的试剂盒在在制备用于对染色体ZNF384基因断裂相关疾病进行诊断、治疗和/或预后评估的产品中的应用。
进一步地,所述染色体ZNF384基因断裂相关疾病可为白血病,如初发或复发ALL、急性髓细胞白血病或混合谱系白血病。本发明的优点和效果在于利用FISH技术检测ZNF384基因断裂相关的白血病,从而对患儿进行个体化治疗,该荧光原位杂交多克隆分离探针可以全面检测涉及到ZNF384基因的全部易位,发现新的易位,应用的准确率高、特异性高、成功率高,荧光信号强,操作简便,能辅助优化ZNF384基因断裂相关的白血病的治疗和预后评估。
附图说明
图1为荧光原位杂交多克隆分离探针定位模式示意图。
图2为B-ALL患儿骨髓培养细胞ZNF384基因断裂阴性对照。
图3为免疫性血小板减少性紫癜(immune thrombocytopenic purpura,ITP)患儿骨髓培养细胞ZNF384基因断裂阴性对照图。
图4为B-ALL患儿骨髓培养细胞ZNF384基因断裂阳性图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、ZNF384基因断裂检测探针、试剂盒的制备及使用方法
本发明的技术思路是:
荧光原位杂交是利用标记有荧光素的探针特异性与染色体和(或)基因位点相结合,通过荧光显微镜观察荧光信号的类型,从而检测染色体和相应基因变化的方法,具有安全、经济、快速、灵敏度高、检测信号强、杂交特异性高、能同时显示多种颜色等优点,而且弥补了传统方法对间期细胞、复杂核型细胞以及染色体微缺失无法诊断的缺陷。同时荧光原位杂交技术应用于石蜡包埋的样本上进行回顾性研究,大大降低了对研究样本的要求。基于近年来荧光原位杂交技术的快速发展,本发明就根据荧光原位杂交的原理,提出了一种检测白血病ZNF384基因断裂的荧光原位杂交多克隆分离探针及试剂盒应用。
1、多克隆DNA探针的制备:
通过http://genome.ucsc.edu(GRCh37/hg19)查找12号染色体ZNF384基因两侧(即端粒侧和着丝粒侧)对应的细菌人工染色体(BAC克隆),两侧分别选择2个大小相近的BAC克隆片段,控制两侧BAC克隆长度大于200Kb,且位于待检基因ZNF384的两侧,同侧片段相互之间可能存在一定的序列重叠。按上述要求选取ZNF384着丝粒侧BAC克隆片段为CTD-2640D15(chr12:6,799,526-7,022,040,片段长度约为223Kb)和RP11-256J20(chr12:6,913,426-7,123,259,片段长度约为210Kb);ZNF384端粒侧BAC克隆片段为RP11-687D2(chr12:6,505,434-6,709,070,片段长度约为204Kb)和RP11-773K10(chr12:6,224,133-6,428,122,片段长度约为204Kb)。
并在http://projects.tcag.ca/cgi-bin/efish/index.cgi对所选BAC克隆进行特异性分析,明确所选BAC片段在12号染色体上的特异性。本发明中的荧光原位杂交多克隆分享探针定位模式如图1所示。从Invitrogen公司购置相应BAC克隆,经培养后提取质粒,利用缺口平移法,将着丝粒侧质粒用Sptectrum green-dUTP(广州安必平医药科技股份有限公司产品,货号为FKY-1901-GL)标记为绿色荧光,将端粒侧质粒用Sptectrum orange-dUTP((广州安必平医药科技股份有限公司产品,货号为FKY-1901-OL)标记为红色荧光,两端颜色可以互换。用于荧光标记的试剂盒中包括10×缓冲液A、dNTPs/dUTP混合物和酶系D三个组分。建议标记条件12℃标记16小时,90℃10分钟。标记体系如下:10×缓冲液A 5μl;dNTPs/dUTP混合物5μl;酶系D 5μl;质粒(500ng/μL)5μl;纯化水补足50μl。
2、多克隆DNA探针试剂盒的制备
将步骤1标记好的探针与Human Cot-1DNA、杂交缓冲液、纯化水按比例配制备成探针杂交液,-20℃避光冷冻保存。
其中,用于探针杂交液配制的试剂采购于广州安必平医药科技股份有限公司,试剂盒名称杂交缓冲液A系列,货号FKY-1902-Z1。试剂结合探针后可配制成用于FISH杂交的杂交液。试剂盒包括一个组分,主要成分为杂交缓冲液A系列和Human Cot-1DNA。配制好的杂交液可用于FISH杂交。探针杂交液配制如下(总体积10μl):杂交缓冲液A 7μl;红色探针1μl;绿色探针1μl;纯化水1μl。
本发明所提供的多克隆DNA探针试剂盒中含有上述探针杂交液和4’,6-二脒基-2-苯基吲哚复染剂(DAPI染色剂)(主要用于细胞核DNA染色)。
3、荧光原位杂交过程:
(1)胃蛋白酶消化处理
