CN110093340B - 一种固定光合细菌的皮克林乳液微球及其制备与应用 - Google Patents

一种固定光合细菌的皮克林乳液微球及其制备与应用 Download PDF

Info

Publication number
CN110093340B
CN110093340B CN201910283504.1A CN201910283504A CN110093340B CN 110093340 B CN110093340 B CN 110093340B CN 201910283504 A CN201910283504 A CN 201910283504A CN 110093340 B CN110093340 B CN 110093340B
Authority
CN
China
Prior art keywords
photosynthetic bacteria
pickering emulsion
aqueous solution
dipping
microspheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910283504.1A
Other languages
English (en)
Other versions
CN110093340A (zh
Inventor
张国亮
唐咸昌
范铮
孟琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910283504.1A priority Critical patent/CN110093340B/zh
Publication of CN110093340A publication Critical patent/CN110093340A/zh
Application granted granted Critical
Publication of CN110093340B publication Critical patent/CN110093340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Biotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明公开了一种固定光合细菌的皮克林乳液微球及其应用,所述微球按如下方法制备:以含两亲性二氧化硅纳米棒的大豆油为油相,以含光合细菌和锌源的明胶水溶液为水相,在磁力搅拌下将水相滴入油相中,磁力搅拌均匀,4℃静置后离心,取沉淀,得到包埋光合细菌的皮克林乳液,再浸渍到含锌源的明胶水溶液中,室温下浸渍2h,然后离心再浸渍到含2‑甲基咪唑的油酸中,室温浸渍30min,重复浸渍到含锌源的明胶水溶液和含2‑甲基咪唑的油酸中,离心,得到固定光合细菌的皮克林乳液微球。本发明先将光合细菌包埋进皮克林乳液内部,继而在皮克林乳液界面诱导沸石咪唑酯骨架材料生长,固定光合细菌皮克林乳液微球处理含苯胺废水降解率42%。

Description

一种固定光合细菌的皮克林乳液微球及其制备与应用
(一)技术领域
本发明涉及一种皮克林乳液微球,特别涉及一种固定光合细菌皮克林乳液微球及制备方法以及在降解有机废水中的应用。
(二)背景技术
皮克林乳液是一类用固体颗粒替代表面活性剂来稳定乳液的总称。与利用表面活性剂稳定的乳液相比,皮克林乳液具有更好的稳定性,避免因使用表面活性剂对生物分子活性带来的不利影响。此外,皮克林乳液的制备受多种因素影响,如颗粒浓度、颗粒润湿性、颗粒粒径、界面颗粒的相互作用、油相性质、油/水比、电解质、颗粒初始分散相介质等。
一般地,非极性油相使颗粒更亲水,易倾向形成O/W型乳液;极性油相使颗粒更亲油,易形成W/O型乳液。在一定颗粒浓度下,油/水比的改变会导致乳液在O/W和W/O之间改变,称之为转相。适宜的油/水比对乳液的稳定非常重要。适当的颗粒絮凝可以改善皮克林乳液的稳定性,在电解质作用下,微絮凝颗粒的稳定效果最好。固体颗粒的表面愈粗糙,形状愈不对称,愈有利形成牢固的颗粒“膜”,使乳液更稳定。
一般地,所形成的皮克林乳液的稳定性会随颗粒浓度增加而提高,同时乳液半径也随之减少。在达到一定浓度后,再继续增大颗粒浓度将不会对乳液的稳定性及乳液半径有较大的改变。当固体颗粒的直径小于几个微米时,乳液的稳定性会迅速增加,且颗粒必须小于分散相液滴尺寸,才能有效地稳定乳液。当油/水界面能大于颗粒/油相和颗粒/水相的界面能之差的绝对值时,颗粒可以自发吸附到油/水界面上。
用于皮克林乳液稳定的颗粒一般有两种:一种是均匀润湿性的,另一种是两亲性(Janus)颗粒。一般地,利用两亲性(Janus)颗粒制备的皮克林乳液更稳定。
明胶由18种氨基酸组成,其中脯氨酸(Pro)和羟脯氨酸(Hyp)含量较高。选择明胶作为金属有机骨架材料(MOF)的生长基质,一是其廉价且无毒,二是明胶中丰富氨基酸可诱导MOF生长。沸石咪唑酯骨架材料(ZIF-8)生长的关键在于两相界面反应的生长调控。现阶段制备的MOF微球多采用“液滴微流控”装置,即使用两种互不混溶的液体(分别含金属源和有机配体)通过注射泵在“液滴微流控”的T型接头处发生界面反应,继而生成MOF微球。由于该设备复杂、成本高,很大程度上限制该技术只应用于实验室阶段。
(三)发明内容
本发明目的是提供一种固定光合细菌的皮克林乳液微球及制备方法,同时将固定光合细菌的皮克林乳液微球用于降解有机废水的应用。通过形成皮克林乳液将光合细菌包埋进乳液内部,继而诱导ZIF-8在皮克林乳液界面生长。
本发明采用的技术方案是:
本发明提供一种固定光合细菌的皮克林乳液微球,所述微球按如下方法制备:(1)以含两亲性二氧化硅纳米棒的大豆油为油相,以含光合细菌和锌源的明胶水溶液为水相,在磁力搅拌(优选10min)下将水相滴入油相中,搅拌均匀,4℃静置12-24h后离心,取沉淀,得到包埋光合细菌的皮克林乳液;(2)将包埋光合细菌的皮克林乳液浸渍到含锌源的明胶水溶液中,室温下浸渍2h,然后离心,再浸渍到含2-甲基咪唑的油酸中,室温下浸渍30min,重复浸渍含锌源的明胶水溶液和含2-甲基咪唑的油酸,在皮克林乳液界面形成沸石咪唑酯骨架(ZIF-8),离心,取沉淀,得到固定光合细菌的皮克林乳液微球。
进一步,步骤(1)所述光合细菌的优势菌种为沼泽红假单胞菌(Rhodopseudomonaspalustris),购自浙江鼎龙科技有限公司。
进一步,步骤(1)所述光合细菌经培养后以浓缩液的形式加入水相中,所述浓缩液制备方法为:将光合细菌接种至光合细菌培养液中,光合细菌初始浓度约为0.45g/L(OD805=0.34),并置于光照培养箱中,20-30℃(优选30℃),光照强度2400-4800Lx(优选4800Lx),调节培养基pH为7.0-8.0(优选8.0),培养7天,培养液经8000rpm离心5min,用pH 8.0、0.01M磷酸盐缓冲液清洗后,去除清洗液,获得光合细菌浓缩液;所述光合细菌培养基成分如下:CH3COONa 3.0g/L,NH4Cl 1.0g/L,NaCl 1.0g/L,MgSO4 0.2g/L,KH2PO4 0.5g/L,K2HPO40.5g/L,CaCl2 0.05g/L,酵母膏0.5g/L,微量元素1ml/L,溶剂为去离子水,pH为7.0;其中,微量元素成分如下:EDTA-2Na 2g/L,FeSO4.7H2O 0.2g/L,MnCl2.4H2O 0.1g/L,H3BO3 0.1g/L,CoCl2.6H2O 0.1g/L,ZnCl2 0.1g/L,Na2MoO4.2H2O 0.02g/L,NiCl2.6H2O 0.02g/L,CuCl2.2H2O 0.01g/L,溶剂为去离子水。
进一步,步骤(1)所述光合细菌在水相中的加入量为10-50mg/L,优选43.5mg/L;所述大豆油体积用量以两亲性二氧化硅纳米棒质量计为0.5-10mL/mg(优选0.5mL/mg),所述明胶水溶液中锌源浓度为0.0672mol/L,明胶水溶液浓度为5-50g/L(优选50g/L),油相与水相体积为10-20:1(优选20:1)。
进一步,步骤(2)含锌源的明胶水溶液中锌浓度为0.0672mol/L,明胶水溶液浓度5-50g/L(优选50g/L)。
进一步,步骤(2)含2-甲基咪唑的油酸中2-甲基咪唑浓度为0.672mol/L。
进一步,步骤(2)离心分离是指1000rpm离心10min。
进一步,步骤(2)重复4次。
进一步,两亲性二氧化硅纳米棒的制备方法为:
(1)亲水二氧化硅纳米棒制备:取聚乙烯吡咯烷酮(PVP,40K)和正戊醇加入250ml的圆底烧瓶中,40KHz超声4h,直至PVP全部溶解,依次加入去离子水,乙醇,0.18M柠檬酸钠水溶液,手摇5min,混匀,再依次加入氨水(28wt%),手摇3min;硅酸四乙酯(TEOS),轻微摇晃30s,并于室温下过夜(12h);所述正戊醇体积用量以聚乙烯吡咯烷酮重量计为10ml/g;去离子水、乙醇、柠檬酸钠水溶液、氨水、硅酸四乙酯体积加入量以聚乙烯吡咯烷酮重量计分别为5.1ml/15g、15ml/15g、5.1ml/15g、1ml/15g、1.15ml/15g、2ml/15g;
(2)两亲性二氧化硅纳米棒的制备:往步骤(1)放置过夜的烧瓶中加入十六烷基三甲氧基硅烷(HDTMOS),轻微摇晃30s,静置水解12h,再用乙醇清洗5次(6000rpm,15min),最后在60℃下烘干,获得两亲性二氧化硅纳米棒;所述十六烷基三甲氧基硅烷体积加入量以聚乙烯吡咯烷酮重量计为570μL/15g。
本发明还提供一种固定光合细菌的皮克林乳液微球在降解有机废水中的应用,所述应用为:将固定光合细菌皮克林乳液微球接种至有机废水中,调节pH 7.0,在光照强度为2400-4800Lx(优选4800Lx)、温度为20-30℃(优选30℃)条件下进行降解;所述有机废水为100mg/L的苯胺水溶液;所述苯胺水溶液体积用量以光合细菌皮克林微球重量计为400ml/g。
进一步,所述固定光合细菌的皮克林乳液微球先进行光合细菌强化培养,再将强化后的固定光合细菌皮克林乳液微球加入苯胺水溶液中,所述强化方法为:将固定光合细菌的皮克林乳液微球接种至含2g/L葡萄糖的光合细菌培养液中,在pH 7.0,光照强度2400-4800Lx,20-30℃下培养7天,1000rpm离心10min,获得强化后的固定光合细菌皮克林乳液微球;所述强化后的固定光合细菌皮克林乳液微球接种量为0.01g/ml。
与现有技术相比,本发明的有益效果主要体现在:
1)本发明先将光合细菌包埋进皮克林乳液内部,继而在皮克林乳液界面诱导沸石咪唑酯骨架材料(ZIF-8)生长,这一技术为光合细菌的固定化提供了新思路。此外,利用该法制备的皮克林乳液微球可通过简单离心回收光合细菌,不易发生光合细菌流失的现象。同时,营养物质可通过ZIF-8的微孔扩散来维系光合细菌的代谢所需。
2)本发明制备的皮克林乳液原料成本低,制备方法简单;包埋光合细菌的皮克林乳液体系不易遭到破坏,具有一定的推广应用价值。
3)本发明制备的含ZIF-8外壳的皮克林乳液微球对活性细胞进行包埋,该法具有广适性,能对其他生物大分子包括蛋白质(如辣根过氧化物酶HRP)等进行包埋。
4)对利用固定光合细菌皮克林乳液微球处理含苯胺废水的实验数据表明,光合细菌能促进对苯胺的降解(42%);空白组对苯胺降解率的贡献来自MOF的吸附作用(8%)。
(四)附图说明
图1包埋了光合细菌的皮克林乳液光学显微镜图(A)和局部放大图(B);
图2两亲性硅纳米线(棒)的扫描电镜(SEM)图(A)和局部放大图(B);
图3包埋了光合细菌的皮克林乳液微球的SEM图;
图4固定光合细菌的皮克林乳液微球对苯胺降解效率图。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:本发明实施例所用大豆油为金龙鱼食用调和油,购自益海嘉里食品营销有限公司,所用明胶购自国药化学试剂有限公司。
实施例1:两亲性二氧化硅纳米棒的制备
(1)亲水二氧化硅纳米棒制备:取15g聚乙烯吡咯烷酮(PVP,40K)和150ml正戊醇加入250ml的圆底烧瓶中,40KHz超声4h,直至PVP全部溶解,依次加入去离子水5.1ml,乙醇15ml,0.18M柠檬酸钠水溶液1ml,手摇5min,混匀。再依次加入氨水(28wt%)1.15ml,手摇3min;硅酸四乙酯(TEOS)2ml,轻微摇晃30s,并于室温下过夜(12h)。
(2)两亲性二氧化硅纳米棒的制备:往步骤(1)放置过夜的烧瓶中加入570μL十六烷基三甲氧基硅烷(HDTMOS),轻微摇晃30s,静置水解12h。再用乙醇清洗5次(6000rpm,15min),最后在60℃下烘干,获得两亲性二氧化硅纳米棒1.5g,粒径2~5μm。两亲性二氧化硅纳米棒的扫描电镜(SEM)图见图2中A,局部放大图见图2中B。
实施例2光合细菌的驯化
光合细菌培养液成分如下:CH3COONa 3.0g/L,NH4Cl 1.0g/L,NaCl 1.0g/L,MgSO40.2g/L,KH2PO4 0.5g/L,K2HPO4 0.5g/L,CaCl2 0.05g/L,酵母膏0.5g/L,微量元素1ml/L,溶剂为去离子水,pH为7.0。其中,微量元素成分如下:EDTA-2Na 2g/L,FeSO4·7H2O 0.2g/L,MnCl2·4H2O 0.1g/L,H3BO3 0.1g/L,CoCl2·6H2O 0.1g/L,ZnCl2 0.1g/L,Na2MoO4·2H2O0.02g/L,NiCl2·6H2O 0.02g/L,CuCl2·2H2O 0.01g/L,溶剂为去离子水。
取沼泽红假单胞菌(Rhodopseudomonas palustris,购自浙江鼎龙科技有限公司)接种至光合细菌培养液50ml中,再加入100mg/L的苯胺水溶液50ml,并置于光照培养箱中,30℃,光照强度4800Lx,调节培养基pH为7.0,每天于805nm处测其吸光度,培养7天,获得驯化后的光合细菌培养液,OD805=1.6,相当于光合细菌浓度为2.16g/L。
实施例3
1)油相制备:取大豆油4ml,加入实施例1制备的两亲性二氧化硅纳米棒8mg,磁力搅拌5min,40KHz超声分散30s,获得油相4ml;
2)水相制备:称取明胶0.5g,二水合乙酸锌0.1475g,去离子水10ml,60℃溶解,分散均匀,制成含锌源(0.0672M)的50g/L明胶水溶液10ml。将实施例2获得浓度为2.16g/L的光合细菌培养液离心(8000rpm,5min),取沉淀,得到浓缩后的光合细菌培养液浓度为4.35g/L。取4.35g/L光合细菌培养液100μL加入到冷却至室温(25-30℃)含锌源(0.0672M)的50g/L明胶水溶液10ml中,获得水相10ml;
3)皮克林乳液制备:取水相200μL缓慢滴入步骤1)制备的4ml油相中,磁力搅拌10min,在4℃的冰箱过夜,在1000rpm下离心10min,取沉淀,获得包埋光合细菌的皮克林乳液2ml,光学显微镜图见图1所示,其中A乳液光学显微图(乳液粒径在5~40μm),B为A的局部放大图(粒径为30~40μm);
4)2-甲基咪唑油酸制备:取油酸4ml,加入0.2207g 2-甲基咪唑,40KHz超声分散30s,制得0.672M的2-甲基咪唑油酸4ml;
5)固定光合细菌的皮克林乳液微球制备:将步骤3)制备的包埋光合细菌的皮克林乳液2ml在25℃浸入步骤2)含0.0672M Zn(II)的50g/L明胶水溶液4ml中2h,继而离心(1000rpm,10min);取沉淀,在25℃浸入步骤4)0.672M 2-甲基咪唑油酸4ml中,手摇10s,25℃静置30min;然后重复浸入步骤2)含Zn(II)的明胶水溶液和步骤4)2-甲基咪唑油酸4次,在皮克林乳液界面形成沸石咪唑酯骨架(ZIF-8),离心,获得ZIF-8/皮克林微球0.5g,即固定光合细菌的皮克林乳液微球,扫描电镜图见图3,粒径为30μm。
实施例4:
1)油相制备:取大豆油4ml,加入实施例1制备的两亲性二氧化硅纳米棒16mg,磁力搅拌5min,40KHz超声分散30s,获得油相4ml;
2)水相制备:称取明胶0.075g,二水合乙酸锌0.1475g,去离子水10ml,60℃溶解,制成含锌源(0.0672M)的7.5g/L明胶水溶液10ml。待冷却至室温加入4.35g/L光合细菌液(同实施例3)100μL,获得水相10ml;
3)皮克林乳液制备:取步骤2)水相400μL缓慢滴入步骤1)制备的油相4ml中,磁力搅拌10min,在4℃的冰箱过夜,然后在1000rpm下离心10min;取沉淀,获得包埋光合细菌的皮克林乳液3ml;
4)2-甲基咪唑油酸制备:取油酸4ml,加入0.2207g 2-甲基咪唑,40KHz超声分散30s,制得0.672M的2-甲基咪唑油酸4ml;
5)固定光合细菌的皮克林乳液微球制备:将步骤3)制备的包埋光合细菌的皮克林乳液3ml在25℃浸入步骤2)含0.0672M Zn(II)的7.5g/L明胶水溶液4ml中2h,继而在1000rpm,离心10min;取沉淀,在25℃浸入步骤4)0.672M 2-甲基咪唑油酸4ml中,手摇10s,25℃静置30min;然后重复浸入步骤2)含Zn(II)的明胶水溶液和步骤4)2-甲基咪唑油酸4次;获得ZIF-8/皮克林微球1.0g,即固定光合细菌皮克林乳液微球。
实施例5固定光合细菌皮克林乳液微球强化培养
为了提高被固定在ZIF-8微球内光合细菌的种群密度,将实施例3制备的固定光合细菌的皮克林乳液微球0.5g,接种至含2g/L葡萄糖的光合细菌培养液50ml中,在pH7.0,光照强度4800Lx,30℃下培养7天,然后离心(1000rpm,10min),获得强化后的固定光合细菌皮克林乳液微球。
实施例6利用固定光合细菌皮克林乳液微球处理含苯胺废水
将实施例5中强化后的光合细菌皮克林微球0.5g接种到100mg/L的苯胺水溶液200ml中,调节体系pH 7.0,培养箱内光照强度为4800Lx,温度为30℃,于7天内利用分光光度计测量苯胺的降解率。设计不加光合细菌的ZIF-8/皮克林乳液微球为空白对照组,结果见图4所示。
对利用固定光合细菌皮克林乳液微球处理含苯胺废水的实验数据表明,光合细菌能促进对苯胺的降解(42%);空白组对苯胺降解率的贡献来自MOF的吸附作用(8%)。

Claims (6)

1.一种固定光合细菌的皮克林乳液微球,其特征在于所述微球按如下方法制备:(1)以含两亲性二氧化硅纳米棒的大豆油为油相,以含光合细菌和锌源的明胶水溶液为水相,在磁力搅拌下将水相滴入油相中,磁力搅拌均匀,4℃静置12-24h后离心,取沉淀,得到包埋光合细菌的皮克林乳液;所述光合细菌在水相中的加入量为10-50mg/L;所述大豆油体积用量以两亲性二氧化硅纳米棒质量计为0.5-10ml/mg,所述明胶水溶液中锌源浓度为0.0672 M,明胶水溶液浓度为5-50g/L,油相与水相体积为10-20:1;(2)将包埋光合细菌的皮克林乳液浸渍到含锌源的明胶水溶液中,室温下浸渍2h,然后离心再浸渍到含2-甲基咪唑的油酸中,室温浸渍30 min,重复浸渍到含锌源的明胶水溶液和含2-甲基咪唑的油酸中,重复4次,离心,得到固定光合细菌的皮克林乳液微球;所述含2-甲基咪唑的油酸中2-甲基咪唑浓度为0.672M;
所述两亲性二氧化硅纳米棒的制备方法为:
①亲水二氧化硅纳米棒制备:取40K聚乙烯吡咯烷酮和正戊醇加入250 ml的圆底烧瓶中,40 KHz超声4 h,直至PVP全部溶解,依次加入去离子水,乙醇,0.18 M柠檬酸钠水溶液,手摇5 min,混匀;再依次加入28 wt%氨水,手摇3 min,硅酸四乙酯,轻微摇晃30 s,并于室温下过夜12 h;所述正戊醇体积用量以聚乙烯吡咯烷酮重量计为10ml/g;去离子水、乙醇、柠檬酸钠水溶液、氨水、硅酸四乙酯体积加入量以聚乙烯吡咯烷酮重量计分别为5.1ml/15g、15ml/15g、1ml/15g、1.15ml/15g、2ml/15g;
②两亲性二氧化硅纳米棒的制备:往步骤①放置过夜的烧瓶中加入十六烷基三甲氧基硅烷,轻微摇晃30 s,静置水解12 h,再用乙醇经6000 rpm,15 min清洗5次,最后在60 ℃下烘干,获得两亲性二氧化硅纳米棒;所述十六烷基三甲氧基硅烷体积加入量以聚乙烯吡咯烷酮重量计为570 μL /15g。
2.如权利要求1所述固定光合细菌的皮克林乳液微球,其特征在于步骤(1)所述光合细菌为沼泽红假单胞菌(Rhodopseudomonas palustris)。
3.如权利要求1所述固定光合细菌的皮克林乳液微球,其特征在于步骤(1)所述光合细菌以培养液形式加入,所述培养液按如下步骤制备:将光合细菌接种至光合细菌培养基中,加入100 mg/L的苯胺水溶液,20-30 ℃,光照强度2400-4800 Lx,培养7天,获得光合细菌培养液,所述苯胺水溶液体积与光合细菌培养基体积相同;光合细菌培养基成分如下:CH3COONa 3.0g/L,NH4Cl 1.0g/L,NaCl 1.0g/L,MgSO4 0.2g/L,KH2PO4 0.5g/L,K2HPO40.5g/L,CaCl2 0.05g/L,酵母膏 0.5g/L,微量元素1 ml/L,溶剂为去离子水,pH为7.0;其中,微量元素成分如下:EDTA-2Na 2g/L,FeSO4·7H2O 0.2g/L,MnCl2·4H2O 0.1g/L,H3BO30.1g/L,CoCl2·6H2O 0.1g/L,ZnCl2 0.1g/L,Na2MoO4·2H2O 0.02g/L,NiCl2·6H2O 0.02g/L,CuCl2·2H2O 0.01g/L,溶剂为去离子水。
4.一种权利要求1所述固定光合细菌的皮克林乳液微球在降解有机废水中的应用。
5.如权利要求4所述的应用,其特征在于所述应用为:将所述固定光合细菌的皮克林乳液微球加入有机废水中,调节体系pH 7.0-8.0,在光照强度为2400-4800 Lx,温度为20-30℃条件下进行降解反应;所述有机废水为100 mg/L的苯胺水溶液;所述有机废水体积用量以固定光合细菌的皮克林微球重量计为400ml/g。
6.如权利要求5所述的应用,其特征在于所述固定光合细菌的皮克林乳液微球先进行强化培养,再将强化后的固定光合细菌皮克林乳液微球加入有机废水中,所述强化方法为:将固定光合细菌的皮克林乳液微球接种至含2 g/L葡萄糖的光合细菌培养基中,在pH 7.0,光照强度2400-4800 Lx,20-30 ℃下培养7天,1000 rpm离心10 min,获得强化后的固定光合细菌皮克林乳液微球;所述固定光合细菌皮克林乳液微球接种量为0.01g/ml。
CN201910283504.1A 2019-04-10 2019-04-10 一种固定光合细菌的皮克林乳液微球及其制备与应用 Active CN110093340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910283504.1A CN110093340B (zh) 2019-04-10 2019-04-10 一种固定光合细菌的皮克林乳液微球及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910283504.1A CN110093340B (zh) 2019-04-10 2019-04-10 一种固定光合细菌的皮克林乳液微球及其制备与应用

Publications (2)

Publication Number Publication Date
CN110093340A CN110093340A (zh) 2019-08-06
CN110093340B true CN110093340B (zh) 2021-04-06

Family

ID=67444503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910283504.1A Active CN110093340B (zh) 2019-04-10 2019-04-10 一种固定光合细菌的皮克林乳液微球及其制备与应用

Country Status (1)

Country Link
CN (1) CN110093340B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106497911B (zh) * 2016-12-14 2019-06-28 天津科技大学 固定过氧化氢酶的明胶-二氧化硅杂化微球制备方法
CN107955808A (zh) * 2017-11-02 2018-04-24 天津大学 一种基于双面粒子稳定的皮克林乳液的制备方法及其固定化酶应用

Also Published As

Publication number Publication date
CN110093340A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
Nematian et al. Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil
US12011694B2 (en) Crosslinked protein-based separation membrane and application thereof
CN108996709B (zh) 一种全天候复合光催化协同体系及其制备方法
Holzmeister et al. Artificial inorganic biohybrids: The functional combination of microorganisms and cells with inorganic materials
CN108192889B (zh) 一种细菌纤维素固定化微藻处理废水的方法
Gerulová et al. Magnetic Fe3O4-polyethyleneimine nanocomposites for efficient harvesting of Chlorella zofingiensis, Chlorella vulgaris, Chlorella sorokiniana, Chlorella ellipsoidea and Botryococcus braunii
CN105063006A (zh) 一种邻苯二甲酸二丁酯降解菌的固定化微球及其制备方法和应用
Wang et al. Cellular shellization: Surface engineering gives cells an exterior
US20140322785A1 (en) Continuous Flow Bioreactor for Magnetically Stabilized Three-Dimensional Tissue Culture
CN103777016A (zh) 一种通过荧光靶向细胞检测病毒和细菌的方法
CN110093340B (zh) 一种固定光合细菌的皮克林乳液微球及其制备与应用
CN104911173B (zh) 一种用于处理水中有机物和氨氮的磁性生物微胶囊的制备方法
Vasilieva et al. Biotechnological Applications of Immobilized Microalgae
CN107937387B (zh) 一种纳米四氧化三铁定向固定化脂肪酶的方法
Moreno-Garrido Microalgal immobilization methods
JPH01141594A (ja) 磁気性膜カプセルおよびその使用
Nikovaev et al. New biocomposite materials based on hydrocarbon-oxidizing microorganisms and their potential for oil products degradation
US8597932B2 (en) Cell culture of micorrhizal fungus and arthrobacter histidinolovorans
CN106497908A (zh) 一种磁性纳米生物催化剂及其制备方法和应用
CN113801874A (zh) 一种固定溶藻细菌技术及其处理铜绿微囊藻的应用
JP2016528883A (ja) ハイブリッドアルギン酸シリカビーズ及びそれらを得るための方法
CN109096391B (zh) 一种多肽介导的仿生二氧化硅纳米粒子的制备方法及应用
Safarik et al. Magnetic particles for microalgae separation and biotechnology
Loo et al. Harvesting of Microalgae from Synthetic Fertilizer Wastewater by Magnetic Particles Through Embedding–Flocculation Strategy
CN115181738B (zh) 用于嗜油菌株包埋的新型有机胶及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant