CN110055126A - 一种MOF-Ti/TiOx核壳型纳米复合颗粒电流变液及其制备方法 - Google Patents

一种MOF-Ti/TiOx核壳型纳米复合颗粒电流变液及其制备方法 Download PDF

Info

Publication number
CN110055126A
CN110055126A CN201910466078.5A CN201910466078A CN110055126A CN 110055126 A CN110055126 A CN 110055126A CN 201910466078 A CN201910466078 A CN 201910466078A CN 110055126 A CN110055126 A CN 110055126A
Authority
CN
China
Prior art keywords
mof
fluid
tio
nano composite
beaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910466078.5A
Other languages
English (en)
Inventor
王宝祥
马佳斌
西振宇
孙纬键
郝春成
陈克正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201910466078.5A priority Critical patent/CN110055126A/zh
Publication of CN110055126A publication Critical patent/CN110055126A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/09Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/60Electro rheological properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Lubricants (AREA)

Abstract

本发明涉及一种MOF‑Ti/TiOx核壳型纳米复合颗粒电流变液材料及其制备方法,该电流变液的分散相是MOF‑Ti/TiOx纳米复合颗粒,采用溶剂热法配合控制水解法制备而成;该纳米复合颗粒以金属有机骨架MOF‑Ti纳米粒子为核,包覆上纳米氧化钛,形成兼具核壳结构和纳米结构的双重特点;该材料与甲基硅油所配成的电流变液具有一些优异的特性,包括极强的电流变效应、电流密度低、化学稳定性好。附图中显示了MOF‑Ti/TiOx纳米复合颗粒电流变液在不同电场强度下其剪切应力与剪切速率的关系。

Description

一种MOF-Ti/TiOx核壳型纳米复合颗粒电流变液及其制备方法
技术领域
本发明涉及一种电流变液材料及其制备方法,具体涉及一种MOF-Ti/TiOx核壳型纳米复合颗粒电流变液及其制备方法。
背景技术
电流变液(Electrorheological Fluids简称ERFs)是一种新型的智能材料,它通常是由高介电常数、低电导率的固体颗粒分散于低介电常数的绝缘油中而形成的悬浮体系。该固体颗粒为可极化颗粒,在电场作用下电流变液内邻近的颗粒相互吸引,形成沿电场方向排列的链状结构,这样就使得电流变液的流变性能在电场作用下可以发生瞬时可逆的变化。在不加外加电场时,流体呈现出牛顿流体的特性,但是在外电场强度足够高时,能够转变成“弹性固体”,对外呈现出宾汉流体的性质。因为电流变液具有对电信号响应迅速可逆的特点,所以其在离合器、减震器、制动领域中具有广阔的应用前景。通常情况下,固体粒子的性质决定电流变液性能的好坏。因此研究具有高电流变效应的分散相材料成为电流变领域的关键问题。纳米颗粒电流变液由于其较高的力学值和良好的抗沉降性能受到了越来越多的关注。
金属-有机框架材料(MOFs)是近十年来发展迅速的一种配位聚合物,具有三维的孔结构,一般以金属离子为连接点,有机配位体支撑构成空间3D延伸,是沸石和碳纳米管之外的又一类重要的新型多孔材料,在催化、储能和分离中都有广泛应用,由于介孔材料自身独特的孔道特点以及大的比表面积对于颗粒界面极化效应可以起到一定程度的提升作用,因此MOFs目前也应用在电流变领域并做为电流变液的固体分散相材料。MIL-125(一种含有Ti的MOF,简写为MOF-Ti)作为一种新型的多孔材料,具有可调节的孔隙率,大的比表面积等性能,表现出优异的催化和储氢等特性。
在众多电流变材料中氧化钛(TiOx)是目前研究最多的一种,TiOx具有高介电常数,热稳定性,制备方法多样,产品无毒等优点,因此一直被认为是优秀的电流变的分散相材料。本发明的目的是提供一种MOF-Ti/TiOx纳米核壳结构材料,配制的电流变液具有较高剪切应力值,优良的抗沉淀性能,其电流变性能比微米颗粒及纳米颗粒电流变液都有较大提高。采用有机无机纳米复合的方式,既发挥了有机物密度小抗沉淀性好的特点,又利用了无机物极性大,电场响应能力强的特点,充分体现了有机无机纳米复合的优点。制备过程采用溶剂热法和控制水解法相结合,制备过程简单,易操作。
发明目的和内容
本发明的目的是提供一种新颖的MOF-Ti/TiOx核壳型纳米颗粒电流变液材料,其分散相是圆饼状MOF-Ti纳米粒子与生长于其上的TiOx包覆层复合形成的核壳型纳米颗粒,连续相为二甲基硅油。
本发明的目的还在于提供一种制备MOF-Ti/TiOx核壳型纳米颗粒的方法,该方法所得的纳米复合颗粒是由圆饼状MOF-Ti纳米粒子与生长于其上的TiOx包覆层复合形成的核壳型纳米颗粒,这种纳米复合颗粒采用溶剂热法和控制水解法相结合来制备。采用溶剂热法制备MOF-Ti纳米粒子前驱体,颗粒粒径约为300-400纳米,形态单一均匀,近似为圆饼状。然后通过控制水解法在MOF-Ti纳米粒子表面包覆上TiOx纳米颗粒,使其形成核壳结构,以此来降低MOF-Ti的导电率,提升核壳材料的极化性能,从而改善了材料的性能,尤其是其电流变性能得到优化。所得纳米复合颗粒既具有金属有机骨架化合物的多孔性,大比表面积,又兼具核壳结构和纳米结构的双重特点;MOF-Ti/TiOx纳米复合颗粒与二甲基硅油配制成的电流变液展现出明显电流变性能。
本发明的目的可以通过以下技术方案来实现:
本发明所制得电流变液,其分散相是圆饼状MOF-Ti纳米粒子与生长于其上的TiOx复合而成的包覆型纳米复合颗粒,连续相为二甲基硅油。
上述MOF-Ti前驱体是采用溶剂热法制备的,其制备过程如下:
(1)用洁净的量筒量取100mLDMF(N,N-二甲基甲酰胺)溶剂置于烧杯中,再用量筒量取15mL无水甲醇置于上述烧杯,搅拌10min使其混合均匀;
(2)用天平称取5g对苯二甲酸溶于上述溶剂,待其充分溶解后向上述烧杯中加入5ml乙酸,然后再加入3ml钛酸丁酯搅拌60min;之后再将溶液移入水热釜内,再150℃条件下加热24h;
(3)静置冷却后,然后将离心得到的沉淀用DMF和甲醇洗涤三遍,离心三遍,70℃下干燥约10h得MOF-Ti纳米颗粒;
MOF-Ti/TiOx纳米复合材料及其电流变液采用如下方法制备:
(1)用洁净的量筒量取100mLDMF溶剂置于烧杯中,用天平称取0.5g上述MOF-Ti固体粉末于上述烧杯中,搅拌10min使其溶解,再向烧杯中加入2ml钛酸丁酯,搅拌30分钟;
(2)然后取1ml水溶于50mlDMF中,将该溶液滴加入上述烧杯,搅拌24h;
(3)然后将离心得到的沉淀用酒精洗涤三遍,离心三遍,产物置于70℃烘箱中干燥约10小时;
(4)将该干燥样品与二甲基硅油按一定比例配制成电流变液。
本发明与现有技术相比,具有以下显著的技术优点:
1、本发明制备方法采用溶剂热法和控制水解法相结合的制备工艺,由MOF-Ti纳米粒子与TiOx纳米颗粒复合形成包覆型纳米复合颗粒,制备的纳米复合颗粒粒径较小,在MOF-Ti上原位包覆生长TiOx纳米颗粒,呈圆饼状,尺寸约为几百纳米,形貌单一均匀。
2、由该材料与甲基硅油配制的电流变液不仅具有较高的力学性能和抗沉降性,而且其工作温度范围比较宽,制备成本较低,反应过程易于控制,无毒无害,对设备无特殊要求。充分发挥了有机/无机纳米复合材料的特长,是一种综合性能优良的电流变材料。制备工艺简单,原料易得,组分与性能易于控制,产品无毒无害,易于工业化生产和广泛应用。
附图说明
图1纯MOF-Ti的扫描电镜图片
图2纯MOF-Ti的XRD图谱
图3以2mlTBT和1ml水对MOF-Ti进行包覆后制备出的MOF-Ti/TiOx纳米复合材料的扫描电镜图
图4以2mlTBT和1ml水对MOF-Ti进行包覆后制备出的MOF-Ti/TiOx纳米复合材料的透射电镜图
图5以2mlTBT和1ml水对MOF-Ti进行包覆后制备出的MOF-Ti/TiOx纳米复合材料的XRD图
图6以2mlTBT和1ml水对MOF-Ti进行包覆后制备出的MOF-Ti/TiOx纳米复合颗粒制备出的电流变液在不同电场强度下剪切强度与剪切速率的关系图
图7以1mlTBT和0.5ml水对MOF-Ti进行包覆后制备出的MOF-Ti/TiOx纳米复合材料的扫描电镜图
图8以1mlTBT和0.5ml水对MOF-Ti进行包覆后制备出的MOF-Ti/TiOx纳米复合材料的透射电镜图
图9以1mlTBT和0.5ml水对MOF-Ti进行包覆后制备出的MOF-Ti/TiOx纳米复合材料的XRD图
图10以1mlTBT和0.5ml水对MOF-Ti进行包覆后制备出的MOF-Ti/TiOx纳米复合颗粒制备出的电流变液在不同电场强度下剪切强度与剪切速率的关系图
具体实施方式
实施例一(前驱体MOF-Ti纳米颗粒的制备):
(1)用洁净的量筒量取100mLDMF溶剂置于烧杯中,再用量筒量取15mL无水甲醇置于上述烧杯,搅拌10min使其混合均匀;
(2)用天平称取5g对苯二甲酸溶于上述溶剂,待其充分溶解后向上述烧杯中加入5ml乙酸,然后再加入3ml钛酸丁酯搅拌60min;之后再将溶液移入水热釜内,再150℃条件下加热24h;
(3)静置冷却后,然后将离心得到的沉淀用DMF和甲醇洗涤三遍,离心三遍,70℃下干燥约10h得MOF-Ti纳米颗粒;
所制得前驱体MOF-Ti粒子的扫描电镜照片如附图1所示。所制得的MOF-Ti粒子呈八面体形状,粒子形貌均一。粒径大约在几百纳米左右,多分散且粒径均匀。前驱体MOF-Ti粒子的XRD图谱如附图2所示,可以看出其峰的强度很明显,符合MOF-Ti的标准图谱。
实施例二(MOF-Ti/TiOx纳米复合材料①及其电流变液的制备):
(1)用洁净的量筒量取100mLDMF溶剂置于烧杯中,用天平称取0.5g上述MOF-Ti固体粉末于上述烧杯中,搅拌10min使其溶解,再向烧杯中加入2ml钛酸丁酯,搅拌30分钟;
(2)然后取1ml水溶于50mlDMF中,将该溶液滴加入上述烧杯,搅拌24h;
(3)然后将离心得到的沉淀用酒精洗涤三遍,离心三遍,产物置于70℃烘箱中干燥约10小时;
(4)将该样品与二甲基硅油按重量比10%配制成电流变液。
通过控制水解法制备的MOF-Ti/TiOx纳米复合材料①的扫描电镜图如附图3所示,透射电镜图如附图4所示,从图3中可以看出MOF-Ti颗粒上包覆了一层纳米TiOx层,粒子的形貌均一稳定,分散均匀,粒径大约在几百纳米左右。从图4中可以很明显的看出包覆的核壳结构,包覆层的厚度在5nm-10nm。XRD谱图如附图5所示,从XRD中我们也可以看出金属有机骨架MOF-Ti衍射峰的强度明显降低了,从侧面说明了TiOx的包覆成功,包覆上TiOx使得MOF-Ti衍射峰的强度降低。使用电流变测试仪对样品在施加不同外部电场作用下的电流变性能进行测试,得到剪切应力与剪切速率的关系如附图6,从流变曲线中可以看出,在未加电场的情况下,剪切应力随着剪切速率线性增大,斜率大约为1,电流变液表现出典型的牛顿流体特性;施加电场后,剪切应力在外加电场的作用下急剧增大,尤其是在低剪切速率范围内,表现出类似宾汉姆流体的特性。附图6表明通过溶剂热结合控制水解法制备的MOF-Ti/TiOX纳米复合材料的电流变效应很强,在电压达到3kV时剪切强度超过了200Pa。出现了明显的平台区,另外,电流变效率是一个直观的表示剪切应力在不同电场作用下增长幅度大小的参数,同时也是衡量电流变效应强弱的参数,可以用式(1)表示为:
e=[(τE-τ0)/τ0] (1)
式中,e为电流变效率,τE和τ0分别为不同电场强度下和未加电场下的剪切应力,从图6可以看出,在电场强度为3kV/mm,剪切速率为0.1s-1时,电流变液的电流变效率为136。
实施例三(MOF-Ti/TiOx纳米复合材料②及其电流变液的制备):
(1)用洁净的量筒量取100mLDMF溶剂置于烧杯中,用天平称取0.5g上述MOF-Ti固体粉末于上述烧杯中,搅拌10min使其溶解,再向烧杯中加入1ml钛酸丁酯,搅拌30分钟;
(2)然后取0.5ml水溶于50mlDMF中,将该溶液滴加入上述烧杯,搅拌24h;
(3)然后将离心得到的沉淀用酒精洗涤三遍,离心三遍,产物置于70℃烘箱中干燥约10小时;
(4)将该样品与二甲基硅油按重量比10%配制成电流变液。
通过控制水解法制备的MOF-Ti/TiOx纳米复合材料②的扫描电镜图如附图7所示,透射电镜图如附图8所示,从图7中可以看出MOF-Ti颗粒上包覆了一层花状纳米TiOx层,粒子的形貌均一稳定,分散均匀,粒径大约在几百纳米左右。从图8中可以很明显的看出包覆的核壳结构,包覆层的厚度在50nm-100nm,花状的纳米片厚度在30-50nm。XRD谱图如附图5所示,我们可以从中看出MOF的结构已经被破坏,只有几个很弱的衍射峰。使用电流变测试仪对样品在施加不同外部电场作用下的电流变性能进行测试,得到剪切应力与剪切速率的关系如附图10,从流变曲线中可以看出,在未加电场的情况下,剪切应力随着剪切速率线性增大,斜率大约为1,电流变液表现出典型的牛顿流体特性;施加电场后,剪切应力在外加电场的作用下急剧增大,尤其是在低剪切速率范围内,表现出类似宾汉姆流体的特性。附图10表明通过溶剂热结合控制水解法制备的MOF-Ti/TiOX纳米复合材料的电流变效应一般,在电场强度为3kV/mm,剪切速率为0.1s-1时,电流变液的电流变效率为56。

Claims (2)

1.一种电流变液,其特征在于该电流变液分散相是MOF-Ti/TiOx核壳型纳米复合颗粒,连续相为二甲基硅油;由溶剂热法及控制水解法相结合制备MOF-Ti/TiOx纳米复合颗粒,所得纳米复合颗粒既具有金属有机骨架化合物的多孔性,大比表面积,又兼具核壳结构和纳米结构的双重特点;MOF-Ti/TiOx纳米复合颗粒与二甲基硅油配制成的电流变液展现出明显电流变性能。
2.如权利要求1所述MOF-Ti/TiOx纳米复合颗粒电流变液,其特征在于制备工艺包括以下步骤:
(1)用洁净的量筒量取100mLDMF溶剂置于烧杯中,再用量筒量取15mL无水甲醇置于上述烧杯,搅拌10min使其混合均匀;用天平称取5g对苯二甲酸溶于上述溶剂,待其充分溶解后向上述烧杯中加入5mL乙酸,然后再加入3mL钛酸丁酯搅拌60min;之后再将溶液移入水热釜内,再150℃条件下加热24h;静置冷却后,然后将离心得到的沉淀用DMF和甲醇洗涤三遍,离心三遍,70℃下干燥约10h得MOF-Ti纳米颗粒;
(2)用洁净的量筒量取100mLDMF溶剂置于烧杯中,用天平称取0.5g上述MOF-Ti固体粉末于上述烧杯中,搅拌10min使其溶解,再向烧杯中加入2mL钛酸丁酯,搅拌30分钟;然后取1mL水溶于50mLDMF中,将该溶液滴加入上述烧杯,搅拌24h;然后将离心得到的沉淀用酒精洗涤三遍,离心三遍,产物置于70℃烘箱中干燥约10小时;
(3)将该样品与二甲基硅油按固体颗粒与硅油的重量比10wt%配制成电流变液。
CN201910466078.5A 2019-05-31 2019-05-31 一种MOF-Ti/TiOx核壳型纳米复合颗粒电流变液及其制备方法 Pending CN110055126A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910466078.5A CN110055126A (zh) 2019-05-31 2019-05-31 一种MOF-Ti/TiOx核壳型纳米复合颗粒电流变液及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910466078.5A CN110055126A (zh) 2019-05-31 2019-05-31 一种MOF-Ti/TiOx核壳型纳米复合颗粒电流变液及其制备方法

Publications (1)

Publication Number Publication Date
CN110055126A true CN110055126A (zh) 2019-07-26

Family

ID=67325289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910466078.5A Pending CN110055126A (zh) 2019-05-31 2019-05-31 一种MOF-Ti/TiOx核壳型纳米复合颗粒电流变液及其制备方法

Country Status (1)

Country Link
CN (1) CN110055126A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913898A (zh) * 2021-09-16 2022-01-11 浙江大学 一种TiO2反射型电致变色薄膜及其制备方法
CN115301207A (zh) * 2022-08-26 2022-11-08 福州大学 一种微流控合成分级孔锆基金属有机框架材料mof-808的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1539934A (zh) * 2003-04-22 2004-10-27 西北工业大学 改性高岭土/钛氧化物纳米复合颗粒电流变液材料及其制备方法
CN101508934A (zh) * 2009-03-13 2009-08-19 大连理工大学 一种核壳颗粒/复合基液的电流变液制备方法
CN102719295A (zh) * 2012-06-11 2012-10-10 中国科学院宁波材料技术与工程研究所 一种核壳型金属氧化物/氧化钛复合物电流变液及其制备方法
CN103999217A (zh) * 2011-09-21 2014-08-20 保险丝公司 用于esd保护的垂直切换的构造
US20170141501A1 (en) * 2015-11-12 2017-05-18 International Business Machines Corporation Card edge connector using a set of electroactive polymers
CN107779247A (zh) * 2017-10-23 2018-03-09 青岛科技大学 一种二硫化钼/氧化钛纳米复合颗粒电流变液及其制备方法
CN108774562A (zh) * 2018-07-23 2018-11-09 青岛科技大学 一种MOF-Ti/聚苯胺纳米复合材料电流变液及其制备方法
CN109181815A (zh) * 2018-09-04 2019-01-11 中国科学院宁波材料技术与工程研究所 一种电流变液及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1539934A (zh) * 2003-04-22 2004-10-27 西北工业大学 改性高岭土/钛氧化物纳米复合颗粒电流变液材料及其制备方法
CN101508934A (zh) * 2009-03-13 2009-08-19 大连理工大学 一种核壳颗粒/复合基液的电流变液制备方法
CN103999217A (zh) * 2011-09-21 2014-08-20 保险丝公司 用于esd保护的垂直切换的构造
CN102719295A (zh) * 2012-06-11 2012-10-10 中国科学院宁波材料技术与工程研究所 一种核壳型金属氧化物/氧化钛复合物电流变液及其制备方法
US20170141501A1 (en) * 2015-11-12 2017-05-18 International Business Machines Corporation Card edge connector using a set of electroactive polymers
CN107779247A (zh) * 2017-10-23 2018-03-09 青岛科技大学 一种二硫化钼/氧化钛纳米复合颗粒电流变液及其制备方法
CN108774562A (zh) * 2018-07-23 2018-11-09 青岛科技大学 一种MOF-Ti/聚苯胺纳米复合材料电流变液及其制备方法
CN109181815A (zh) * 2018-09-04 2019-01-11 中国科学院宁波材料技术与工程研究所 一种电流变液及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊兆贤 等: "《无机材料研究方法》", 31 March 2001, 厦门:厦门大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913898A (zh) * 2021-09-16 2022-01-11 浙江大学 一种TiO2反射型电致变色薄膜及其制备方法
CN115301207A (zh) * 2022-08-26 2022-11-08 福州大学 一种微流控合成分级孔锆基金属有机框架材料mof-808的方法

Similar Documents

Publication Publication Date Title
Chai et al. Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption
Xu et al. Fabrication of wrinkled carbon microspheres and the effect of surface roughness on the microwave absorbing properties
Jin et al. MXene@ Fe3O4 microspheres/fibers composite microwave absorbing materials: Optimum composition and performance evaluation
He et al. A facile synthesis of hierarchical flower-like TiO2 wrapped with MoS2 sheets nanostructure for enhanced electrorheological activity
Cheng et al. CNT@ Fe3O4@ C Coaxial Nanocables: One‐Pot, Additive‐Free Synthesis and Remarkable Lithium Storage Behavior
Zhang et al. Promoted electro-responsive performances in an interface-confined oxidized niobium carbide MXene
CN109233740A (zh) 基于改性MOF材料热解制备Fe/Co/C复合吸波材料的方法
CN102850576B (zh) 以壳聚糖支架组装的纳米复合支架及其制备方法和应用
Yang et al. Synthesis of MOF-derived Fe7S8/C rod-like composites by controlled proportion of carbon for highly efficient electromagnetic wave absorption
Li et al. Enhanced electromagnetic wave absorption of layered FeCo@ carbon nanocomposites with a low filler loading
Ding et al. Novel ternary Co3O4/CeO2/CNTs composites for high-performance broadband electromagnetic wave absorption
KR20080059545A (ko) 고체 표면상의 나노입자 조성물 제조방법
Nan et al. Balancing between polarization and conduction loss toward strong electromagnetic wave absorption of hard carbon particles with morphology heterogeneity
CN110055126A (zh) 一种MOF-Ti/TiOx核壳型纳米复合颗粒电流变液及其制备方法
CN104609476B (zh) 一种以单壁碳纳米管为轴制备同轴复合纳米线的方法
Fan et al. Enhanced microwave absorption of epoxy composite by constructing 3D Co–C–MWCNTs derived from metal organic frameworks
Wen et al. Preparation of core–shell structured metal–organic framework@ PANI nanocomposite and its electrorheological properties
Wu et al. Lamellar-crossing-structured Ni (OH) 2/CNTs/Ni (OH) 2 nanocomposite for electrochemical supercapacitor materials
Di et al. One-step solvothermal synthesis of feather duster-like CNT@ WO3 as high-performance electrode for supercapacitor
Lv et al. Ti3C2Tx/Co-MOF derived TiO2/Co/C composites for broadband and high absorption of electromagnetic wave
Sun et al. Preparation and electrorheological properties of eggshell-like TiO2 hollow spheres via one step template-free solvothermal method
CN108774562A (zh) 一种MOF-Ti/聚苯胺纳米复合材料电流变液及其制备方法
Sun et al. Synthesis and electrorheological properties of silica-coated MoS2 nanocomposites with hierarchical and core-shell structure
Gülercan et al. Preparation and Electrochemical Performances of graphene oxide/PEDOT and reduced graphene oxide/PEDOT nanofibers and nanocomposites
Atram et al. Evolution of waste iron rust into α-Fe2O3/CNF and α-Fe2O3/PANI composites as an efficient positive electrode for sustainable hybrid supercapacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190726

RJ01 Rejection of invention patent application after publication