胃蛋白酶溶液配制:400μl 1M HCl加入40ml纯化水中,置于37±1℃恒温水浴锅中,使用前加入75μl 10%胃蛋白酶,混匀,使用一天后更换。将滴好细胞的载玻片放入37±1℃的1×PBS中孵育5分钟;取出玻片,再将其放入37±1℃胃蛋白酶溶液中消化3~10分钟(可通过预试验确定酶效力);取出玻片,再将其放入1×PBS室温洗涤3分钟;取出玻片,再将其放入1%多聚甲醛/PBS室温固定10分钟;取出玻片,再将其放入1×PBS室温洗涤3分钟;取出玻片,再将其放入70%、90%、100%梯度乙醇脱水各2分钟;取出玻片,室温晾干。
(2)样品和探针同时变性/杂交(避光操作)
从-20±5℃冰箱中取出探针杂交液,震荡混匀,瞬时离心;加10μl的探针杂交液到杂交区域,迅速盖上盖玻片,轻压使探针均匀分布,避免产生气泡;用橡皮胶沿盖玻片边缘封片,完全覆盖盖玻片和载玻片接触的部位;湿润原位杂交仪湿度条,将玻片置于原位杂交仪上,关闭原位杂交仪盖,设置“Denat&Hyb”程序,变性78±1℃2分钟,杂交37±1℃10~18小时(若无杂交仪,可使用替代仪器,如恒温热台进行变性,电热烘箱/或水浴锅进行杂交,需注意温度准确及保持杂交湿度)。
(3)杂交后洗涤及复染(避光操作)
洗涤前30分钟,将配制好的0.3%NP-40/SSC,放入72±1℃的水浴中,测量以确保温度合适;关闭杂交仪电源,将玻片取出,轻轻撕去橡皮胶,移去盖玻片(若盖玻片难以去除,可以将其放入0.1%NP-40/2×SSC中微微摇晃,以利于其脱落);玻片放入72±1℃0.3%NP-40/SSC中2分钟;取出玻片,再将其放入室温0.1%NP-40/2×SSC中30秒;取出玻片,再将其放入室温70%、90%、100%乙醇中各2分钟脱水;取出玻片,暗处自然干燥玻片;
室温,滴加10μl的4’,6-二脒基-2-苯基吲哚复染剂(DAPI染色剂)到盖玻片,载玻片目标区域朝下,轻放于盖玻片上,轻压,避免产生气泡,在暗处存放,待观察。
(4)结果判定:参照通行的双色探针使用标准,在暗室中使用荧光显微镜DAPI/FIFC/TexasRed三色滤光镜激发,100倍物镜下观察间期细胞,判别荧光信号。每一张玻片至少计数400个互不重叠的细胞核,并观察到明确的荧光信号,才能确定免疫荧光原位杂交检测有效。
使用荧光显微镜可以观察到两种信号类型:(1)正常信号:在未发生ZNF384基因断裂的骨髓细胞中,由于双色信号相距较近而出现红绿连续信号或者黄色信号(红绿双色叠加的效果),信号点的数量取决于细胞核内12号染色体数目;(2)分离信号:当发生ZNF384基因断裂时,导致分别标记在ZNF384基因两端的红绿信号出现分离。只有当红绿信号分离同时出现且距离一个信号直径以上时,才能记为分离信号。每一列玻片的整个核心区域至少有400个互不重叠的细胞核,在核心区域有超过10%的肿瘤细胞核出现红绿分离信号,判断荧光原位杂交阳性;未出现红绿信号分离,则判断荧光原位杂交阴性;单独出现红色或绿色信号则不计数。
实施例2、ZNF384基因断裂检测探针、试剂盒的实际应用
本实施例对40例临床确诊的ALL儿童患者(40例患儿中30例为B-ALL,10例为T-ALL;其监护人知情并同意)的骨髓为待测样本,制备骨髓滴片样本,利用实施例1中的探针、试剂盒进行ZNF384基因断裂与否的检测,具体参见方法参见实施例1步骤3。
结果显示:30例临床诊断B-ALL患者的骨髓细胞滴片标本中,2例符合荧光原位杂交诊断标准,判断为阳性,其余28例诊断为阴性。10例临床诊断T-ALL患者的骨髓细胞滴片标本中,均未检测出基因断裂信号,判断为阴性。图2为B-ALL患儿阴性对照病例,在肿瘤细胞核内和中期分裂相中见2个红绿融合信号;图3为ITP患儿阴性对照病例,在肿瘤细胞核内和中期分裂相中见2个红绿融合信号;图4为B-ALL患儿ZNF384基因断裂阳性病例,在肿瘤细胞核内见1个红绿融合信号,1个红信号和1个绿信号。我们对2例ZNF384基因断裂阳性病例的骨髓细胞标本进行了PCR验证,证实此阳性患儿骨髓细胞发生了EP300-ZNF384基因融合。我们对其余38例应用ZNF384基因断裂探针检测阴性的骨髓细胞标本同时进行了已知的涉及ZNF384基因的9种融合进行PCR验证,证实全部为阴性。
本发明探针所采用的两组4个克隆片段尚未有相同探针使用,且克隆片段大小相对一致。每一种克隆片段标记信号强度较相似,同侧标记的探针信号不出现间断,信号强度较一般探针强,特异性高,充分考虑到应用于诊断试剂以及制备成诊断试剂盒时的探针的可靠性和有效性,符合应用于临床诊断的要求。利用荧光原位杂交技术,使用白血病ZNF384基因断裂探针检测ZNF384基因断裂准确、快速、经济且成功率高。从图3中可以看出利用该探针检测所有的ITP患儿是阴性,而在图4中显示该探针检测B-ALL中ZNF384基因断裂阳性,细胞核中显示荧光信号清晰,信号亮度高。实验结果显示本发明在特异性强及敏感性高的优势,同时该探针穿透性强,信号清晰,信号亮度高符合制备成诊断试剂盒的要求。

