CN109033585B - 不确定网络控制系统的pid控制器设计方法 - Google Patents

不确定网络控制系统的pid控制器设计方法 Download PDF

Info

Publication number
CN109033585B
CN109033585B CN201810768249.5A CN201810768249A CN109033585B CN 109033585 B CN109033585 B CN 109033585B CN 201810768249 A CN201810768249 A CN 201810768249A CN 109033585 B CN109033585 B CN 109033585B
Authority
CN
China
Prior art keywords
network control
control system
matrix
fuzzy
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810768249.5A
Other languages
English (en)
Other versions
CN109033585A (zh
Inventor
吕欣欣
孙永辉
翟苏巍
侯栋宸
张博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201810768249.5A priority Critical patent/CN109033585B/zh
Publication of CN109033585A publication Critical patent/CN109033585A/zh
Application granted granted Critical
Publication of CN109033585B publication Critical patent/CN109033585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance

Abstract

本发明提供了一种基于T‑S模糊模型的不确定网络控制系统的PID控制器设计方法,利用T‑S模糊模型对还有不确定项的网络控制系统进行建模,增加了系统的鲁棒性;在控制器设计方面采用具有更优控制效果的PID控制器,增加了系统的控制效果;在对系统稳定性进行判定的时候,选择了构造Lyapunov函数的方法,减少了系统的保守性;在系统所能承受的最大时延以及控制器增益的时候,结合所得到的线性矩阵不等式设计了一个求解方法,对系统所能承受的最大时延及其控制器增益进行了求解。

Description

不确定网络控制系统的PID控制器设计方法
技术领域
本发明涉及一种网络控制系统,具体涉及一种不确定网络控制系统的PID控制器设计方法。
背景技术
网络控制系统是指通过通讯网络形成闭环的反馈控制系统。在网络控制系统中,传感器、控制器和执行器等系统组件作为网络节点直接挂接在网络上,通过共享的有线或者无线通讯网络进行传感和控制信息的交换,因此网络控制系统与传统的直接点对点连接的控制系统相比,具有连线少、成本低、安装维护方便和灵活性高等优点,被广泛应用于汽车制造、机器人和飞行器控制系统等多个领域。
近年来,随着控制系统从集中封闭式体系向开放分布式体系迅猛过渡,网络化控制系统已被各行业广泛应用。网络控制系统由传感器、控制器和执行器三部分组成,传感器和控制器以及控制器和执行器之间是通过网络进行数据传输的。由于网络控制系统在复杂的工业控制系统和航天器领域有很强的应用背景,因此其研究成为热点,并取得了不错的成果。
影响网络控制系统性能的主要因素为系统传输时延以及丢包现象,其中由于时延而对系统性能的影响最为显著,而对于一个网络控制系统其时延得到是需要通过大量的时延数据所得到的。
发明内容
发明目的:本发明的目的在于提出一种不确定网络控制系统的PID控制器设计方法,首先构造Lyapunov泛函,利用各种不等式放缩技巧,降低结果的保守性。
技术方案:本发明提供了一种基于T-S模糊模型的不确定网络控制系统的PID控制器设计方法,包括以下步骤:
(1)建立带有时滞的不确定网络控制系统模型
网络控制系统由一组微分代数方程描述,在系统运行点附近对其线性化,最终系统表示为:
Figure BDA0001729587520000011
式中,x为系统状态变量,A为系统状态矩阵,B为系统输入矩阵,C为系统输出矩阵,u为系统控制输入,y为系统控制输出,G为扰动项的系数矩阵,ω(k)为系统扰动状态矩阵,k=0,1,2,3.....为第k时刻(k为正整数),ΔA和ΔB为不确定系数矩阵;
并且,
[ΔA(k) ΔB(k)]=DF(k)[H1 H2]
式中,D、H1、H2为已知的常数矩阵,F(k)为未知矩阵,但为Lebesque可测量的,并且满足FT(k)F(k)≤I,其中I代表单位矩阵;
(2)利用T-S模糊模型对不确定网络控制系统模型进行变换:
如果模糊前提变量θj(k)是模糊集合Fij,j=1,2,...,r,那么
x(k+1)=(Ai+ΔAi(k))x(k)+(Bi+ΔBi(k))u(k)+Giω(k)
进而可以推导为:
Figure BDA0001729587520000021
式中,i表示与横坐标有关的第i个模糊规则,i=1,2,...r,j表示与横坐标有关的第j个模糊规则,j=1,2,...r,r是模糊规则的数目;Ai、ΔAi、Bi、ΔBi、Gi,分别为第i个模糊规则下的A、ΔA、B、ΔB、G;θi(k)(i=1,2,...r)为模糊前提变量;并且常数μi满足:μi≥0,
Figure BDA0001729587520000022
(3)将整个不确定网络控制系统当中的控制器设计为PID控制器:
如果模糊前提变量θj(k)是模糊集合Fij,j=1,2,...,r,那么
Figure BDA0001729587520000023
因为系统误差项e(k)=-Cx(k),进而上式可以推导为:
Figure BDA0001729587520000031
式中,Kpi、KIi、KDi分别为第i项模糊规则的系统控制器的比例系数、积分系数、微分系数,Kpj、KIj、KDj分别为第j项模糊规则的系统控制器的比例系数、积分系数、微分系数,m为一个有序数列,k表示此时状态所处的时刻,Ts为系统采样周期,μj表示与纵坐标相关的μ的第j项取值;
将控制器的整合公式(2)代入系统模型公式(1)可得:
Figure BDA0001729587520000032
将复杂的网络控系统模型转化为简单的网络控制系统模型:
对以下矩阵进行整合与定义:
Figure BDA0001729587520000033
Figure BDA0001729587520000034
Figure BDA0001729587520000035
Figure BDA0001729587520000036
Figure BDA0001729587520000037
Figure BDA0001729587520000038
Figure BDA0001729587520000039
Figure BDA00017295875200000310
Figure BDA00017295875200000311
Figure BDA00017295875200000312
则式(3)可化为:
Figure BDA00017295875200000313
定义一个新的增广矩阵:
Figure BDA0001729587520000041
则式(4)可化简为:
Figure BDA0001729587520000042
设:
Figure BDA0001729587520000043
Figure BDA0001729587520000044
Figure BDA0001729587520000045
则上式可化简为:
Figure BDA0001729587520000046
设d(k)表示信号在k时刻传输过程当中的总的时延,dM=max(d(k))表示取d(k)的最大值,所以有:
0≤d(k)≤dM≤Ts
设δ(k)=z(k)-z(k-d(k))
则式(5)变换为:
Figure BDA0001729587520000047
其中,δT(k)δ(k)≤αxT(k)Ωx(k),δ(k)是正定矩阵,常数α∈[0,1);
以上将含有PID控制器的T-S模糊模型的不确定网络控制系统模型(3)转化为了简单的含有时延的不确定网络控制系统(6)。
将系统模型建立为了含有不确定系数项的系统模型,增加了系统的鲁棒性。并且,将系统模型设计为基于T-S模糊模型的网络控制系统模型,减少了系统模型的保守性。最后,将系统控制器设计为PID控制器,增加了系统控制器的控制效果和性能。
进一步,利用Lyapunov函数方法以及线性矩阵不等式的方法对含有时延的不确定网络控制系统(6)的H稳定性进行验证:
首先,给出本发明所提方法用到的两个重要引理:
引理1:给定适当维数的矩阵∑1,∑2,∑3,并且
Figure BDA0001729587520000051
Figure BDA0001729587520000052
对所有的满足Δ(k)ΔT(k)≤I的矩阵Δ(k)成立,当且仅当存在一个常数ε>0,使得
Figure BDA0001729587520000053
成立。
引理2(矩阵的Schur补引理):若已知三个矩阵,
Figure BDA0001729587520000054
Figure BDA0001729587520000055
Z3,则
Figure BDA0001729587520000056
当且仅当
Figure BDA0001729587520000057
Figure BDA0001729587520000058
判据:对于给定的系数α>0以及dM,存在以下状态反馈模糊PID控制器
Figure BDA0001729587520000059
如果存在正定矩阵
Figure BDA00017295875200000510
Figure BDA00017295875200000511
S1>0、S2>0、
Figure BDA00017295875200000512
Figure BDA00017295875200000513
以及矩阵
Figure BDA00017295875200000514
和任意小的标量γ>0,ε>0,满足下列线性矩阵不等式,那么不确定网络控制系统(6)是H稳定的:
Figure BDA00017295875200000515
Figure BDA00017295875200000516
Figure BDA00017295875200000517
其中,
Figure BDA00017295875200000518
Figure BDA00017295875200000519
Figure BDA0001729587520000061
Figure BDA0001729587520000062
Figure BDA0001729587520000063
Figure BDA0001729587520000064
Figure BDA0001729587520000065
Figure BDA0001729587520000066
Figure BDA0001729587520000067
Figure BDA0001729587520000068
Figure BDA0001729587520000069
Figure BDA00017295875200000610
Figure BDA00017295875200000611
Figure BDA00017295875200000612
Di、H1 i和H2 i(i=1,2,...,r)分别为第i个模糊规则下的D、H1和H2
证明:
构造Lyapunov函数为:
Figure BDA00017295875200000613
其中,P,Q,R为正定矩阵,
Figure BDA00017295875200000614
对V(k)进行求导可得:
ΔV(k)=ΔV1(k)+ΔV2(k)+ΔV3(k)
其中:
Figure BDA00017295875200000615
ΔV2(k)=zT(k)Qz(k)-zT(k-dM)Qz(k-dM)T
Figure BDA00017295875200000616
在规定的衰减水平λ>0的条件下有消耗方程
Figure BDA00017295875200000617
而当J≤0,网络控制系统的为H稳定的。因此,应当对J≤0进行求解。
又因为
Figure BDA0001729587520000071
所以J≤0可以转化为
Figure BDA0001729587520000072
又因为δ(k)=z(k)-z(k-d(k))以及δT(k)δ(k)≤αxT(k)Ωx(k),所以可以得到:
Figure BDA0001729587520000073
其中,M>0,为具有适当维数的正定矩阵。
设:
Figure BDA0001729587520000074
Figure BDA0001729587520000075
则(8)式可化为:
Figure BDA0001729587520000081
设:
Figure BDA0001729587520000082
Γ=[X Y-X -Y 05n×2n]
Figure BDA0001729587520000083
Figure BDA0001729587520000084
则(9)式可以简化为:
Figure BDA0001729587520000085
所以,如果ΔV(k)<0,则
Figure BDA0001729587520000086
以及
Figure BDA0001729587520000087
Figure BDA0001729587520000088
均成立。
公式(11)利用Schur补定理可得:
Figure BDA0001729587520000089
在公式(13)中,将
Figure BDA00017295875200000810
替换为
Figure BDA00017295875200000811
Figure BDA00017295875200000812
替换为
Figure BDA00017295875200000813
又因为[ΔAi(k) ΔBi(k)]=DiFi(k)[H1 i H2 i],
其中,
Figure BDA00017295875200000814
Di,Fi(k),H1 i和H2 i分别为第i个模糊规则下的
Figure BDA00017295875200000815
Figure BDA00017295875200000816
D,F(k),H1和H2
所以有:
Figure BDA0001729587520000091
其中,
Figure BDA0001729587520000092
Figure BDA0001729587520000093
Figure BDA0001729587520000094
又因为:
Figure BDA0001729587520000095
设:
Figure BDA0001729587520000096
Figure BDA0001729587520000097
Figure BDA0001729587520000098
则可得:
Figure BDA0001729587520000099
同理可得
Figure BDA00017295875200000910
其中,
Figure BDA00017295875200000911
Figure BDA00017295875200000912
则,(13)式可以换为:
Figure BDA00017295875200000913
设:
Π=diag(Q-P,αΩ,-Q,-Ω,-λ2),Γ=[X Y-X -Y 05n×2n]
Figure BDA0001729587520000101
Figure BDA0001729587520000102
Figure BDA0001729587520000103
Figure BDA0001729587520000104
则(14)式可以简化为:
Figure BDA0001729587520000105
令:
Figure BDA0001729587520000106
Figure BDA0001729587520000107
Figure BDA0001729587520000108
则,(15)式可以改写为:
Σ12F(k)Σ3T 3FT(k)ΣT 2<0 (16)
由引理1可以得到,对任意的ε>0都有:
Σ1+εΣ2ΣT 2+εΣT 3Σ3<0 (17)
令:Γ=diag(Γ1,P-1,R-1),其中Γ1=diag(P-1,P-1,P-1,P-1,P-1)。
下面在(17)式的左右两边分别左乘和右乘Γ,我们可以得到ΓΣ1Γ+εΓΣ2ΣT 2Γ+εΓΣT 3Σ3Γ<0,对任意小的ε>0均成立。又因为Γ=ΓT,所以有ΓΣ1Γ+εΓΣ2(ΓΣ2)T+ε(ΓΣ3)TΓΣ3<0(18)成立。
根据引理2,则(18)式可以化为:
Figure BDA0001729587520000109
以及
Figure BDA00017295875200001010
由以上的分析结果可以得到:
Figure BDA0001729587520000111
再次利用Schur补定理可以得到:
Figure RE-GDA0001856383780000113
下面,我们定义一些新的变量:S1=P-1,S2=R-1
Figure BDA0001729587520000113
Figure BDA0001729587520000114
Figure BDA0001729587520000115
Figure BDA0001729587520000116
Figure BDA0001729587520000117
Figure BDA0001729587520000118
Figure BDA0001729587520000119
Figure BDA00017295875200001110
则,(20)式可以简化为:
Figure BDA00017295875200001111
则(21)式可以简化为:
Figure BDA00017295875200001112
则公式(10)可化为J<0,对于任意小的ε>0,γ>0均成立。
综上所述,可以得到不确定网络控制系统为H稳定的。最后,判据得以证明。
进一步,利用Matlab中的线性矩阵(LMI)工具箱,根据系统给定的所能承受的最大的时滞,可以判定时滞网络控制系统的H稳定性,通过求解稳定性判据中的线性矩阵不等式可以同时对系统的PID控制器的控制器增益进行求解:
首先给定不确定网络控制系统的各项常数项,并且给定初始系统时延dM,然后,利用所给数据对判据中的线性矩阵不等式进行求解,如果判据是成立的,那么对系统时延dM选择步长为ΔdM=0.01进行增加并逐渐对系统时延dM进行更新,然后再进行上一步,直到判据是不成立的,此时输出在求解过程中的最终的系统时延dM,即为系统所能承受的最大时延。反之,如果在初始给定的系统时延dM以及各项系数下,系统为不稳定的,那么对其进行调整,直到循环得以进行。最后可以得到系统在稳定情况下所能承受的最大系统时延,以及系统的控制器增益。
有益效果:本发明利用T-S模糊模型对还有不确定项的网络控制系统进行建模,增加了系统的鲁棒性;在控制器设计方面采用具有更优控制效果的PID控制器,增加了系统的控制效果;在对系统稳定性进行判定的时候,选择了构造Lyapunov函数的方法,减少了系统的保守性;在系统所能承受的最大时延以及控制器增益的时候,结合所得到的线性矩阵不等式设计了一个求解方法,对系统所能承受的最大时延及其控制器增益进行了求解。
附图说明
图1为本发明所提的时滞电力系统稳定性判定方法流程图;
图2为在初始条件x(0)=[1.6 -1.8]T下系统的状态变量x(k)变化情况;
图3为在初始条件x(0)=[1.6 -1.8]T下系统的控制输入u(k)的变化情况。
具体实施方式
下面对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
一种基于T-S模糊模型的不确定网络控制系统的PID控制器设计方法,如图1所示;在整个系统的分析当中我们设r=3,
又因为:
Figure BDA0001729587520000131
其中,设
Figure BDA0001729587520000132
Figure BDA0001729587520000133
Figure BDA0001729587520000134
Figure BDA0001729587520000135
Figure BDA0001729587520000136
Figure BDA0001729587520000137
Figure BDA0001729587520000138
Figure BDA0001729587520000139
Figure BDA00017295875200001310
Figure BDA00017295875200001311
Figure BDA00017295875200001312
Figure BDA00017295875200001313
Figure BDA00017295875200001314
Figure BDA00017295875200001315
Figure BDA00017295875200001316
Figure BDA00017295875200001317
Figure BDA00017295875200001318
Figure BDA00017295875200001319
μ1=0.3,μ2=0.4,μ3=0.3,
Figure BDA00017295875200001320
α=0.4,Ts=1.8
对判据中的F(k)进行定义,将F(k)设为服从泊松分布的离散型概率分布,
Figure BDA00017295875200001321
并且相应的设λ1=0.9,λ2=0.7,λ3=0.8。
在求解过程中,首先令dM=0.1,利用Matlab中的LMI工具箱通过求解线性矩阵不等式(23),(24)选择步长为ΔdM=0.01对系统时延的逐渐增加与更新,可以得到在上述所给的系统条件下系统所能承受的最大时延为dM=1.60,此时系统的状态反馈增益为:
Figure BDA00017295875200001322
Figure BDA00017295875200001323
Figure BDA00017295875200001324
Figure BDA00017295875200001325
Figure BDA00017295875200001326
Figure BDA00017295875200001327
Figure BDA0001729587520000141
Figure BDA0001729587520000142
Figure BDA0001729587520000143
在对整个变化系统的研究当中,所取的离散变化的值域为k∈[0,100]。系统的初始条件选为:x(0)=[1.6 -1.8]T,则,状态变量以及控制输入的变化情况如图2,图3所示。
由图2,图3可以看出大约在k=15时,系统的状态变量以及控制输入都趋于稳定,但由于系统中高斯白噪声的影响,系统的状态变量以及控制输入的变化都不是光滑的。由仿真结果可以看出当初始条件为x(0)=[1.6 -1.8]T时,从总体趋势来看该带有扰动的不确定网络控制系统是渐近稳定的。即上述模型的建立以及所建立的控制器是可行的。

Claims (2)

1.一种基于T-S模糊模型的不确定网络控制系统的PID控制器设计方法,其特征在于:包括以下步骤:
(1)建立带有时滞的不确定网络控制系统模型
网络控制系统由一组微分代数方程描述,在系统运行点附近对其线性化,最终系统表示为:
Figure FDA0002229184400000011
式中,x为系统状态变量,A为系统状态矩阵,B为系统输入矩阵,C为系统输出矩阵,u为系统控制输入,y为系统控制输出,G为扰动项的系数矩阵,ω(k)为系统扰动状态矩阵,k=0,1,2,3.....为第k时刻,ΔA和ΔB为不确定系数矩阵;
并且,
[ΔA(k) ΔB(k)]=DF(k)[H1 H2]
式中,D、H1、H2为已知的常数矩阵,F(k)为未知矩阵,但为Lebesque可测量的,并且满足FT(k)F(k)≤I,其中I代表单位矩阵;
(2)利用T-S模糊模型对不确定网络控制系统模型进行变换:
如果模糊前提变量θj(k)是模糊集合Fij,j=1,2,...,r,那么
x(k+1)=(Ai+ΔAi(k))x(k)+(Bi+ΔBi(k))u(k)+Giω(k)
进而可以推导为:
Figure FDA0002229184400000012
式中,i表示与横坐标有关的第i个模糊规则,i=1,2,...r,j表示与横坐标有关的第j个模糊规则,j=1,2,...r,r是模糊规则的数目;Ai、ΔAi、Bi、ΔBi、Gi,分别为第i个模糊规则下的A、ΔA、B、ΔB、G;θi(k)为模糊前提变量,i=1,2,...r;并且常数μi满足:
Figure FDA0002229184400000013
(3)将整个不确定网络控制系统当中的控制器设计为PID控制器:
如果模糊前提变量θj(k)是模糊集合Fij,j=1,2,...,r,那么
Figure FDA0002229184400000021
因为系统误差项e(k)=-Cx(k),进而上式可以推导为:
Figure FDA0002229184400000022
式中,Kpi、KIi、KDi分别为第i项模糊规则的系统控制器的比例系数、积分系数、微分系数,Kpj、KIj、KDj分别为第j项模糊规则的系统控制器的比例系数、积分系数、微分系数,m为一个有序数列,k表示此时状态所处的时刻,Ts为系统采样周期,μj表示与纵坐标相关的μ的第j项取值;
将控制器的整合公式(2)代入系统模型公式(1)可得:
Figure FDA0002229184400000023
将复杂的网络控系统模型转化为简单的网络控制系统模型:
对以下矩阵进行整合与定义:
Figure FDA0002229184400000024
μ=[μ1 μ2…μr],
Figure FDA0002229184400000025
Figure FDA0002229184400000026
Figure FDA0002229184400000027
Figure FDA0002229184400000028
Figure FDA0002229184400000031
则式(3)可化为:
Figure FDA0002229184400000032
定义一个新的增广矩阵:
Figure FDA0002229184400000033
则式(4)可化简为:
Figure FDA0002229184400000034
设:
Figure FDA0002229184400000035
Figure FDA0002229184400000036
则上式可化简为:
Figure FDA0002229184400000037
设d(k)表示信号在k时刻传输过程当中的总的时延,dM=max(d(k))表示取d(k)的最大值,所以有:
0≤d(k)≤dM≤Ts
设δ(k)=z(k)-z(k-d(k))
则式(5)变换为:
Figure FDA0002229184400000038
其中,δT(k)δ(k)≤αxT(k)Ωx(k),δ(k)是正定矩阵,常数α∈[0,1);
以上将含有PID控制器的T-S模糊模型的不确定网络控制系统模型(3)转化为了简单的含有时延的不确定网络控制系统(6);
利用Lyapunov函数方法以及线性矩阵不等式的方法对含有时延的不确定网络控制系统(6)的H稳定性进行验证:
对于给定的系数α>0以及dM,存在以下状态反馈模糊PID控制器
Figure FDA0002229184400000041
如果存在正定矩阵
Figure FDA0002229184400000042
S1>0、S2>0、
Figure FDA0002229184400000043
以及矩阵
Figure FDA0002229184400000044
和任意小的标量γ>0,ε>0,满足下列线性矩阵不等式,那么不确定网络控制系统(6)是H稳定的:
Figure FDA0002229184400000045
Figure FDA0002229184400000046
其中,
Figure FDA0002229184400000047
Figure FDA0002229184400000048
Figure FDA0002229184400000049
Figure FDA00022291844000000410
Figure FDA00022291844000000411
Figure FDA0002229184400000051
Di、H1 i和H2 i分别为第i个模糊规则下的D、H1和H2,i=1,2,...,r,λ表示衰减水平。
2.根据权利要求1所述的基于T-S模糊模型的不确定网络控制系统的PID控制器设计方法,其特征在于:利用Matlab中的线性矩阵工具箱,根据系统给定的所能承受的最大的时滞,可以判定时滞网络控制系统的H稳定性,通过求解稳定性判据中的线性矩阵不等式可以同时对系统的PID控制器的控制器增益进行求解:
首先给定不确定网络控制系统的各项常数项,并且给定初始系统时延dM,然后,利用所给数据对判据中的线性矩阵不等式进行求解,如果判据是成立的,那么对系统时延dM选择步长为ΔdM=0.01进行增加并逐渐对系统时延dM进行更新,然后再进行上一步,直到判据是不成立的,此时输出在求解过程中的最终的系统时延dM,即为系统所能承受的最大时延;反之,如果在初始给定的系统时延dM以及各项系数下,系统为不稳定的,那么对其进行调整,直到循环得以进行;最后可以得到系统在稳定情况下所能承受的最大系统时延,以及系统的控制器增益。
CN201810768249.5A 2018-07-13 2018-07-13 不确定网络控制系统的pid控制器设计方法 Active CN109033585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810768249.5A CN109033585B (zh) 2018-07-13 2018-07-13 不确定网络控制系统的pid控制器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810768249.5A CN109033585B (zh) 2018-07-13 2018-07-13 不确定网络控制系统的pid控制器设计方法

Publications (2)

Publication Number Publication Date
CN109033585A CN109033585A (zh) 2018-12-18
CN109033585B true CN109033585B (zh) 2020-04-03

Family

ID=64642075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810768249.5A Active CN109033585B (zh) 2018-07-13 2018-07-13 不确定网络控制系统的pid控制器设计方法

Country Status (1)

Country Link
CN (1) CN109033585B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187638A (zh) * 2019-06-12 2019-08-30 南宁学院 一种大时滞模糊控制方法
CN111123945A (zh) * 2019-12-30 2020-05-08 同济大学 一种基于混合控制的双足机器人步态轨迹生成方法及应用
CN112234612B (zh) * 2020-09-30 2023-08-18 云南电网有限责任公司 一种计及随机扰动幅度的电力系统概率稳定分析方法
CN112199781A (zh) * 2020-10-28 2021-01-08 震兑工业智能科技有限公司 船舶主机控制系统偶发性故障检测方法及系统
CN112947063A (zh) * 2021-01-18 2021-06-11 山东科技大学 一种衰减信道网络化系统的非脆弱模糊比例积分控制方法
CN112882391B (zh) * 2021-01-26 2022-05-27 四川大学 一种双端事件触发的非线性控制方法
CN113609652B (zh) * 2021-07-14 2023-10-13 中国地质大学(武汉) 分数阶环状基因调控网络的状态反馈控制方法及装置
CN114660946B (zh) * 2022-05-09 2023-06-16 电子科技大学 一种时滞成型过程系统的模糊自适应动态面控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592850A (zh) * 2013-11-21 2014-02-19 冶金自动化研究设计院 非线性多时标时延系统建模与控制方法
CN104407515A (zh) * 2014-11-13 2015-03-11 华南理工大学 一种基于不确定模型的LMIs状态反馈系统控制方法
CN104460322A (zh) * 2014-12-23 2015-03-25 冶金自动化研究设计院 不确定性时延双时标系统模糊时延状态反馈控制方法
CN105607482A (zh) * 2016-01-26 2016-05-25 张果 一种基于t-s双线性模型的非线性关联大系统的分散控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013019A2 (en) * 2003-07-25 2005-02-10 Yamaha Motor Co., Ltd Soft computing optimizer of intelligent control system structures
CN103227467B (zh) * 2013-04-19 2015-05-27 天津大学 时滞电力系统 Lyapunov 稳定性分析方法
CN106873558B (zh) * 2017-03-22 2019-02-26 东北大学 一种非线性系统的模糊重复输出控制器及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592850A (zh) * 2013-11-21 2014-02-19 冶金自动化研究设计院 非线性多时标时延系统建模与控制方法
CN104407515A (zh) * 2014-11-13 2015-03-11 华南理工大学 一种基于不确定模型的LMIs状态反馈系统控制方法
CN104460322A (zh) * 2014-12-23 2015-03-25 冶金自动化研究设计院 不确定性时延双时标系统模糊时延状态反馈控制方法
CN105607482A (zh) * 2016-01-26 2016-05-25 张果 一种基于t-s双线性模型的非线性关联大系统的分散控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fuzzy PID Controller Design for Uncertain Network Control System;Xinxin Lv 等;《The 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)》;20180709;第543-548页 *

Also Published As

Publication number Publication date
CN109033585A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN109033585B (zh) 不确定网络控制系统的pid控制器设计方法
Sui et al. Finite-time adaptive quantized control of stochastic nonlinear systems with input quantization: A broad learning system based identification method
Chen et al. Adaptive fuzzy tracking control for a class of MIMO nonlinear systems in nonstrict-feedback form
Liu et al. Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems
George et al. Electronically tunable ACO based fuzzy FOPID controller for effective speed control of electric vehicle
CN108427288B (zh) 一类具有时变时延的网络化线性参数变化系统的h∞容错控制方法
Qi et al. Stable indirect adaptive control based on discrete-time T–S fuzzy model
CN101452258A (zh) 一种与模型无关的自适应控制器及其控制方法
de Jesús Rubio et al. Evolving intelligent system for the modelling of nonlinear systems with dead-zone input
Ho et al. Adaptive fuzzy approach for a class of uncertain nonlinear systems in strict-feedback form
Liu et al. Adaptive decentralized control for switched nonlinear large-scale systems with quantized input signal
Yu et al. Adaptive neural control for a class of uncertain stochastic nonlinear systems with dead-zone
Kosmatopoulos Control of unknown nonlinear systems with efficient transient performance using concurrent exploitation and exploration
Wang et al. A novel alleviating fuzzy control algorithm for a class of nonlinear stochastic systems in pure-feedback form
Chen et al. Adaptive neural tracking control for stochastic nonlinear multi-agent periodic time-varying systems
Yoo Low-complexity robust tracking of high-order nonlinear systems with application to underactuated mechanical dynamics
Zhao Adaptive Fuzzy Control of a Class of Discrete-Time Nonlinear Systems
CN105911865A (zh) 一种pid控制器的控制方法
Lin et al. Adaptive fuzzy H∞ tracking design of SISO uncertain nonlinear fractional order time-delay systems
Su et al. Adaptive fuzzy control of MIMO nonlinear systems with fuzzy dead zones
Jang Neural network saturation compensation for DC motor systems
CN106371321A (zh) 一种焦化炉炉膛压力系统模糊网络优化pid控制方法
Chovan et al. Neural network architecture for process control based on the RTRL algorithm
Wang et al. Observer-based fixed-time adaptive fuzzy control for SbW systems with prescribed performance
Du et al. Decentralized finite-time neural control for time-varying state constrained nonlinear interconnected systems in pure-feedback form

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant