CN110092890B - 一种有机共轭纳米聚格及其制备方法与应用 - Google Patents

一种有机共轭纳米聚格及其制备方法与应用 Download PDF

Info

Publication number
CN110092890B
CN110092890B CN201910332730.4A CN201910332730A CN110092890B CN 110092890 B CN110092890 B CN 110092890B CN 201910332730 A CN201910332730 A CN 201910332730A CN 110092890 B CN110092890 B CN 110092890B
Authority
CN
China
Prior art keywords
reaction
organic
lattice
carrying
organic conjugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910332730.4A
Other languages
English (en)
Other versions
CN110092890A (zh
Inventor
解令海
李连杰
胡洪凯
史文静
吴香萍
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Weihaiyun Photoelectric Technology Co ltd
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201910332730.4A priority Critical patent/CN110092890B/zh
Publication of CN110092890A publication Critical patent/CN110092890A/zh
Application granted granted Critical
Publication of CN110092890B publication Critical patent/CN110092890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一种有机共轭纳米聚格及其制备方法与应用,该有机共轭纳米聚格的制备方法主要包括Baeyer‑Villiger拜尔‑维利格重排反应、亲电取代反应、芴叔醇在酸催化剂中发生叔醇傅克反应、分子间脱水合环、suzuki铃木反应和yamamoto聚合反应。上述方法制备的有机共轭纳米聚格具有共轭的刚性闭环结构,具有良好的热稳定性、光谱稳定性以及电化学稳定性,可作为一种蓝光有机材料,应用于发光二极管中,或作为激光增益介质,应用于光泵浦有机激光或者电泵浦有机激光中。

Description

一种有机共轭纳米聚格及其制备方法与应用
技术领域
本发明涉及一种聚合物材料,具体涉及一种有机共轭纳米聚格及其制备方法与应用,属于有机聚合物半导体材料领域。
背景技术
目前,基于共轭聚合物的有机电子器件进入全面发展时期,并在较多领域例如有机场效应晶体管(OFET)、有机太阳能电池(OPV)、有机存储器(Memoy)和有机激光(Laser)等领域得到广泛应用。有机半导体因可溶液加工、柔性、大面积、成本低等优点,发展优势明显,但其光谱稳定性、热稳定性和机械稳定性欠佳,限制了有机半导体的商业化应用,例如以芴基半导体为代表的小分子和聚合物,与无机LED具有同样的缺陷,由于蓝光发射材料具有更大的带隙,阻碍电子和空穴的注入,导致蓝光OLED比红光和绿光OLED的效率更低。尽管目前三原色OLED均已得到,但是只有绿光和橙光OLED能满足当前商业化应用的需求,蓝光OLED仍在发展中。
申请号为201510728912.5的专利申请提出了一种纳米格与纳米聚格,但该共轭打断型纳米聚格不利于载流子传输,具有不可观性;申请号为201711108954.4的专利申请提出了一种全共轭纳米聚合物,增加了其共轭长度以解决有机蓝光材料中的缺陷,但在光谱稳定性方面出现新的缺陷,因未抑制芴酮缺陷从而导致热退火后光谱出现不期的绿光。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种有机共轭纳米聚格及其制备方法与应用,该有机共轭纳米聚格具有共轭的刚性闭环结构,具有良好的热稳定性、光谱稳定性以及电化学稳定性;该制备方法简易高效、过程可控,便于工业化生产,且材料成本低,易于制备,可广泛在宽带隙半导体中。
为实现以上目的,本发明采用以下技术方案:
第一方面,本发明提供一种有机共轭纳米聚格,结构通式如下:
Figure BDA0002038203190000021
其中,R1-R4为烷基链,n为1至100的自然数。
进一步地,X-R为如下结构式中的一种:
Figure BDA0002038203190000022
进一步地,
Figure BDA0002038203190000023
以及
Figure BDA0002038203190000024
均为如下结构式中的一种:
Figure BDA0002038203190000025
进一步地,
Figure BDA0002038203190000026
为如下结构式中的一种:
Figure BDA0002038203190000031
进一步地,
Figure BDA0002038203190000032
为如下结构式中的一种:
Figure BDA0002038203190000033
进一步地,所述R1-R4均为氢原子、烷烃链、烷氧基链以及末端引入卤素原子的烷基链中的一种。
第二方面,本发明提供如第一方面所述的有机共轭纳米聚格的制备方法,包括如下步骤:
步骤a:在室温下,以三氟乙酸为催化剂,二氯甲烷为反应溶剂,对2,7-二溴芴酮进行Baeyer-Villiger拜尔-维利格重排反应;
步骤b:在温度80℃、氮气环境下,以溴苯引发格氏,制作格氏试剂后,在新蒸四氢呋喃溶剂中进行格氏反应;
步骤c:在温度70℃,以丙酮为溶剂,进行亲电取代反应;
步骤d:在室温下,以路易斯酸为催化剂,在干燥的二氯甲烷中进行Friedel-crafts傅-克反应;
步骤e:在温度90℃、氮气氛围下,以四(三苯基膦)钯为催化剂,碳酸钾水溶液为碱液,甲苯和四氢呋喃混合溶液为反应溶剂,进行suzuki铃木反应;
步骤f:在温度90℃、氮气氛围下,以四(三苯基膦)钯为催化剂,碳酸钾水溶液为碱液,甲苯和四氢呋喃混合溶液为反应溶剂,进行suzuki铃木反应;
步骤g:在室温下,以路易斯酸为催化剂,在干燥的二氯甲烷中进行Friedel-crafts傅-克反应;
步骤h:在85℃下,避光环境、氮气保护下,以双-(1,5-环辛二烯)镍(0)、1,5-环辛二烯以及2,2-联吡啶为催化剂,以干燥的甲苯和N,N-二甲基甲酰胺为反应溶剂,对有机纳米格进行Yamamoto聚合反应。
进一步地,反应路线如下:
Figure BDA0002038203190000041
第三方面,本发明提供如第一方面所述的有机共轭纳米聚格的用途,即将所述有机共轭纳米聚格作为一种蓝光有机材料,应用于发光二极管中;或者,将所述有机共轭纳米聚格作为激光增益介质,应用于光泵浦有机激光或者电泵浦有机激光中。
与已有技术相比,本发明具有如下有益效果:
本发明方案提供的有机共轭纳米聚格具有共轭的刚性闭环结构,其薄膜态与溶液态具有较高的光致发光量子产率;上述方法制备的有机共轭纳米聚格具有良好的热稳定性、光谱稳定性以及电化学稳定性,发射光谱位置可调控,且薄膜形貌良好且在退火后依旧稳定,可作为一种蓝光有机材料,应用于发光二极管中,或者作为激光增益介质,应用于光泵浦有机激光或者电泵浦有机激光中。此外,本发明方案提供的制备方法,简易高效、过程可控,便于工业化生产,且材料成本低,易于制备,可广泛在宽带隙半导体中。
附图说明
图1是本发明有机共轭纳米聚格的TGA曲线图;
图2是本发明有机共轭纳米聚格薄膜在空气中不同温度、不同时间退火后的发射光谱曲线图;
图3是本发明有机共轭纳米聚格薄膜在放置不同时间后的发射光谱图;
图4是本发明有机共轭纳米聚格薄膜的ASE曲线图。
具体实施方式
下面结合附图和具体的实施方式对本发明作进一步详细的说明。所述实施例的示例在附图中示出,在下述本发明的实施方式中描述的具体的实施例仅作为本发明的具体实施方式的示例性说明,旨在用于解释本发明,而不构成为对本发明的限制。
本发明实施例提供了一种有机共轭纳米聚格,其结构通式如下:
Figure BDA0002038203190000051
其中,R1-R4为烷基链,n为1至100的自然数,由上式可知,该有机共轭纳米聚格具有共轭的刚性闭环结构。
进一步地,R1-R4均为氢原子、烷烃链、烷氧基链以及末端引入氟、氯、溴等卤素原子的烷基链中的一种。
其中,X-R为如下结构式中的一种:
Figure BDA0002038203190000061
其中,
Figure BDA0002038203190000062
以及
Figure BDA0002038203190000063
均为如下结构式中的一种:
Figure BDA0002038203190000064
其中,
Figure BDA0002038203190000065
为如下结构式中的一种:
Figure BDA0002038203190000066
其中,
Figure BDA0002038203190000071
为如下结构式中的一种:
Figure BDA0002038203190000072
本发明实施例还提供了上述有机共轭纳米聚格的制备方法,包括:Baeyer-Villiger拜尔-维利格重排反应、亲电取代反应、芴叔醇在酸催化剂中发生叔醇傅克反应、分子间脱水合环、suzuki铃木反应和yamamoto聚合反应。其反应路线如下:
Figure BDA0002038203190000081
具体步骤为:
步骤a:在室温下,以三氟乙酸为催化剂,二氯甲烷为反应溶剂,对2,7-二溴芴酮进行Baeyer-Villiger拜尔-维利格重排反应;
步骤b:在温度80℃,氮气环境下,以溴苯引发格氏,制作格氏试剂后,在新蒸四氢呋喃溶剂中进行格氏反应;
步骤c:在温度70℃,以丙酮为溶剂,进行亲电取代反应;
步骤d:在室温下,以路易斯酸为催化剂在干燥的二氯甲烷中进行Friedel-crafts傅-克反应;
步骤e:在温度90℃,氮气氛围下,以四(三苯基膦)钯为催化剂,碳酸钾水溶液为碱液,甲苯和四氢呋喃混合溶液为反应溶剂,进行suzuki铃木反应;
步骤f:在温度90℃,氮气氛围下,以四(三苯基膦)钯为催化剂,碳酸钾水溶液为碱液,甲苯和四氢呋喃混合溶液为反应溶剂,进行suzuki铃木反应;
步骤g:在室温下,以路易斯酸为催化剂在干燥的二氯甲烷中进行Friedel-crafts傅-克反应;
步骤h:在85℃下,避光环境,氮气保护下,以双-(1,5-环辛二烯)镍(0)、1,5-环辛二烯以及2,2-联吡啶为催化剂,干燥的甲苯和N,N-二甲基甲酰胺为反应溶剂,对有机纳米格进行Yamamoto聚合反应。
以聚合物材料13(一种有机共轭纳米聚格)为具体实施例,其制备方法如下:
Figure BDA0002038203190000091
材料1为购得的2,7-二溴芴酮,对材料1(2,7-二溴芴酮)进行Baeyer-Villiger拜尔-维利格重排反应得到材料2(2,7-二溴内酯);再将材料2在温度80℃、氮气环境下,以溴苯引发格氏,在新蒸四氢呋喃溶剂中进行格氏反应得到材料3(2,7-二溴二醇),之后利用材料3(2,7-二溴二醇)在温度70℃,以丙酮为溶剂,进行亲电取代反应并继续进行傅克反应可得到材料6(2,7-二溴双苯基芴)。需要注意的是,材料8(硼酸酯)是由材料6在钯催化剂作用下与双联频哪醇硼酸酯反应所得,之后利用材料7(单溴叔醇咔唑)、材料10(双溴叔醇)和材料8(硼酸酯)分别进行反应。而材料10(双溴叔醇)是由材料1与对溴辛氧基苯制作的格氏试剂反应所得,材料7(单溴叔醇咔唑)由2-溴芴酮与溴苯制作的格氏试剂反应所得产物再与购得的咔唑和溴辛烷反应后的产物进一步傅克所得。
其中,前述制备方法中的关键步骤为:
1)由材料7(单溴叔醇咔唑)和材料8(硼酸酯)合成如下材料9(U型合成子):
Figure BDA0002038203190000101
将材料7(单溴叔醇咔唑)(5.00g,8.36mmol)、材料8(硼酸酯)(2.80g,4.10mmol)和四(三苯基膦)钯(1.07g,0.93mmol)置于100mL的圆底烧瓶中,用氮气置换烧瓶中的空气,将提前用氮气鼓泡2h的体积比为1:1的甲苯/四氢呋喃溶液(50mL)和2mol/L的碳酸钾(5mL)注入烧瓶中,90℃条件下回流20小时,冷却,用二氯甲烷萃取,有机层用无水硫酸钠干燥,旋蒸除去溶剂,硅胶柱分离,石油醚:二氯甲烷=1:1(体积比)作洗脱剂,得到4.15g白色固体产物,产率:67.5%,由如下核磁数据可确认该产物结构即为材料9(U型合成子):
1H NMR(400MHz,Chloroform-d)δ8.15-8.13(dd,J=8.0,0.4Hz,1H),7.96-7.94(dd,J=8.0,1.6Hz,2H),7.92-7.89(m,2H),7.82-7.80(dd,J=8.0,1.2Hz,4H),7.69(d,J=1.2Hz,2H),7.55-7.50(m,4H),7.48(s,1H),7.46(s,1H),7.42-7.28(m,13H),7.25-7.10(m,21H),6.97(s,1H),4.234(t,J=14.4Hz,4H),4.144(t,J=13.2Hz,2H),1.948-1.779(m,6H),1.5811.506(m,12H),1.428-1.22(m,32H),0.885-0.820(m,10H)。
2)由材料10(双溴叔醇)和材料8(硼酸酯)合成如下材料11(I型合成子):
Figure BDA0002038203190000102
将材料10(3.00g,5.51mmol)、材料8(硼酸酯)(0.73g,1.05mmol)和四(三苯基膦)钯(0.24g,0.21mmol)置于100mL的圆底烧瓶中,用氮气置换烧瓶中的空气,将提前用氮气鼓泡2h的体积比为1:1的甲苯/四氢呋喃溶液(30mL)和2mol/L的碳酸钾/氟化钾溶液(3mL)注入烧瓶中,90℃条件下回流20小时,冷却,用二氯甲烷萃取,有机层用无水硫酸钠干燥,旋蒸除去溶剂,硅胶柱分离,石油醚:二氯甲烷=1:1(体积比)作洗脱剂,得到0.56g橙黄色固体产物,产率:38.8%,由如下核磁数据可确认该产物结构即为材料11(I型合成子):
1H NMR(400MHz,Chloroform-d)δ8.173-8.153(dd,J=8.0,0.4Hz,1H),7.645-7.625(dd,J=8.0,0.4Hz,2H),7.571(d,J=1.6Hz,0.5H),7.551-7.437(m,13.5H),7.314-7.28(m,5H),7.252-7.151(m,9H),7.011-6.996(t,J=6Hz,1H),6.827-6.782(m,5H),4.248-4.178(m,2H),3.937-3.886(m,4H),2.494-2.468(dd,J=10.4,0.8Hz,1H),2.435-2.414(m,1H),2.017-1.946(m,2H),1.777-1.70(m,5H),1.648,1.542(m,12H),0.912-0.846(m,10H)。
3)由材料9(U型合成子)和材料11(I型合成子)合成如下材料12(有机共轭纳米单元格):
Figure BDA0002038203190000111
将材料11(I型合成子)(0.50g,0.36mmol)、材料9(U型合成子)(0.54g,0.36mmol)、干燥的二氯甲烷(700mL)和三氟化硼乙醚(0.24g,1.65mmol)置于1000mL圆底烧瓶中,室温下搅拌2小时,加水淬灭,用二氯甲烷萃取,有机层用无水硫酸钠干燥,旋蒸除去溶剂,硅胶柱分离,石油醚:二氯甲烷=4:1(体积比)作洗脱剂,得到0.58g白色固体产物,产率:57%,由如下核磁数据可确认该产物结构即为12(有机共轭纳米单元格):
1H NMR(400MHz,Chloroform-d)δ8.251-8.149(m,3H),7.99-7.708(m,7H),7.657-7.334(m,32H),7.22-6.67(m,44H),4.151(s,8H),3.98-3.85(m,4H),1.951-1.78(m,9H),1.475-1.185(m,81H)。
4)由材料12(有机共轭纳米单元格)合成如下材料13(有机共轭纳米单元聚格):
Figure BDA0002038203190000121
将联吡啶(0.55g,3.64mmol)、双-(1,5-环辛二烯)镍(0)(1.00g,3.64mmol)和1,5-环辛二烯(0.57mL,3.64mmol)加入到严格烘干干燥并充满氮气且密闭的250mL反应瓶后,再加入20mL干燥的N,N-二甲基甲酰胺,把反应瓶置于75℃的油浴锅中搅拌活化半小时,再把溶于30mL干燥甲苯的12(有机共轭纳米单元格)(0.50g,0.18mmol)的溶液通过注射器注入反应瓶中,把温度升至90℃,反应三天后加1mL-2mL溴苯封端,反应单体12的浓度为1mmol/L-10mmol/L,催化剂的当量为单体的15倍左右,反应三天后加溴苯进行封端,反应液过滤后用中性氧化铝过柱子,浓缩后倒入甲醇中重沉淀,过滤,索式抽提后真空干燥至恒重得到0.41g淡黄色固体产物,产率:82%,通过GPC(Gel Permeation Chromatography),凝胶渗透色谱测试有机共轭纳米聚格分子量Mn=21785、分散指数PDI=1.43。
图1是本发明有机共轭纳米聚格的TGA曲线图;
将上述过程制得的聚合物材料13(有机共轭纳米聚格)分别进行如下测定:
1、热重分析(TGA)测定:采用岛津公司(Shimadzu)DTG-60H热重分析仪,其中,加热扫描速度为10℃/min,氮气流速为20cm3/min。测定结果如图1所示,该有机共轭纳米聚格在405℃下仅分解其重量的5%,具有良好的热分解温度。
2、光致发光光谱测定:将聚合物材料13(有机共轭纳米聚格)采用岛津UV-3150紫外可见光谱仪和RF-530XPC荧光光谱仪进行吸收光谱和发射光谱测定,光致发光光谱是在紫外吸收的最大吸收波长下测定的。固体薄膜通过溶液旋涂成膜技术制备,其中有机共轭纳米聚格配制为10mg/ml的甲苯溶液,随后通过溶液旋涂成膜技术制备薄膜。之后在不同温度下退火,进行不同的时间依赖测试,而且还测试了将薄膜放置在空气中若干天后的发光稳定性。
图2中,测试了在空气中退火测试时的热氧化稳定性,采用在180℃、200℃、220℃和260℃温度下各退火6小时,以及在260℃温度下退火8小时,上述结果表明,该有机共轭纳米聚格在上述退火过程中一直保持发光稳定性,且未出现绿光发射(550nm附近为绿光波段),表明该有机共轭纳米聚格是一种具有较佳抗热氧化性的有机材料。
3、光谱稳定性测定:对在空气中放置的有机共轭纳米聚格进行光谱稳定性测试,图3中,在平均湿度75%、平均温度14℃下放置至15天,分别测试该有机共轭纳米聚格在放置第0、2、4、6、8、10、12和15天的发光光谱,上述结果表明光谱异常稳定,即光谱未出现较大波动,表明该有机共轭纳米聚格具有良好的抗水氧稳定性。进一步测定可知,在空气下对薄膜高温退火以及放置20天后光谱依旧保持稳定。
4、放大自发射(ASE)性质测定:将10mg/ml的甲苯溶液旋涂在石英片上,以转速为3000rmp,加速度为300rmp/s,旋涂时间为30s制备薄膜。图4中,从测试结果可以看出,当随着能量增加有机纳米聚格的强度也会提高,最终测试阈值为20J/cm2发射峰在460nm处。该结果表明该有机共轭纳米聚格具有一定的放大自发射性质,有助于电泵浦激光的实现。
综上所述,本发明方案提供的有机共轭纳米聚格具有共轭的刚性闭环结构,其薄膜态与溶液态具有较高的光致发光量子产率(PLQY);上述方法制备的有机共轭纳米聚格具有良好的热稳定性、光谱稳定性以及电化学稳定性,发射光谱位置可调控,且薄膜形貌良好且在退火后依旧稳定,可作为一种蓝光有机材料,应用于发光二极管中,或者作为激光增益介质,应用于光泵浦有机激光或者电泵浦有机激光中。此外,本发明方案提供的制备方法,简易高效、过程可控,便于工业化生产,且材料成本低,易于制备,可广泛在宽带隙半导体中。
应该注意的是,上述实施例是对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,单词“包含”不排除存在未列在权利要求中的数据或步骤。

Claims (3)

1.一种有机共轭纳米聚格的制备方法,其特征在于,包括如下步骤:
步骤a:在室温下,以三氟乙酸为催化剂,二氯甲烷为反应溶剂,对二溴芴酮进行Baeyer-Villiger拜尔-维利格重排反应;
步骤b:在温度80℃、氮气环境下,以溴苯引发格氏,制作格氏试剂后,在新蒸四氢呋喃溶剂中进行格氏反应;
步骤c:在温度70℃,以丙酮为溶剂,进行亲电取代反应;
步骤d:在室温下,以路易斯酸为催化剂,在干燥的二氯甲烷中进行Friedel-crafts傅-克反应;
步骤e:在温度90℃、氮气氛围下,以四(三苯基膦)钯为催化剂,碳酸钾水溶液为碱液,甲苯和四氢呋喃混合溶液为反应溶剂,进行suzuki铃木反应;
步骤f:在温度90℃、氮气氛围下,以四(三苯基膦)钯为催化剂,碳酸钾水溶液为碱液,甲苯和四氢呋喃混合溶液为反应溶剂,进行suzuki铃木反应;
步骤g:在室温下,以路易斯酸为催化剂,在干燥的二氯甲烷中进行Friedel-crafts傅-克反应;
步骤h:在85℃下,避光环境、氮气保护下,以双-(1,5-环辛二烯)镍(0)、1,5-环辛二烯以及2,2-联吡啶为催化剂,以干燥的甲苯和N,N-二甲基甲酰胺为反应溶剂,对有机纳米格进行Yamamoto聚合反应;
反应路线如下:
Figure FDA0003764234040000021
其中,R1-R4为氢原子或烷基链,n为1至100的自然数,所述
Figure FDA0003764234040000022
以及
Figure FDA0003764234040000023
均为如下结构式中的一种:
Figure FDA0003764234040000024
Figure FDA0003764234040000031
其中,X-R为CnH2n+1
Figure FDA0003764234040000032
为如下结构式中的一种:
Figure FDA0003764234040000033
Figure FDA0003764234040000034
为如下结构式中的一种:
Figure FDA0003764234040000035
2.权利要求1所述的方法得到的有机共轭纳米聚格的用途,其特征在于:将所述有机共轭纳米聚格作为一种蓝光有机材料,应用于发光二极管中。
3.权利要求1所述的方法得到的有机共轭纳米聚格的用途,其特征在于:将所述有机共轭纳米聚格作为激光增益介质,应用于光泵浦有机激光或者电泵浦有机激光中。
CN201910332730.4A 2019-04-24 2019-04-24 一种有机共轭纳米聚格及其制备方法与应用 Active CN110092890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910332730.4A CN110092890B (zh) 2019-04-24 2019-04-24 一种有机共轭纳米聚格及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910332730.4A CN110092890B (zh) 2019-04-24 2019-04-24 一种有机共轭纳米聚格及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110092890A CN110092890A (zh) 2019-08-06
CN110092890B true CN110092890B (zh) 2022-09-30

Family

ID=67445683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910332730.4A Active CN110092890B (zh) 2019-04-24 2019-04-24 一种有机共轭纳米聚格及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110092890B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321664A (zh) * 2021-06-16 2021-08-31 南京邮电大学 菱形螺二格及菱形螺二格的制备方法
CN115260554B (zh) * 2022-08-25 2023-04-14 南京工业大学 一种具有光栅结构的芴基高分子薄膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042176A1 (en) * 2003-10-29 2005-05-12 E.I. Dupont De Nemours And Company Light-emitting copolymers and electronic devices using such copolymers
CN105348289A (zh) * 2015-10-30 2016-02-24 南京邮电大学 纳米格子与纳米聚合物格子材料及其制备和应用方法
CN107955135A (zh) * 2017-11-11 2018-04-24 南京邮电大学 共轭有机格子纳米聚合物及其制备和应用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042176A1 (en) * 2003-10-29 2005-05-12 E.I. Dupont De Nemours And Company Light-emitting copolymers and electronic devices using such copolymers
CN105348289A (zh) * 2015-10-30 2016-02-24 南京邮电大学 纳米格子与纳米聚合物格子材料及其制备和应用方法
CN107955135A (zh) * 2017-11-11 2018-04-24 南京邮电大学 共轭有机格子纳米聚合物及其制备和应用方法

Also Published As

Publication number Publication date
CN110092890A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
Figueira‐Duarte et al. Designed suppression of aggregation in polypyrene: toward high‐performance blue‐light‐emitting diodes
CN107955135B (zh) 共轭有机格子纳米聚合物及其制备和应用方法
Zhang et al. New fluorescent through-space conjugated polymers: synthesis, optical properties and explosive detection
Yang et al. Efficient monochromatic red-light-emitting PLEDs based on a series of nonconjugated Eu-polymers containing a neutral terpyridyl ligand
Li et al. New hyperbranched conjugated polymers containing hexaphenylbenzene and oxadiazole units: convenient synthesis and efficient deep blue emitters for PLEDs application
Zhang et al. Deep blue light-emitting polymers with fluorinated backbone for enhanced color purity and efficiency
Su et al. Color Tuning of a Light‐Emitting Polymer: Polyfluorene‐Containing Pendant Amino‐Substituted Distyrylarylene Units
Gu et al. Aggregation-induced emission polymers for high performance PLEDs with low efficiency roll-off
CN110092890B (zh) 一种有机共轭纳米聚格及其制备方法与应用
Liu et al. Enlarged tetrasubstituted alkenes with enhanced thermal and optoelectronic properties
Wang et al. Tunable charge transfer effect in poly (spirobifluorene) s with different electron-rich side chains
Lee et al. White-light-emitting diodes from single polymer systems based on polyfluorene copolymers end-capped with a dye
CN109134298B (zh) 一种二聚希夫碱铂配合物及其制备方法和应用
Huang et al. Construction of deep-blue AIE luminogens with TPE and oxadiazole units
Wu et al. Enhancing the thermal and spectral stabilities of polyfluorene-based blue-light-emitting materials by incorporating pendent spiro-cycloalkyl groups
Lee et al. Green polymer-light-emitting-diodes based on polyfluorenes containing N-aryl-1, 8-naphthalimide and 1, 8-naphthoilene-arylimidazole derivatives as color tuner
Wang et al. Click polymerization: Synthesis of novel σ-π conjugated organosilicon polymers
Liu et al. Synthesis and properties of crown ether containing poly (p-phenylenevinylene)
Wang et al. Fluorene-containing polyhedral oligomericsilsesquioxanes modified hyperbranched polymer for white light-emitting diodes with ultra-high color rendering index of 96
Mamtimin et al. New soluble rigid rod copolymers comprising alternating 2-amino-pyrimidine and phenylene repeat units: Syntheses, characterization, optical and electrochemical properties
Lee et al. Synthesis of polyhedral oligomeric silsesquioxane-functionalized polyfluorenes: Hybrid organic–inorganic π-conjugated polymers
Wang et al. Stable and good color purity white light‐emitting devices based on random fluorene/spirofluorene copolymers doped with iridium complex
Kadu et al. Photophysical properties of new fluorene-based conjugated polymers containing polyphenylene-substituted dendronized core
Grisorio et al. Influencing the Spectral Stability and the Electroluminescence Behavior of New Blue-Emitting Bifluorene-Based Materials by the 7, 7 ‘-Functionalization of the Core
Sun et al. π-Conjugated poly (anthracene-alt-fluorene) s with X-shaped repeating units: New blue-light emitting polymers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230717

Address after: 315300, 1st and 3rd floors of Building 2, No. 483-529 Guanfu South Road, Guanhaiwei Town Industrial Park West District, Cixi City, Ningbo City, Zhejiang Province

Patentee after: Ningbo Weihaiyun Photoelectric Technology Co.,Ltd.

Address before: 210003, 66 new model street, Gulou District, Jiangsu, Nanjing

Patentee before: NANJING University OF POSTS AND TELECOMMUNICATIONS