Claims (7)

1.一种用于检测染色体ZNF384基因断裂的荧光原位杂交多克隆分离探针,由定位于染色体ZNF384基因着丝粒侧的两个BAC克隆片段和定位于染色体ZNF384基因端粒侧的两个BAC克隆片段组成;
所述定位于染色体ZNF384基因着丝粒侧的两个BAC克隆片段为BAC克隆片段CTD-2640D15和BAC克隆片段RP11-256J20;
所述定位于染色体ZNF384基因端粒侧的两个BAC克隆片段为BAC克隆片段RP11-687D2和BAC克隆片段RP11-773K10;
所述BAC克隆片段CTD-2640D15定位于GRCh37/hg19人类基因组的第12号染色体的第6,799,526-7,022,040位;
所述BAC克隆片段RP11-256J20定位于GRCh37/hg19人类基因组的第12号染色体的第6,913,426-7,123,259位;
所述BAC克隆片段RP11-687D2定位于GRCh37/hg19人类基因组的第12号染色体的第6,505,434-6,709,070位;
所述BAC克隆片段RP11-773K10定位于GRCh37/hg19人类基因组的第12号染色体的第6,224,133-6,428,122位。
2.根据权利要求1所述的荧光原位杂交多克隆分离探针,其特征在于:所述BAC克隆片段CTD-2640D15和所述BAC克隆片段RP11-256J20标记有相同颜色的荧光信号;所述BAC克隆片段RP11-687D2和所述BAC克隆片段RP11-773K10标记有另一种相同颜色的荧光信号。
3.根据权利要求2所述的荧光原位杂交多克隆分离探针,其特征在于:所述BAC克隆片段CTD-2640D15和所述BAC克隆片段RP11-256J20标记有绿色荧光信号;所述BAC克隆片段RP11-687D2和所述BAC克隆片段RP11-773K10标记有红色荧光信号。
4.根据权利要求3所述的荧光原位杂交多克隆分离探针,其特征在于:所述绿色荧光信号和所述红色荧光信号均是采用缺口平移法标记到相应探针上的。
5.用于检测染色体ZNF384基因断裂的试剂盒,含有权利要求1-3中任一所述的荧光原位杂交多克隆分离探针。
6.根据权利要求5所述的试剂盒,其特征在于:所述试剂盒中含有探针杂交液和4’,6-二脒基-2-苯基吲哚复染剂;
所述探针杂交液由所述荧光原位杂交多克隆分离探针与Human Cot-1DNA、杂交缓冲液和水按比例配合而成。
7.权利要求1-4中任一所述的荧光原位杂交多克隆分离探针或权利要求5或6所述的试剂盒在制备用于对染色体ZNF384基因断裂相关疾病进行诊断、治疗和/或预后评估的产品中的应用;
所述染色体ZNF384基因断裂相关疾病为白血病。
CN201910384745.5A 2019-05-09 2019-05-09 白血病znf384基因断裂探针检测试剂盒 Active CN110093420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910384745.5A CN110093420B (zh) 2019-05-09 2019-05-09 白血病znf384基因断裂探针检测试剂盒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910384745.5A CN110093420B (zh) 2019-05-09 2019-05-09 白血病znf384基因断裂探针检测试剂盒

Publications (2)

Publication Number Publication Date
CN110093420A CN110093420A (zh) 2019-08-06
CN110093420B true CN110093420B (zh) 2022-05-24

Family

ID=67447498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910384745.5A Active CN110093420B (zh) 2019-05-09 2019-05-09 白血病znf384基因断裂探针检测试剂盒

Country Status (1)

Country Link
CN (1) CN110093420B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684261B (zh) * 2021-09-02 2024-04-30 济南艾迪康医学检验中心有限公司 利用荧光定量pcr检测znf384基因重排的引物和探针及试剂盒

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952493A (zh) * 2014-05-20 2014-07-30 南京大学医学院附属鼓楼医院 肾癌的荧光原位杂交多克隆分离探针及其试剂盒应用
CN104388423A (zh) * 2014-10-28 2015-03-04 南京大学医学院附属鼓楼医院 Aspl-tfe3融合性肾癌基因探针及其试剂盒应用
CN107177677A (zh) * 2017-06-06 2017-09-19 首都医科大学附属北京儿童医院 一种用于检测tert基因断裂的探针组、试剂盒及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952493A (zh) * 2014-05-20 2014-07-30 南京大学医学院附属鼓楼医院 肾癌的荧光原位杂交多克隆分离探针及其试剂盒应用
CN104388423A (zh) * 2014-10-28 2015-03-04 南京大学医学院附属鼓楼医院 Aspl-tfe3融合性肾癌基因探针及其试剂盒应用
CN107177677A (zh) * 2017-06-06 2017-09-19 首都医科大学附属北京儿童医院 一种用于检测tert基因断裂的探针组、试剂盒及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion;Nana Ping.et al;《Journal of Hematology & Oncology》;20151231;第8卷;1-7 *
Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion;Mary Shago1.et al;《Pediatr Blood Cancer》;20160708;第63卷;1915-1921 *

Also Published As

Publication number Publication date
CN110093420A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
Vega et al. Chromosomal translocations involved in non-Hodgkin lymphomas
Monzon et al. The role of KRAS mutation testing in the management of patients with metastatic colorectal cancer
Yuan et al. A chimeric RNA characteristic of rhabdomyosarcoma in normal myogenesis process
CA2882759C (en) Detection of the ntrk1-mprip gene fusion for cancer diagnosis
KR101693387B1 (ko) 비정상적인 미토콘드리아 dna, 그것에 연관된 융합 트랜스크립트 및 혼성화 프로브
Muraoka-Cook et al. The intracellular domain of ErbB4 induces differentiation of mammary epithelial cells
Houghton et al. Transcriptional complementarity in breast cancer: application to detection of circulating tumor cells
US20030236632A1 (en) Biomarkers for breast cancer
EP2761300A2 (en) Recurrent gene fusions in breast cancer
Nawaz et al. Integrin α9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma
EP3543359A1 (en) Molecular marker, kit and application for use in early diagnosis and prediction of sepsis as complication of acute kidney injury
Yang et al. Accurate detection of HPV integration sites in cervical cancer samples using the nanopore MinION sequencer without error correction
JP2020523031A (ja) Pd−1/pd−l1経路の成分を標的とする薬剤を用いて治療するために増殖性疾患に罹患している患者の感受性を決定する方法
CN110093420B (zh) 白血病znf384基因断裂探针检测试剂盒
CA2619736C (en) Dopaminergic neuron proliferative progenitor cell marker msx1/2
WO2008077330A1 (en) Taqman mgb probe for detecting maternal inherited mitochondrial genetic deafness c1494t mutation and its usage
Cilloni et al. Aberrant activation of ROS1 represents a new molecular defect in chronic myelomonocytic leukemia
CN110093421B (zh) 白血病mef2d基因断裂探针检测试剂盒
Ueda et al. The landscape of MYB/MYBL1-and peri-MYB/MYBL1-associated rearrangements in adenoid cystic carcinoma
Harrison et al. Fluorescence in situ hybridization analysis of masked (8; 21)(q22; q22) translocations
CN116536419A (zh) 检测alk基因融合的引物、探针及其试剂盒
JP5734947B2 (ja) 異常型ミトコンドリアdna、関連融合転写物および翻訳産物、並びにそのハイブリダイゼーションプローブ
CN106811537A (zh) 一种检测表皮生长因子受体基因t790m低频突变引物及其应用
Gulley et al. A rational approach to genetic testing for sarcoma
Baik et al. DNA profiling by array comparative genomic hybridization (CGH) of peripheral blood mononuclear cells (PBMC) and tumor tissue cell in non-small cell lung cancer (NSCLC)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant