CN110058526B - 一种基于区间二型t-s模型的中立型系统的控制方法 - Google Patents

一种基于区间二型t-s模型的中立型系统的控制方法 Download PDF

Info

Publication number
CN110058526B
CN110058526B CN201910418738.2A CN201910418738A CN110058526B CN 110058526 B CN110058526 B CN 110058526B CN 201910418738 A CN201910418738 A CN 201910418738A CN 110058526 B CN110058526 B CN 110058526B
Authority
CN
China
Prior art keywords
interval
type
fuzzy
matrix
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910418738.2A
Other languages
English (en)
Other versions
CN110058526A (zh
Inventor
程启文
周绍生
贾祥磊
付世州
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910418738.2A priority Critical patent/CN110058526B/zh
Publication of CN110058526A publication Critical patent/CN110058526A/zh
Application granted granted Critical
Publication of CN110058526B publication Critical patent/CN110058526B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/0275Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using fuzzy logic only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

本发明涉及一种基于区间二型T‑S模型的带有分布时滞的中立型系统的控制方法。本发明首先确定石油精炼厂化学反应器的数学模型;其次将上述数学模型转化为区间二型T‑S模糊模型;然后采用并行分布补偿法设计T‑S模糊控制器;最后确定区间二型T‑S模糊系统稳定性条件,并转化成线性矩阵不等式,求出控制增益。本发明利用区间二型T‑S模型描述石油精炼厂的化学反应器精炼过程,区间二型T‑S模糊集在处理系统不确定性方面比一型模糊集有优势,同时在计算复杂度上又比二型模糊集低。因此,使用区间二型模糊集函数对系统建模,不仅系统描述更精确,而且使控制方法更有效。

Description

一种基于区间二型T-S模型的中立型系统的控制方法
技术领域
本发明属于控制科学与控制工程领域,涉及一种基于区间二型T-S模型的带有分布时滞的中立型系统的控制方法。
背景技术
在工程技术、物理、力学、控制论、化学反应、生物医学等领域提出的数学模型都带有明显的滞后量。特别是在自动控制的装置中,任何一个含有反馈的系统,从输入信号到收到反馈信号,其间必然有时间差。因此,用传统的微分方程去描述系统的状态只是一种近似,必须符合精度的要求才行,否则将导致错误。随着高新技术的发展,在实际工程中对控制系统的要求不断提高,包括对系统的精确建模和对控制器的精准设计。滞后在系统中是普遍存在的。例如,在化工、液压、轧钢等系统中都有时滞现象,且时滞是导致系统不稳定的一个重要因素。中立型时滞系统是一类更为广泛的滞后系统,大多数时滞系统都可以看作中立型的特殊情况,并且许多时滞系统都可以转化为中立型系统来研究,如无损传输线模型、标准时滞系统、标准分布时滞系统等。现阶段对时滞系统研究已有很多成果,包括系统稳定性分析,控制器设计,鲁棒H∞性能分析等。
基于区间二型T-S模型的模糊控制是最近研究非线性系统的热门方法。一方面,区间二型T-S模型相较于传统的一型T-S模型具有更好的处理不确定信息的能力;另一方面,区间二型T-S模型比二型T-S模型在计算方面更具有优势,且还拥有二型T-S模型的优点。现有技术针对基于一型T-S模型的时滞系统的研究已经相当广泛,例如系统的鲁棒控制,观测器设计,保性能控制等,而对区间二型T-S模型的时滞系统的相关研究相对较少。
考虑到中立型系统和一型T-S模型的特点,基于一型T-S模型的中立性系统的分析已有部分学者关注,有系统稳定性分析,控制器设计等。区间二型T-S模型结合中立型系统可以很好的描述很多实际问题,包括人口理论、医学问题、生物学、经济问题、化工生产等。但将中立型系统与区间二型T-S模型相结合的文献目前还是一片空白。
发明内容
本发明针对现有技术的不足,提供了一种基于区间二型T-S模型的带有分布时滞的中立型系统的控制方法。
本发明解决技术问题所采取的技术方案为:
步骤1.确立石油精炼厂化学反应器的数学模型:
Figure BDA0002065291280000011
Figure BDA0002065291280000012
其中t为时间,x1,x2分别为反应物A和B标准值的偏差,δFA,δFB分别为原料A和B 标准进料速度的偏差,σVR表示化学反应器的质量的偏差,τ,h,r是延迟时间,且都为定值, ai,bi,ci,di,ej为已知工程参数,i=1,2,3,4;j=1,2。
步骤2.将上述数学模型转化为区间二型T-S模糊模型:
对非线性系统线性化处理,方程共两个状态变量:
Figure BDA0002065291280000021
其状态方程为:
Figure BDA0002065291280000022
Figure BDA0002065291280000023
其中
Figure BDA0002065291280000024
A,B,C,D为标准值偏差系数矩阵,E为进料速度偏差输入矩阵。
基于区间二型T-S模型对带有分布时滞的中立型模糊系统,其IF-THEN规则描述下:
Figure BDA0002065291280000025
Figure BDA0002065291280000026
Figure BDA0002065291280000027
其中,
Figure BDA0002065291280000028
为前件变量sd(x)相对于第i条模糊规则的区间二型模糊集,i=1,2,…,p, d=1,2,…,l,Ai,Bi,C,Di,Ei为已知具有适当维数的矩阵,规定矩阵C的谱半径ρ(C) 满足ρ(C)<1,
Figure BDA0002065291280000029
为系统的状态变量,
Figure BDA00020652912800000210
为系统的输入向量,h,τ,r>0且为给定常数,α=max{h,τ,r},
Figure BDA00020652912800000211
是将[-α,0]映入
Figure BDA00020652912800000212
中的连续函数所组成的具有一致收敛拓扑的Banach空间,
Figure BDA00020652912800000213
第i条规则的激活强度可用区间
Figure BDA00020652912800000214
表示,
Figure BDA00020652912800000215
分别表示上下隶属函数,其中
Figure BDA00020652912800000216
Figure BDA00020652912800000217
分别表示函数sd(x)的下上隶属度,并且
Figure BDA00020652912800000218
故对于所有模糊规则i都有
Figure BDA00020652912800000219
通过单点模糊化, 乘积推理和加权平均反模糊化,区间二型中立型时滞模糊系统如下:
Figure BDA00020652912800000220
Figure BDA00020652912800000221
其中
Figure BDA00020652912800000222
为非线性函数,且对任意i满足
Figure BDA00020652912800000223
步骤3.采用并行分布补偿法设计T-S模糊控制器,模糊控制器的模糊规则描述如下:
Figure BDA00020652912800000224
Figure BDA00020652912800000225
其中,
Figure BDA0002065291280000031
(j=1,2,…,r)为第j个控制规则的反馈增益矩阵,状态反馈控制器表示为:
Figure BDA0002065291280000032
再结合式(1.a),(1.b)可得基于区间二型T-S模型的中立型闭环模糊系统方程如下:
Figure BDA0002065291280000033
Figure BDA0002065291280000034
其中Aij=Ai+EiKj
下面给出针对本发明中所需的引理:
引理对任意给定的矩阵M=MT>0以及常数τ>0,则有下列不等式成立:
Figure BDA0002065291280000035
Figure BDA0002065291280000036
步骤4.确定区间二型T-S模糊系统稳定性条件,并转化成线性矩阵不等式,求出控制增益。
4.1.确定区间二型T-S模糊系统稳定性条件。
定理1对于给定标量h,τ,r,如果存在正定矩阵P11,P22,P33,Q11,Q21,Q14,Q24,R11,R21,R14,R24,M,F,G,U,
Figure BDA0002065291280000037
以及矩阵P12,P13,P23,Q12, Q22,R12,R22,Nk,
Figure BDA0002065291280000038
Mk=εkM(k=1,…,9),εk为常量,满足矩阵不等式:
Figure BDA0002065291280000039
Figure BDA00020652912800000310
Figure BDA00020652912800000311
Figure BDA00020652912800000312
其中:
Figure BDA0002065291280000041
Figure BDA0002065291280000042
Figure BDA0002065291280000043
Figure BDA0002065291280000044
Figure BDA0002065291280000045
Figure BDA0002065291280000046
Figure BDA0002065291280000047
Figure BDA0002065291280000048
Figure BDA0002065291280000049
Figure BDA00020652912800000410
Figure BDA00020652912800000411
Figure BDA00020652912800000412
Figure BDA00020652912800000413
Figure BDA00020652912800000414
Figure BDA00020652912800000415
Figure BDA00020652912800000416
Figure BDA00020652912800000417
Figure BDA00020652912800000418
Figure BDA00020652912800000419
则系统(2.a)在初始条件(2.b)下渐近稳定。
4.2.将稳定性条件转化成线性矩阵不等式,并对控制器增益进行求解;
考虑到定理1中(3)是一个非线性矩阵不等式,需要将其转换成线性矩阵不等式,给出控制方法:
定理2对于给定标量h,τ,r,如果存在正定矩阵
Figure BDA0002065291280000051
Figure BDA0002065291280000052
以及矩阵
Figure BDA0002065291280000053
Xk=εkX(k=1,…,9), εk为常量,满足下面矩阵不等式:
Figure BDA0002065291280000054
Figure BDA0002065291280000055
Figure BDA0002065291280000056
Figure BDA0002065291280000057
其中:
Figure BDA0002065291280000058
Figure BDA0002065291280000061
Figure BDA0002065291280000062
Figure BDA0002065291280000063
Figure BDA0002065291280000064
Figure BDA0002065291280000065
Figure BDA0002065291280000066
Figure BDA0002065291280000067
Figure BDA0002065291280000068
Figure BDA0002065291280000069
Figure BDA00020652912800000610
Figure BDA00020652912800000611
Figure BDA00020652912800000612
Figure BDA00020652912800000613
Figure BDA00020652912800000614
Figure BDA00020652912800000615
Figure BDA00020652912800000616
Figure BDA00020652912800000617
Figure BDA00020652912800000618
则系统(2.a)在初始条件(2.b)下渐近稳定;控制增益为Kj=YjX-1
由定理1可得所设计的控制器使区间二型T-S带有分布时滞的中立型系统渐近稳定。
本发明的有益效果有以下几点:
第一,解决了一类基于区间二型T-S模型的带有分布时滞的中立型系统的控制问题,因为考虑了多种时滞因素对系统的影响,故在实际应用中更具有一般性。
第二,本发明利用区间二型T-S模型描述石油精炼厂的化学反应器精炼过程,区间二型 T-S模糊集在处理系统不确定性方面比一型模糊集有优势,同时在计算复杂度上又比二型模糊集低。因此,使用区间二型模糊集函数对系统建模,不仅系统描述更精确,而且使控制方法更有效。
第三,通过构建一类含有增广矩阵和三重积分项的Lyapunov-Krasovskii泛函,得到了区间二型中立型时滞模糊系统的稳定性条件。处理Lyapunov-Krasovskii泛函的导数的时候,引入了自由权矩阵,并运用不等式放缩技巧对导数积分项进行处理。从而,应用该方法得到的结论在实际控制中的应用范围更广。
附图说明
图1是石油精炼厂流程示意图。
图2是化学反应器模糊控制原理。
具体实施方式
本发明的目的是提出基于区间二型T-S模型的带有分布时滞的中立型系统的控制器设计方法,使其更符合工程实际应用的石油精炼厂化学反应器的控制,如图1所示。
本发明的具体技术实现步骤如下:
1.描述石油精炼厂化学反应器的数学模型:
Figure BDA0002065291280000071
Figure BDA0002065291280000072
其中t为时间(单位:min),x1,x2分别为反应物A和B标准值的偏差(单位:kg),δFA,δFB分别为原料A和B标准进料速度的偏差(单位:kg/min),σVR表示化学反应器的质量的偏差(单位:kg),τ,h,r是延迟时间,且都为定值(单位:min), ai,bi,ci,di,ej(i=1,2,3,4;j=1,2)为已知工程参数。
2.将石油精炼厂化学反应器方程转化为区间二型T-S模糊模型:
对非线性系统线性化处理,方程共两个状态变量:
Figure BDA0002065291280000073
其状态方程为:
Figure BDA0002065291280000074
Figure BDA0002065291280000075
其中
Figure BDA0002065291280000076
A,B,C,D为标准值偏差系数矩阵,E为进料速度偏差输入矩阵。
基于区间二型T-S模型对带有分布时滞的中立型模糊系统,其IF-THEN规则描述下:
Figure BDA0002065291280000077
Figure BDA0002065291280000078
Figure BDA0002065291280000079
其中,
Figure BDA0002065291280000081
为前件变量sd(x)相对于第i条模糊规则的区间二型模糊集,i=1,2,…,p, d=1,2,…,l,Ai,Bi,C,Di,Ei为已知具有适当维数的矩阵,规定矩阵C的谱半径ρ(C) 满足ρ(C)<1,
Figure BDA0002065291280000082
为系统的状态变量,
Figure BDA0002065291280000083
为系统的输入向量,h,τ,r>0且为给定常数,α=max{h,τ,r},
Figure BDA0002065291280000084
是将[-α,0]映入
Figure BDA0002065291280000085
中的连续函数所组成的具有一致收敛拓扑的Banach空间,
Figure BDA0002065291280000086
第i条规则的激活强度可用区间
Figure BDA0002065291280000087
表示,
Figure BDA0002065291280000088
分别表示上下隶属函数,其中
Figure BDA0002065291280000089
Figure BDA00020652912800000810
分别表示函数sd(x)的下上隶属度,并且
Figure BDA00020652912800000811
故对于所有模糊规则i都有
Figure BDA00020652912800000812
通过单点模糊化, 乘积推理和加权平均反模糊化,其原理如图2所示,区间二型中立型时滞模糊系统如下:
Figure BDA00020652912800000813
Figure BDA00020652912800000814
其中
Figure BDA00020652912800000815
为非线性函数,且对任意i满足
Figure BDA00020652912800000816
3.采用并行分布补偿法(PDC)设计T-S模糊控制器,其模糊规则描述如下:
Figure BDA00020652912800000817
u(t)=Kjx(t)
其中,
Figure BDA00020652912800000818
(j=1,2,…,r)为第j个控制规则的反馈增益矩阵,状态反馈控制器可以表示为:
Figure BDA00020652912800000819
再结合式(1.a),(1.b)可得基于区间二型T-S模型的中立型闭环模糊系统方程如下:
Figure BDA00020652912800000820
Figure BDA00020652912800000821
其中Aij=Ai+EiKj
下面给出针对本发明中所需的引理:
引理对任意给定的矩阵M=MT>0以及常数τ>0,则有下列不等式成立:
Figure BDA0002065291280000091
Figure BDA0002065291280000092
4.确定区间二型T-S模糊系统稳定性条件,并转化成线性矩阵不等式,求出控制增益。
4.1.确定区间二型T-S模糊系统稳定性条件。
定理1对于给定标量h,τ,r,如果存在正定矩阵P11,P22,P33,Q11,Q21,Q14,Q24,R11,
Figure BDA0002065291280000093
以及矩阵P12,P13,P23,Q12,
Figure BDA0002065291280000094
εk为常量,满足矩阵不等式:
Figure BDA0002065291280000095
Figure BDA0002065291280000096
Figure BDA0002065291280000097
Figure BDA0002065291280000098
其中:
Figure BDA0002065291280000099
Figure BDA0002065291280000101
Figure BDA0002065291280000102
Figure BDA0002065291280000103
Figure BDA0002065291280000104
Figure BDA0002065291280000105
Figure BDA0002065291280000106
Figure BDA0002065291280000107
Figure BDA0002065291280000108
Figure BDA0002065291280000109
Figure BDA00020652912800001010
Figure BDA00020652912800001011
Figure BDA00020652912800001012
Figure BDA00020652912800001013
Figure BDA00020652912800001014
Figure BDA00020652912800001015
Figure BDA00020652912800001016
Figure BDA00020652912800001017
Figure BDA00020652912800001018
则系统(2.a)在初始条件(2.b)下渐近稳定。
证明:构造Lyapunov-Krasovskii泛函如下:
V(t,xt)=V1(t,xt)+V2(t,xt)+V3(t,xt)+V4(t,xt)
其中:V1(t,xt)=ξT(t)Pξ(t),
Figure BDA00020652912800001019
Figure BDA00020652912800001020
Figure BDA00020652912800001021
Figure BDA00020652912800001022
V(t,xt)沿状态轨线方向的时间导数为:
Figure BDA0002065291280000111
其中:
Figure BDA0002065291280000112
Figure BDA0002065291280000113
Figure BDA0002065291280000114
Figure BDA0002065291280000115
Figure BDA0002065291280000116
Figure BDA0002065291280000117
其中:
Figure BDA0002065291280000118
Figure BDA0002065291280000119
Figure BDA00020652912800001110
Figure BDA00020652912800001111
根据引理,可得:
Figure BDA00020652912800001112
Figure BDA00020652912800001113
Figure BDA0002065291280000121
Figure BDA0002065291280000122
Figure BDA0002065291280000123
综合式(4)-(9),并通过不等式放缩可得:
Figure BDA0002065291280000124
对上式右端进行恒等变换:
Figure BDA0002065291280000125
由于Q24,R24,V为正定矩阵,故有
Figure BDA0002065291280000126
通过放缩,可得:
Figure BDA0002065291280000131
结合Schur补引理,当系统满足(3)式条件时,
Figure BDA00020652912800001310
因此区间二型中立型时滞模糊系统(2.a)渐近稳定。
4.2.将稳定性条件转化成线性矩阵不等式,并对控制器增益进行求解。
考虑到定理1中(3)是一个非线性矩阵不等式,需要将其转换成线性矩阵不等式(LMI),给出控制方法:
定理2对于给定标量h,τ,r,如果存在正定矩阵
Figure BDA0002065291280000132
Figure BDA0002065291280000133
以及矩阵
Figure BDA0002065291280000134
Xk=εkX(k=1,…,9), εk为常量,满足下面矩阵不等式:
Figure BDA0002065291280000135
Figure BDA0002065291280000136
Figure BDA0002065291280000137
Figure BDA0002065291280000138
其中:
Figure BDA0002065291280000139
Figure BDA0002065291280000141
Figure BDA0002065291280000142
Figure BDA0002065291280000143
Figure BDA0002065291280000144
Figure BDA0002065291280000145
Figure BDA0002065291280000146
Figure BDA0002065291280000147
Figure BDA0002065291280000148
Figure BDA0002065291280000149
Figure BDA00020652912800001410
Figure BDA00020652912800001411
Figure BDA00020652912800001412
Figure BDA00020652912800001413
Figure BDA00020652912800001414
Figure BDA00020652912800001415
Figure BDA00020652912800001416
Figure BDA00020652912800001417
Figure BDA00020652912800001418
则系统(2.a)在初始条件(2.b)下渐近稳定。控制增益为Kj=YjX-1(j=1,2,…,p)。
证明:构造矩阵如下:
Figure BDA00020652912800001419
Figure BDA00020652912800001420
Figure BDA00020652912800001421
(3)式分别左乘和右乘矩阵
Figure BDA00020652912800001422
可得(10)式成立。由定理1可得所设计的控制器使区间二型T-S带有分布时滞的中立型系统渐近稳定。
实施例:本发明主要针对石油精炼厂的化学反应器精炼过程进行控制,提出的控制方法思路清晰,结构合理,易于工程实现。考虑如下石油精炼厂化学反应器的数学模型:
Figure BDA0002065291280000151
Figure BDA0002065291280000152
其中t为时间(单位:min),x1,x2分别为反应物A和B标准值的偏差(单位:kg),δFA,δFB分别为原料A和B标准进料速度的偏差(单位:kg/min),σVR表示化学反应器的质量的偏差(单位:kg),τ,h,r是延迟时间,且都为定值(单位:min), ai,bi,ci,di,ej(i=1,2,3,4;j=1,2)为已知工程参数。
将石油精炼厂化学反应器流程方程用模糊规则描述如下:
Rule 1:
Figure BDA0002065291280000153
THEN
Figure BDA0002065291280000154
Figure BDA0002065291280000155
Rule 2:
Figure BDA0002065291280000156
Figure BDA0002065291280000157
Figure BDA0002065291280000158
Figure BDA0002065291280000159
Figure BDA00020652912800001510
ε1=2,ε2=1,ε3=10,ε4=10,ε5=2,ε6=1,ε7=10,ε8=10,ε9=1
τ=0.2,r=0.1,h=0.3
Ai,Bi,C,Di为标准值偏差系数矩阵,Ei为进料速度偏差输入矩阵,i=1,2。
由定理2的控制器设计方案,结合MATLAB中LMI求解,可得闭环系统的状态反馈控制器的控制增益为:
K1=[-6.2605-2.6733],K2=[-5.4292-2.6478]。

Claims (1)

1.一种基于区间二型T-S模型的中立型系统的控制方法,其特征在于该方法包括以下步骤:
步骤1.确立石油精炼厂化学反应器的数学模型:
Figure FDA0003235989980000011
Figure FDA0003235989980000012
其中t为时间,x1,x2分别为反应物A和B标准值的偏差,δFA,δFB分别为原料A和B标准进料速度的偏差,σVR表示化学反应器的质量的偏差,τ,h,r是延迟时间,且都为定值,ai,bi,ci,di,ej为已知工程参数,i=1,2,3,4;j=1,2;
步骤2.将上述数学模型转化为区间二型T-S模糊模型:
对非线性系统线性化处理,方程共两个状态变量:
x=[x1 x2]T,
Figure FDA0003235989980000013
其状态方程为:
Figure FDA0003235989980000014
Figure FDA0003235989980000015
t∈[-α,0]
其中
Figure FDA0003235989980000016
A,B,C,D为标准值偏差系数矩阵,E为进料速度偏差输入矩阵;
基于区间二型T-S模型对带有分布时滞的中立型模糊系统,其IF-THEN规则描述下:
Figure FDA0003235989980000017
Figure FDA0003235989980000018
Figure FDA0003235989980000019
t∈[-α,0]
其中,
Figure FDA00032359899800000110
为前件变量sd(x)相对于第i条模糊规则的区间二型模糊集,i=1,2,…,p,d=1,2,…,l,Ai,Bi,C,Di,Ei为已知具有适当维数的矩阵,规定矩阵C的谱半径ρ(C)满足ρ(C)<1,
Figure FDA00032359899800000111
为系统的状态变量,
Figure FDA00032359899800000112
为系统的输入向量,h,τ,r>0且为给定常数,α=max{h,τ,r},
Figure FDA00032359899800000113
是将[-α,0]映入
Figure FDA00032359899800000114
中的连续函数所组成的具有一致收敛拓扑的Banach空间,
Figure FDA00032359899800000115
第i条规则的激活强度可用区间
Figure FDA00032359899800000116
表示,
Figure FDA00032359899800000117
分别表示上下隶属函数,其中
Figure FDA00032359899800000118
Figure FDA0003235989980000021
分别表示函数sd(x)的下上隶属度,并且
Figure FDA0003235989980000022
故对于所有模糊规则i都有
Figure FDA0003235989980000023
通过单点模糊化,乘积推理和加权平均反模糊化,区间二型中立型时滞模糊系统如下:
Figure FDA0003235989980000024
Figure FDA0003235989980000025
其中
Figure FDA0003235989980000026
Figure FDA0003235989980000027
为非线性函数,且对任意i满足
Figure FDA0003235989980000028
步骤3.采用并行分布补偿法设计T-S模糊控制器,模糊控制器的模糊规则描述如下:
Figure FDA0003235989980000029
u(t)=Kjx(t)
其中,
Figure FDA00032359899800000210
为第j个控制规则的反馈增益矩阵,j=1,2,…,p,状态反馈控制器表示为:
Figure FDA00032359899800000211
再结合式(1.a),(1.b)可得基于区间二型T-S模型的中立型闭环模糊系统方程如下:
Figure FDA00032359899800000212
Figure FDA00032359899800000213
其中Aij=Ai+EiKj
下面给出针对本发明中所需的引理:
引理对任意给定的矩阵M=MT>0以及常数τ>0,则有下列不等式成立:
Figure FDA00032359899800000214
Figure FDA00032359899800000215
步骤4.确定区间二型T-S模糊系统稳定性条件,并转化成线性矩阵不等式,求出控制增益;
4.1.确定区间二型T-S模糊系统稳定性条件;
定理1对于给定延迟时间h,τ,r,如果存在正定矩阵P11,P22,P33,Q11,Q21,Q14,Q24,R11,
Figure FDA0003235989980000031
以及矩阵
Figure FDA0003235989980000032
Figure FDA0003235989980000033
Mk=εkM(k=1,…,9),εk为常量,满足矩阵不等式:
Figure FDA0003235989980000034
Figure FDA0003235989980000035
Figure FDA0003235989980000036
Figure FDA0003235989980000037
其中:
Figure FDA0003235989980000038
Figure FDA0003235989980000041
Figure FDA0003235989980000042
Figure FDA0003235989980000043
Figure FDA0003235989980000044
Figure FDA0003235989980000045
Figure FDA0003235989980000046
Ξ89=M8Di
Figure FDA0003235989980000047
Figure FDA0003235989980000048
Figure FDA0003235989980000049
Figure FDA00032359899800000410
Figure FDA00032359899800000411
Ξ55=-Q1456=M5C,Ξ59=M5Di,
Figure FDA00032359899800000412
Figure FDA00032359899800000413
Ξ79=M7Di
Figure FDA00032359899800000414
Figure FDA00032359899800000415
Figure FDA00032359899800000416
Figure FDA00032359899800000417
Figure FDA00032359899800000418
则系统(2.a)在初始条件(2.b)下渐近稳定;
4.2.将稳定性条件转化成线性矩阵不等式,并对控制器增益进行求解;
考虑到定理1中(3)是一个非线性矩阵不等式,需要将其转换成线性矩阵不等式,给出控制方法:
定理2对于给定延迟时间h,τ,r,如果存在正定矩阵
Figure FDA00032359899800000419
Figure FDA00032359899800000420
以及矩阵
Figure FDA00032359899800000421
Xk=εkX(k=1,…,9),εk为常量,满足下面矩阵不等式:
Figure FDA0003235989980000051
Figure FDA0003235989980000052
Figure FDA0003235989980000053
Figure FDA0003235989980000054
其中:
Figure FDA0003235989980000055
Figure FDA0003235989980000061
Figure FDA0003235989980000062
Figure FDA0003235989980000063
Figure FDA0003235989980000064
Figure FDA0003235989980000065
Figure FDA0003235989980000066
Figure FDA0003235989980000067
Figure FDA0003235989980000068
Figure FDA0003235989980000069
Figure FDA00032359899800000610
Figure FDA00032359899800000611
Figure FDA00032359899800000612
Figure FDA00032359899800000613
Figure FDA00032359899800000614
Figure FDA00032359899800000615
Figure FDA00032359899800000616
Figure FDA00032359899800000617
Figure FDA00032359899800000618
则系统(2.a)在初始条件(2.b)下渐近稳定;控制增益为Kj=YjX-1
由定理1可得所设计的控制器使区间二型T-S带有分布时滞的中立型系统渐近稳定。
CN201910418738.2A 2019-05-20 2019-05-20 一种基于区间二型t-s模型的中立型系统的控制方法 Expired - Fee Related CN110058526B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910418738.2A CN110058526B (zh) 2019-05-20 2019-05-20 一种基于区间二型t-s模型的中立型系统的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910418738.2A CN110058526B (zh) 2019-05-20 2019-05-20 一种基于区间二型t-s模型的中立型系统的控制方法

Publications (2)

Publication Number Publication Date
CN110058526A CN110058526A (zh) 2019-07-26
CN110058526B true CN110058526B (zh) 2021-11-30

Family

ID=67323712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910418738.2A Expired - Fee Related CN110058526B (zh) 2019-05-20 2019-05-20 一种基于区间二型t-s模型的中立型系统的控制方法

Country Status (1)

Country Link
CN (1) CN110058526B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112180717B (zh) * 2020-10-14 2021-09-03 河北工业大学 一种基于2d模型的热交换器温度模糊控制方法及系统
CN113156811B (zh) * 2020-12-29 2022-10-11 上海理工大学 一种航天器姿态控制系统的自触发模糊模型预测控制器的设计方法
CN113194475A (zh) * 2021-04-21 2021-07-30 南通大学 一种基于区间二型模糊系统的传感器网络状态估计方法
CN113534665A (zh) * 2021-07-23 2021-10-22 杭州电子科技大学 基于区间二型t-s模型的有限时间稳定的滑模控制方法
CN113625558A (zh) * 2021-07-23 2021-11-09 杭州电子科技大学 基于区间二型t-s模糊的欺骗攻击下的网络控制方法
CN114706302B (zh) * 2022-03-16 2022-11-22 四川大学 针对执行器故障的模糊切换系统依模态事件触发控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048235A1 (de) * 2004-10-04 2006-04-20 Siemens Ag Verfahren zur Prognose des Energieverbrauchs einer industriellen Produktionsanlage, Vorrichtung zum Durchführen des Verfahrens sowie zugehöriges Computerprogramm-Produkt und computerlesbares Medium
CN106444383A (zh) * 2016-10-27 2017-02-22 哈尔滨工业大学 前件不匹配的tsfmb时滞系统控制方法
CN107942662A (zh) * 2017-11-16 2018-04-20 四川大学 有限时间状态反馈控制器设计方法及装置
CN108053077A (zh) * 2017-12-28 2018-05-18 华中科技大学 一种基于区间二型t-s模糊模型的短期风速预测方法与系统
CN108897334A (zh) * 2018-07-19 2018-11-27 上海交通大学 一种基于模糊神经网络的仿昆虫扑翼飞行器姿态控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048235A1 (de) * 2004-10-04 2006-04-20 Siemens Ag Verfahren zur Prognose des Energieverbrauchs einer industriellen Produktionsanlage, Vorrichtung zum Durchführen des Verfahrens sowie zugehöriges Computerprogramm-Produkt und computerlesbares Medium
CN106444383A (zh) * 2016-10-27 2017-02-22 哈尔滨工业大学 前件不匹配的tsfmb时滞系统控制方法
CN107942662A (zh) * 2017-11-16 2018-04-20 四川大学 有限时间状态反馈控制器设计方法及装置
CN108053077A (zh) * 2017-12-28 2018-05-18 华中科技大学 一种基于区间二型t-s模糊模型的短期风速预测方法与系统
CN108897334A (zh) * 2018-07-19 2018-11-27 上海交通大学 一种基于模糊神经网络的仿昆虫扑翼飞行器姿态控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Stabilization for a class of stochastic T-S fuzzy systems with different premises;Zhou Shaosheng;《2013 25th Chinese Control and Decision Conference (CCDC)》;20130718;第2483-2486页 *
区间二型T-S时滞模糊系统的H∞控制器设计;周绍生;《杭州电子科技大学学报(自然科学版)》;20190515;第39卷(第3期);第42-47页 *

Also Published As

Publication number Publication date
CN110058526A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
CN110058526B (zh) 一种基于区间二型t-s模型的中立型系统的控制方法
Wu et al. Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers
WO2022121923A1 (zh) 复杂工业过程数字孪生系统智能建模方法、装置、设备及存储介质
CN109033585B (zh) 不确定网络控制系统的pid控制器设计方法
CN103123460A (zh) 温度控制系统和温度控制方法
Zhao et al. Non-singleton general type-2 fuzzy control for a two-wheeled self-balancing robot
Zhou et al. Adaptive NN control for nonlinear systems with uncertainty based on dynamic surface control
CN110609476B (zh) 一种基于高斯过程模型的多变量非线性动态系统模型预测控制方法
Li Neural network control for a class of continuous stirred tank reactor process with dead-zone input
Liu et al. Adaptive decentralized control for switched nonlinear large-scale systems with quantized input signal
Li et al. Reinforcement learning control with adaptive gain for a Saccharomyces cerevisiae fermentation process
Wu et al. Observer based adaptive double-layer fuzzy control for nonlinear systems with prescribed performance and unknown control direction
Lin et al. Yaw stability research of the distributed drive electric bus by adaptive fuzzy sliding mode control
Leite et al. Application of artificial intelligence techniques for temperature prediction in a polymerization process
Panjwani et al. Comparative performance analysis of PID based NARMA-L2 and ANFIS control for continuous stirred tank reactor
Deepa et al. Synthesis of heuristic control strategies for liquid level control in spherical tank
El-Nagar et al. A class of general type-2 fuzzy controller based on adaptive alpha-plane for nonlinear systems
CN116373846A (zh) 一种基于bp神经网络优化的后轮转向车辆稳定性控制方法
Meng et al. Dynamic adaptive learning algorithm based on two-fuzzy neural-networks
Johnson et al. Advantages of an alternative form of fuzzy logic
CN114200840B (zh) 基于分布式模型预测控制的中药制药过程运行优化方法
Chen et al. Coordination Control of Multi-Axis Steering and Active Suspension System for High-Mobility Emergency Rescue Vehicles
CN112684707B (zh) 基于干扰观测器的苯乙烯本体聚合抗干扰分布形状控制方法
Han et al. Data-based robust model predictive control for wastewater treatment process
Gao et al. Research on Yaw Stability Control Strategy for Distributed Drive Electric Trucks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211130