CN110054793A - 一种高强度凝胶聚合物电解质的制备方法 - Google Patents

一种高强度凝胶聚合物电解质的制备方法 Download PDF

Info

Publication number
CN110054793A
CN110054793A CN201910362290.7A CN201910362290A CN110054793A CN 110054793 A CN110054793 A CN 110054793A CN 201910362290 A CN201910362290 A CN 201910362290A CN 110054793 A CN110054793 A CN 110054793A
Authority
CN
China
Prior art keywords
polymer
hot pressing
polymer electrolyte
solution
strength gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910362290.7A
Other languages
English (en)
Inventor
陈双俊
张�浩
诸葛为
唐传昊
秦定妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910362290.7A priority Critical patent/CN110054793A/zh
Publication of CN110054793A publication Critical patent/CN110054793A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种高强度凝胶聚合物电解质的制备方法,将聚合物溶解在溶剂中,搅拌得到均一的聚合物溶液,然后加入离子液体,搅拌得到均匀的粘稠混合溶液,采用溶液铸膜法得到聚合物电解质膜,最后将聚合物电解质膜进行热压即得。本发明通过溶液铸膜得到的聚合物电解质膜经过热压处理后,其穿刺强度及离子导电率在一定程度上同时得到了提高,与直接通过溶液铸膜得到的聚合物电解质膜相比,经过热压后的聚合电解质膜的结晶度得到了一定程度的提高,有利于其机械强度的提高;同时在热压过程中,聚合物中晶体发生了力诱导取向,形成了有利于离子传输的通道。

Description

一种高强度凝胶聚合物电解质的制备方法
技术领域
本发明涉及一种高强度凝胶聚合物电解质的制备方法,属于电池电解质制备领域。
背景技术
随着能源问题和环境问题的危机日益突显,人们对清洁、可再生能源的需求越来越迫切。如今,太阳能、风能以及水力等可再生能源被转化为电能等二次能源,但由于地域限制,这些可再生资源与能量需求分配不均匀,因此储能技术的发展受到了人们的关注。
目前在一些商业化的储能设备中,如锂电池、电容器和燃料电池等,电解质主要还是使用含有锂盐的有机碳酸酯类液体电解质,而液体电解质对设备封装要求极高,这是因为在一些非正常环境中,如短路及热冲击等,液体电解质易导致设备膨胀从而泄露,严重时会引发燃烧甚至爆炸,对人身及设备安全产生威胁。与传统的基于碳酸酯的液体电解质相比,聚合物电解质具有许多优点,如透明度,无溶剂,轻质,柔韧性,较好的薄膜形成能力,高离子导电性和较宽的电化学窗口。同时,由于聚合物电解质无泄漏,可避免电池内部短路,无有害气体产生等,有利于提高设备的安全性。
然而,聚合物电解质实际应用的先决条件是(i)在环境温度和低温环境下的高离子电导率,(ii)良好的机械强度,和(iii)热稳定性和电化学稳定性。在这些要求中,高离子电导率与良好的机械强度往往是相互矛盾的,因此有必要提供一种在提高聚合物电解质导电率的同时还要保证其机械强度的方法。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种同时提高聚合物电解质的导电率和机械性能方法。
为了达到上述的发明目的,本发明采取的技术方案如下:
一种高强度凝胶聚合物电解质的制备方法,包括如下步骤:
步骤一:将聚合物溶解在溶剂中,搅拌得到均一的聚合物溶液;
步骤二:在步骤一得到的聚合物溶液中,加入离子液体,搅拌得到均匀的粘稠状混合溶液;
步骤三:将步骤二得到的混合溶液采用溶液铸膜法得到聚合物电解质膜;
步骤四:将步骤三得到的聚合物电解质膜进行热压即得。
具体地,步骤一中,所述的聚合物为聚环氧乙烯(PEO)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯腈(PAN)、聚偏氟乙烯(PVDF)等半结晶性聚合物或其共聚或共混物;所述的溶剂为N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、二甲基亚砜(DMSO)、四氢呋喃(THF)和丙酮中的任意一种或两种以上的混合溶剂,其中混合溶剂所选的几种溶剂沸点接近;所得到的聚合物溶液中,聚合物的浓度为5~10wt%。
所述的离子液体由阳离子液体和阴离子液体组成;所述的阳离子液体为咪唑鎓,吡啶鎓,鏻,吡咯烷鎓,哌啶鎓,吗啉鎓或胆硷;所述的阴离子液体为卤素、四氟硼酸根、六氟磷酸根、硫酸氢根、三氟甲磺酸根或双三氟甲磺酰亚胺。
优选地,所述的离子液体在混合溶液中的质量百分比为10~30%。
步骤三中,铸膜法成膜后,需要在一定温度下挥发溶剂,以获得自支撑和半透明的聚合物电解质膜;挥发溶剂所选温度由所用溶剂决定,若选用的是单一溶剂,所选温度一般不超过溶剂的沸点;若选用的是混合溶剂,所选温度一般不超过混合溶剂中沸点最低的溶剂沸点。
步骤四中,所述热压的温度由步骤三中聚合物电解质膜的软化点温度Ts决定,温度区间控制在Ts±20℃范围内;所述的软化点温度Ts由动态热机械分析(DMA)得到。
优选地,所述热压的压力为1~10MPa,保持5~10分钟。
进一步地,热压结束后,将聚合物电解质膜置于带有循环水冷却系统的平板硫化机上,于室温下,在100~150MPa的压力下快速冷却至室温。
采用上述方法制备得到的高强度凝胶聚合物电解质也在本发明的保护范围之中。
本发明还进一步要求保护采用热压工艺手段同时提高聚合物电解质的机械强度和导电率的方法。
有益效果:本发明通过溶液铸膜得到的聚合物电解质膜经过热压处理后,其穿刺强度及离子导电率在一定程度上同时得到了提高,与直接通过溶液铸膜得到的聚合物电解质膜相比,经过热压后的聚合电解质膜的结晶度得到了一定程度的提高,有利于其机械强度的提高;同时在热压过程中,聚合物中晶体发生了力诱导取向,形成了有利于离子传输的通道。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1为本发明聚合物电解质的制备过程示意图;
图2为实施例1PVDF/[HMIM]Cl溶液铸膜热压前后的XRD衍射图。
具体实施方式
根据下述实施例,可以更好地理解本发明。
实施例1
本实施例的聚偏氟乙烯(PVDF)掺杂离子液体1-己基-3-甲基-咪唑氯盐([HMIM]Cl)聚合物电解质制备步骤如下(如图1):
使用标准溶液铸膜技术制备具有[HMIM]Cl离子液体的凝胶聚合物电解质膜。首先将1.2g PVDF以7wt%的浓度溶解在DMF中,并在50℃下借助磁力搅拌4小时溶解。然后将0.4g[HMIM]Cl加入到PVDF溶液中并继续搅拌4小时以获得均匀的聚合物/离子液体混合溶液;然后,将聚合物/离子液体混合溶液浇铸到玻璃培养皿中,并使其在55℃烘箱中蒸发溶剂,得到独立的和半透明的GPE薄膜;对上述得到的PVDF/[HMIM]Cl溶液铸膜进行动态热机械分析(DMA),由此得到共混薄膜的软化点Ts(149℃)。然后基于此Ts,对共混薄膜进行热压处理,在10MPa下,保持5分钟,热压结束后,在120MPa的压力下快速冷却。
本实施例通过溶液铸膜所制得的PVDF/[HMIM]Cl聚合物电解质的导电率为3.34×10-5S/cm,结晶度为18.4%;经过热压处理后,此聚合物电解质的导电率得到了明显的提升,为4.17×10-4S/cm,这是因为热压过程中,聚合物中晶体发生了力诱导取向(见图2),形成了有利于离子传输的通道。此外,聚合物电解质的穿刺强度也由热压前的4604.6MPa提高到6527.3MPa,此时结晶度为35.0%。
实施例2
本实施例的聚偏氟乙烯-六氟丙烯(PVDF-HFP)掺杂离子液体1-己基-3-甲基-咪唑氯盐([HMIM]Cl)聚合物电解质制备步骤与实施例1相同。
本实施例中PVDF-HFP/[HMIM]Cl聚合物/离子液体混合溶液中离子液体比例为15wt%,软化点Ts为127℃。溶液铸膜所制得的PVDF/[HMIM]Cl聚合物电解质的导电率为1.74×10-6S/cm,此时结晶度为15.0%;经过97℃热压处理后,此聚合物电解质的导电率得到了明显的提升,为1.52×10-5S/cm。此外,聚合物电解质的穿刺强度也由热压前的3421.3MPa提高到5180.3MPa,此时结晶度为41.6%。
实施例3
本实施例的聚偏氟乙烯(PVDF)掺杂离子液体1-乙基-3-甲基-咪唑四氟硼酸盐([EMIM]BF4)聚合物电解质制备步骤与实施例1相同。
本实施例中PVDF/[EMIM]BF4聚合物/离子液体混合溶液中离子液体比例为20wt%,软化点Ts为156℃。溶液铸膜所制得的PVDF/[EMIM]BF4聚合物电解质的导电率为2.04×10-7S/cm,结晶度为21.4%;经过166℃热压处理后,此聚合物电解质的导电率得到了明显的提升,为3.25×10-6S/cm。此外,聚合物电解质的穿刺强度也由热压前的4851.9MPa提高到6772.4MPa,此时结晶度为38.3%。
实施例4
本实施例的聚偏氟乙烯-六氟丙烯(PVDF-HFP)掺杂离子液体1-乙基-3-甲基-咪唑四氟硼酸盐([EMIM]BF4)聚合物电解质制备步骤与实施例1相同。
本实施例中PVDF-HFP/[EMIM]BF4聚合物/离子液体混合溶液中离子液体比例为20wt%,软化点Ts为130℃。溶液铸膜所制得的PVDF-HFP/[EMIM]BF4聚合物电解质的导电率为2.88×10-6S/cm,此时结晶度为14.2%;经过120℃热压处理后,此聚合物电解质的导电率得到了明显的提升,为1.16×10-5S/cm。此外,聚合物电解质的穿刺强度也由热压前的3214.8MPa提高到4815.7MPa,此时结晶度为39.4%。
实施例5
本实施例的聚偏氟乙烯-六氟丙烯(PVDF-HFP)掺杂离子液体1-乙基-3-甲基-咪唑双三氟甲磺酰亚胺盐([EMIM]TF2N)聚合物电解质制备步骤与实施例1相同。
本实施例中PVDF-HFP/[EMIM]TF2N聚合物/离子液体混合溶液中离子液体比例为20wt%,软化点Ts为135℃。溶液铸膜所制得的PVDF-HFP/[EMIM]BF4聚合物电解质的导电率为8.73×10-7S/cm,结晶度为13.1%;经过120℃热压处理后,此聚合物电解质的导电率得到了明显的提升,为3.12×10-6S/cm。此外,聚合物电解质的穿刺强度也由热压前的3142.9MPa提高到4375.6MPa,此时结晶度为29.6%。
实施例6
本实施例的聚氧化乙烯(PEO)掺杂离子液体1-乙基-3-甲基-咪唑双三氟甲磺酰亚胺盐([EMIM]TF2N)聚合物电解质制备步骤与实施例1相同。
本实施例中PVDF-HFP/[EMIM]TF2N聚合物/离子液体混合溶液中离子液体比例为20wt%,软化点Ts为60℃。溶液铸膜所制得的PVDF-HFP/[EMIM]BF4聚合物电解质的导电率为8.73×10-7S/cm,结晶度为14.6%;经过55℃热压处理后,此聚合物电解质的导电率得到了明显的提升,为3.12×10-6S/cm。此外,聚合物电解质的穿刺强度也由热压前的178.8MPa提高到334.3MPa,此时结晶度为19.8%。
实施例7
本实施例的聚甲基丙烯酸甲酯(PMMA)掺杂离子液体1-己基-3-甲基-咪唑氯盐([HMIM]Cl)聚合物电解质制备步骤与实施例1相同。
本实施例中PMMA/[HMIM]Cl聚合物/离子液体混合溶液中离子液体比例为20wt%,软化点Ts为90℃。溶液铸膜所制得的PVDF-HFP/[EMIM]BF4聚合物电解质的导电率为5.28×10-7S/cm,此时结晶度为20.6%;经过100℃热压处理后,此聚合物电解质的导电率得到了明显的提升,为2.14×10-6S/cm。此外,聚合物电解质的穿刺强度也由热压前的645.3MPa提高到1351.2MPa,此时结晶度为28.7%。
实施例8
本实施例的聚偏氟乙烯与聚甲基丙烯酸甲酯(PVDF与PMMA)的共混物掺杂离子液体1-己基-3-甲基-咪唑氯盐([HMIM]Cl)聚合物电解质制备步骤与实施例1相同。
本实施例中PVDF与PMMA的比例为6:4(wt/wt),聚合物/离子液体混合溶液中离子液体比例为25wt%,软化点Ts为105℃。溶液铸膜所制得的PVDF-PMMA/[HMIM]Cl聚合物电解质的导电率为1.06×10-5S/cm,结晶度为21.8%;经过130℃热压处理后,此聚合物电解质的导电率得到了明显的提升,为8.78×10-5S/cm。此外,聚合物电解质的穿刺强度也由热压前的1865.4MPa提高到3125.6MPa,此时结晶度为31.2%。
实施例9
本实施例的聚甲基丙烯酸甲酯(PMMA)掺杂离子液体1-乙基-3-甲基-咪唑四氟硼酸盐([EMIM]BF4)聚合物电解质制备步骤与实施例1相同。
本实施例中PMMA/[EMIM]BF4聚合物/离子液体混合溶液中离子液体比例为20wt%,软化点Ts为97℃。溶液铸膜所制得的PVDF-HFP/[EMIM]BF4聚合物电解质的导电率1.05×10-7S/cm,结晶度为16.8%;经过105℃热压处理后,此聚合物电解质的导电率得到了明显的提升,1.02×10-6S/cm。此外,聚合物电解质的穿刺强度也由热压前的521.8MPa提高到986.3MPa,此时结晶度为25.4%。
表1给出了实施例1~9所得到的聚合物电解质的性能参数汇总。
表1
本发明提供了一种高强度凝胶聚合物电解质的制备方法的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (10)

1.一种高强度凝胶聚合物电解质的制备方法,其特征在于,包括如下步骤:
步骤一:将聚合物溶解在溶剂中,搅拌得到均一的聚合物溶液;
步骤二:在步骤一得到的聚合物溶液中,加入离子液体,搅拌得到均匀的粘稠状混合溶液;
步骤三:将步骤二得到的混合溶液采用溶液铸膜法得到聚合物电解质膜;
步骤四:将步骤三得到的聚合物电解质膜进行热压即得。
2.根据权利要求1所述的高强度凝胶聚合物电解质的制备方法,其特征在于,步骤一中,所述的聚合物为聚环氧乙烯、聚甲基丙烯酸甲酯、聚丙烯腈或聚偏氟乙烯中的任意一种;所述的溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、四氢呋喃和丙酮中的任意一种或两种以上的混合溶剂。
3.根据权利要求1所述的高强度凝胶聚合物电解质的制备方法,其特征在于,步骤一中,所述的聚合物溶液中,聚合物的浓度为5~10wt%。
4.根据权利要求1所述的高强度凝胶聚合物电解质的制备方法,其特征在于,步骤二中,所述的离子液体由阳离子液体和阴离子液体组成;所述的阳离子液体为咪唑鎓,吡啶鎓,鏻,吡咯烷鎓,哌啶鎓,吗啉鎓或胆硷;所述的阴离子液体为卤素、四氟硼酸根、六氟磷酸根、硫酸氢根、三氟甲磺酸根或双三氟甲磺酰亚胺。
5.根据权利要求1所述的高强度凝胶聚合物电解质的制备方法,其特征在于,步骤二中,所述的离子液体在混合溶液中的质量百分比为10~30%。
6.根据权利要求1所述的高强度凝胶聚合物电解质的制备方法,其特征在于,步骤四中,所述热压的温度由步骤三中聚合物电解质膜的软化点温度Ts决定,温度区间控制在Ts±20℃范围内。
7.根据权利要求1所述的高强度凝胶聚合物电解质的制备方法,其特征在于,步骤四中,所述热压的压力为1~10 MPa,保持5~10分钟。
8.根据权利要求7所述的高强度凝胶聚合物电解质的制备方法,其特征在于,步骤四中,热压结束后,将聚合物电解质膜置于带有循环水冷却系统的平板硫化机上,于室温下,在100~150 MPa的压力下快速冷却至室温。
9.权利要求1~7中任意一种制备方法制备得到的高强度凝胶聚合物电解质。
10.采用热压工艺手段同时提高聚合物电解质的机械强度和导电率的方法。
CN201910362290.7A 2019-04-30 2019-04-30 一种高强度凝胶聚合物电解质的制备方法 Pending CN110054793A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910362290.7A CN110054793A (zh) 2019-04-30 2019-04-30 一种高强度凝胶聚合物电解质的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910362290.7A CN110054793A (zh) 2019-04-30 2019-04-30 一种高强度凝胶聚合物电解质的制备方法

Publications (1)

Publication Number Publication Date
CN110054793A true CN110054793A (zh) 2019-07-26

Family

ID=67321889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910362290.7A Pending CN110054793A (zh) 2019-04-30 2019-04-30 一种高强度凝胶聚合物电解质的制备方法

Country Status (1)

Country Link
CN (1) CN110054793A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1680482A (zh) * 2005-02-04 2005-10-12 武汉大学 一种非水/水两相凝胶电解质及其制备方法和电池
CN103387731A (zh) * 2012-05-08 2013-11-13 海洋王照明科技股份有限公司 凝胶聚合物电解质膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1680482A (zh) * 2005-02-04 2005-10-12 武汉大学 一种非水/水两相凝胶电解质及其制备方法和电池
CN103387731A (zh) * 2012-05-08 2013-11-13 海洋王照明科技股份有限公司 凝胶聚合物电解质膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAO ZHANG ET AL.: "Effect of ionic liquid on crystallization kinetics and crystal form transition of poly(vinylidene fluoride) blends", 《JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY》 *
漆东岳等: "PAN-PVDF复合增强静电纺锂离子电池隔膜", 《电源技术》 *

Similar Documents

Publication Publication Date Title
Du et al. A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery
CN105680092B (zh) 一种固态聚合物电解质及其制备方法
CN110299557A (zh) 水溶性高分子凝胶聚合物电解质及其制备方法与应用
CN111313089B (zh) 一种基于紫外交联的离子导体/聚氧化乙烯复合固态电解质的制备方法
CN101635380A (zh) 锂离子电池凝胶型离子液体/聚合物电解质及其制备方法
Zhang et al. Developing lithiated polyvinyl formal based single-ion conductor membrane with a significantly improved ionic conductivity as solid-state electrolyte for batteries
CN103855423A (zh) 液晶离聚物peo/pmma固体电解质及其制备方法
CN110224174A (zh) 一种金属有机框架复合有机固态电解质及制备方法与应用
CN105810929A (zh) 一种降低高镍材料表面残碱的处理方法
CN107394265B (zh) 双溶剂分步转相制备聚甲基丙烯酸甲酯凝胶电解质微孔膜的方法
CN111786018B (zh) 一种高压聚合物电解质、高压聚合物锂金属电池及此电池的制备方法
CN104650375A (zh) 一种复合聚合物电解质膜的制备方法
CN109244537A (zh) 复合固态电解质、其制备方法及其应用
CN108484836A (zh) 一种复合聚合物固态电解质膜的原位自形成制备方法
CN105826598B (zh) 一种PVDFP(VC-VAc)基共混凝胶聚合物电解质及其制备方法和应用
CN107732296B (zh) 一种全固态锂离子电池固态电解质的制备方法
CN105017171B (zh) 含苯并噁唑二胺共聚酰胺电解质的制备方法和应用
CN112038110B (zh) 一种具有超高强度的热可逆水凝胶电解质及其制备方法
CN110054793A (zh) 一种高强度凝胶聚合物电解质的制备方法
CN113078348A (zh) 一种铷掺杂高电导率固态电解质的制备方法
CN107293798A (zh) 氰乙基纤维素膜、氰乙基纤维素凝胶聚合物电解质及其制备方法
CN108682799A (zh) 碳包覆的锂离子电池正极材料及其制备方法
CN103151515A (zh) 一种铌掺杂钴锰酸锂复合正极材料的制备方法
CN107293799A (zh) 氰乙基纤维素甘油醚膜、氰乙基纤维素甘油醚凝胶聚合物电解质及其制备方法
Gu et al. GO‐enhanced Gel Polymer Electrolyte for Aqueous Zinc‐Ion Batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190726

RJ01 Rejection of invention patent application after publication