CN110041701B - 一种球形聚苯胺/石墨烯复合膜材料及其制备方法与应用 - Google Patents

一种球形聚苯胺/石墨烯复合膜材料及其制备方法与应用 Download PDF

Info

Publication number
CN110041701B
CN110041701B CN201910336529.3A CN201910336529A CN110041701B CN 110041701 B CN110041701 B CN 110041701B CN 201910336529 A CN201910336529 A CN 201910336529A CN 110041701 B CN110041701 B CN 110041701B
Authority
CN
China
Prior art keywords
mass ratio
polyaniline
solvent
aniline
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910336529.3A
Other languages
English (en)
Other versions
CN110041701A (zh
Inventor
吕满庚
杜祥祥
吕茂萍
刘迎春
姚飒
吴昆�
史珺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Testing Technology Service Guangzhou Co ltd
Zhongke Guanghua Chongqing New Material Research Institute Co ltd
Guangzhou Chemical Co Ltd of CAS
Original Assignee
Zhongke Testing Technology Service Guangzhou Co ltd
Zhongke Guanghua Chongqing New Material Research Institute Co ltd
Guangzhou Chemical Co Ltd of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Testing Technology Service Guangzhou Co ltd, Zhongke Guanghua Chongqing New Material Research Institute Co ltd, Guangzhou Chemical Co Ltd of CAS filed Critical Zhongke Testing Technology Service Guangzhou Co ltd
Priority to CN201910336529.3A priority Critical patent/CN110041701B/zh
Publication of CN110041701A publication Critical patent/CN110041701A/zh
Application granted granted Critical
Publication of CN110041701B publication Critical patent/CN110041701B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种球形聚苯胺/石墨烯复合膜材料及其制备方法与应用。首先通过乳液聚合法制备一种三维的球形聚苯胺,然后将氧化石墨烯、球形聚苯胺和还原剂按100:10~100:10质量比加入溶剂并进行混合,60‑100℃下反应2‑8小时,得到导电复合膜。三维的球形聚苯胺作为石墨烯片层的填充物,增大了石墨烯片层间距,增强了离子渗透和电荷转移能力,同时作为赝电容材料可提高石墨烯的电化学性能,也弥补了聚苯胺电极材料本身的循环性能差的缺点。本发明简化了工艺流程,球形聚苯胺填充物含量可调,石墨烯片层间距可控,减少了其片层无规堆砌,提高了复合电极的电化学性能。

Description

一种球形聚苯胺/石墨烯复合膜材料及其制备方法与应用
技术领域
本发明属于复合电极材料领域,具体涉及一种球形聚苯胺/石墨烯复合膜材料及其制备方法与应用。
背景技术
聚苯胺是一种导电高分子,由于其合成简单,成本低,导电率高,能量密度高,是最有前景的赝电容材料之一。但是在实际应用中,长时间的充放电导致聚苯胺分子的收缩和膨胀,从而影响其循环寿命。为弥补这一缺点,人们常常采用双电层电容电极材料进行复合。双电层电容电极材料主要是碳材料,具有优异的物理化学稳定性和循环稳定性。其中石墨烯具有优异的导电性和高的比表面积常作为理想的双电层电容电极材料。由于聚苯胺与石墨烯易发生π-π共轭,减少了石墨烯的比表面积。此外,石墨烯片层之间由于范德华力的作用,本身易发生堆叠和聚集,影响其复合材料的电化学性能。在石墨烯表面直接聚合聚苯胺,其结构形貌也难以控制。同时聚苯胺具有不同的微观形貌比如纤维状,球形,花形等,对电容有着重要的影响。
发明内容
为解决现有技术的缺点和不足之处,本发明的首要目的在于提供一种球形聚苯胺/石墨烯复合膜材料的制备方法。
将一种三维的球形聚苯胺作为石墨烯片层的填充物,同时作为赝电容材料来增强石墨烯的电化学性能,也弥补了聚苯胺电极材料本身的循环性能差的缺点,制备的球形聚苯胺/石墨烯复合膜材料具有夹层填充结构,有利于增强离子渗透和电荷转移,同时具有高的比质量电容和循环寿命。
本发明的另一目的在于提供上述方法制得的一种球形聚苯胺/石墨烯复合膜材料。
本发明的再一目的在于提供上述一种球形聚苯胺/石墨烯复合膜材料在电池、电容电极材料和传感器中的应用。
本发明目的通过以下技术方案实现:
一种球形聚苯胺/石墨烯复合膜材料的制备方法,包括以下步骤:
(1)将质量比为1:(1-10):(0.01-0.05)的苯胺、苯酚和乳化剂加入溶剂中,混合并搅拌溶解,加入氧化剂,反应12-48小时,得到球形聚苯胺;
(2)将质量比为100:(10-100):10的氧化石墨烯、球形聚苯胺和还原剂加入溶剂中,混合均匀,然在60-100℃反应2-8小时,得到球形聚苯胺/石墨烯复合膜材料。
步骤(1)所述反应温度优选为0-5℃;更优选为0℃。
步骤(1)所述反应时间优选为12-24小时。
步骤(1)所述球形聚苯胺是通过乳液聚合法制备得到。
步骤(1)所述苯胺、苯酚和乳化剂的质量比优选为1:(1.67-10):(0.01-0.05);更优选为1:(2-10):(0.01-0.05)。
步骤(1)所述溶剂优选为浓度为0.1mol/L的盐酸溶液;所述苯胺与溶剂的质量比优选为1:(50~200)。
步骤(1)所述乳化剂优选为十二烷基磺酸钠、十二烷基硫酸钠、吐温20和吐温80中的至少一种。
步骤(1)所述氧化剂优选为过硫酸铵和/或过硫酸钾。
步骤(1)所述氧化剂与苯胺的质量比优选为(1~5):1。
步骤(2)所述氧化石墨烯、球形聚苯胺和还原剂的质量比优选为100:(10-70):10,更优选为100:(10-50):10。
步骤(2)所述氧化石墨烯通过hummers法制备得到,然后经冷冻干燥得到氧化石墨烯粉末。
步骤(2)所述还原剂优选为抗坏血酸和/或氢碘酸。
步骤(2)所述溶剂优选为水和乙醇的混合液,更优选为质量比为1:1的水和乙醇的混合液;所述溶剂与氧化石墨烯的质量比优选为100:(1~5)。
步骤(2)所述混合优选为采用超声方式混合1-2小时。
步骤(2)所述反应优选为:将氧化石墨烯、球形聚苯胺和还原剂加入溶剂中,混合均匀后倒入聚四氟乙烯模具中,然在60-100℃反应2-8小时。
步骤(2)所述反应温度优选为60-80℃,反应时间优选为2-6小时。
上述方法制得的一种球形聚苯胺/石墨烯复合膜材料。
上述一种球形聚苯胺/石墨烯复合膜材料在电池、电容电极材料和传感器中的应用。
与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明通过制备一种三维的球形聚苯胺作为石墨烯片层的填充物,增大了石墨烯片层间距,增强了离子渗透和电荷转移能力,同时作为赝电容材料来增强石墨烯的电化学性能,也弥补了聚苯胺电极材料本身的循环性能差的缺点。
(2)本发明结合氧化石墨烯、球形聚苯胺、还原剂,一步超声混合成膜法操作简单,工艺流程短,同时可以推广复合膜进行大面积大尺寸的制备。
(3)本发明所制备的复合材料具有三维夹层结构,球形聚苯胺填充物含量可调,石墨烯片层间距可控,减少了其片层无规堆砌,有利于提高复合膜电极的电化学性能。
附图说明
图1为实施例2制得的球形聚苯胺的SEM图,其中放大倍数为1万倍。
图2为实施例4制得的复合膜的实物图。
图3为实施例4制得的复合膜的SEM图,其放大倍数为1万倍,从中可看出复合膜具有三维夹层结构。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
在冰浴(5℃)下将苯胺、苯酚、十二烷基硫酸钠按质量比1:10:0.01加入0.1mol/L盐酸溶液(苯胺与盐酸溶液质量比为1:200)中混合并搅拌溶解,加入氧化剂过硫酸铵(占苯胺质量的100%),反应12小时得到球形聚苯胺。将氧化石墨烯、球形聚苯胺和还原剂抗坏血酸按质量比100:10:10加入到溶剂(质量比为1:1的水和乙醇混合液)中,其中溶剂与氧化石墨烯的质量比为100:1,超声混合1小时,将混合后得到的分散液倒入聚四氟乙烯模具中,温度设置为60℃,反应2小时后得到复合膜。球形聚苯胺添加量占氧化石墨烯百分数为10%。使用三电极恒电流充放电测试该复合膜在0.2A/g的电流密度下的比质量电容达230F/g,在10A/g的电流密度下循环2000次,其电容保持率为98%。
实施例2
在冰浴(3℃)下将苯胺、苯酚、十二烷基硫酸钠按质量比1:5:0.05加入0.1mol/L盐酸溶液(苯胺与盐酸溶液质量比为1:100)混合并搅拌溶解,加入氧化剂过硫酸铵(占苯胺质量的100%),反应12小时得到球形聚苯胺。将氧化石墨烯、球形聚苯胺和还原剂抗坏血酸按质量比100:20:10加入到溶剂(质量比为1:1的水和乙醇混合液)中,其中溶剂与氧化石墨烯的质量比100:1,超声混合1小时,将混合后得到的分散液倒入聚四氟乙烯模具中,温度设置为60℃,反应2小时后得到复合膜。球形聚苯胺添加量占氧化石墨烯百分数为20%。使用三电极恒电流充放电测试该复合膜在0.2A/g的电流密度下的比质量电容达260F/g,在10A/g的电流密度下循环2000次,其电容保持率为96%。
实施例3
在冰浴(0℃)下将苯胺、苯酚、十二烷基磺酸钠按质量比1:2:0.02加入0.1mol/L盐酸溶液(苯胺与盐酸溶液质量比为1:50)混合并搅拌溶解,加入氧化剂过硫酸铵(占苯胺质量的100%),反应12小时得到球形聚苯胺。将氧化石墨烯、球形聚苯胺和还原剂抗坏血酸按质量比100:30:10加入到溶剂(质量比为1:1的水和乙醇混合液),其中溶剂与氧化石墨烯的质量比100:1,超声混合1小时,将混合后得到的分散液倒入聚四氟乙烯模具中,温度设置为80℃,反应4小时后得到复合膜。球形聚苯胺添加量占氧化石墨烯百分数为30%。使用三电极恒电流充放电测试该复合膜在0.2A/g的电流密度下的比质量电容达350F/g,在10A/g的电流密度下循环2000次,其电容保持率为94%。
实施例4
在冰浴(0℃)下将苯胺、苯酚、吐温80按质量比1:2:0.02加入0.1mol/L盐酸溶液(苯胺与盐酸溶液质量比为1:200)混合并搅拌溶解,加入氧化剂过硫酸铵(占苯胺质量的100%),反应24小时得到球形聚苯胺。将氧化石墨烯、球形聚苯胺、还原剂抗坏血酸按质量比100:50:10加入到溶剂(质量比为1:1的水和乙醇混合液)中,其中溶剂与氧化石墨烯质量比100:1,超声混合1小时,将混合后得到的分散液倒入聚四氟乙烯模具中,温度设置为60℃,反应6小时后得到复合膜。球形聚苯胺添加量占氧化石墨烯百分数为50%。使用三电极恒电流充放电测试该复合膜在0.2A/g的电流密度下的比质量电容达420F/g,在10A/g的电流密度下循环2000次,其电容保持率为95%。
实施例5
在冰浴(2℃)下将苯胺、苯酚、吐温80和吐温20按质量比1:1.67:0.01:0.01加入0.1mol/L盐酸溶液(苯胺与盐酸溶液质量比为1:150)混合并搅拌溶解,加入氧化剂过硫酸铵(占苯胺质量的100%),反应24小时得到球形聚苯胺。将氧化石墨烯、球形聚苯胺和还原剂氢碘酸按质量比100:70:10加入到溶剂(质量比为1:1的水和乙醇混合液)中,其中溶剂与氧化石墨烯质量比100:1,超声混合1小时,将混合后得到的分散液倒入聚四氟乙烯模具中,温度设置为100℃,反应2小时后得到复合膜。球形聚苯胺添加量占氧化石墨烯百分数为70%。使用三电极恒电流充放电测试该复合膜在0.2A/g的电流密度下的比质量电容达330F/g,在10A/g的电流密度下循环2000次,其电容保持率为87%。
实施例6
在冰浴(1℃)下将苯胺、苯酚、十二烷基磺酸钠和十二烷基硫酸钠按质量比1:1:0.01:0.02加入0.1mol/L盐酸溶液(苯胺与盐酸溶液质量比为1:80)混合并搅拌溶解,加入氧化剂过硫酸钾(占苯胺质量的100%),反应24小时得到球形聚苯胺。将氧化石墨烯、球形聚苯胺、还原剂氢碘酸按质量比100:100:10加入到溶剂(质量比为1:1的水和乙醇混合液)中,其中溶剂与氧化石墨烯的质量比为100:1,超声混合1小时,将混合后得到的分散液倒入聚四氟乙烯模具中,温度设置为100℃,反应8小时后得到复合膜。球形聚苯胺添加量占氧化石墨烯百分数为100%。使用三电极恒电流充放电测试该复合膜在0.2A/g的电流密度下的比质量电容达280F/g,在10A/g的电流密度下循环2000次,其电容保持率为78%。
对比例1
在冰浴(0℃)下将100质量份的苯胺加入溶于0.1mol/L盐酸溶液(苯胺与盐酸溶液质量比为1:200),加入100质量份的氧化剂过硫酸铵搅拌均匀后,反应24小时得到非球形聚苯胺。将氧化石墨烯、非球形聚苯胺、还原剂抗坏血酸按质量比100:10:10加入到溶剂(质量比为1:1的水和乙醇混合液)中,其中溶剂与氧化石墨烯的质量比为100:1,超声混合1小时,将混合后得到的分散液倒入聚四氟乙烯模具中,温度设置为60℃,反应2小时后得到复合膜。非球形聚苯胺添加量占氧化石墨烯百分数为10%。使用三电极恒电流充放电测试该复合膜在0.2A/g的电流密度下的比质量电容达150F/g,在10A/g的电流密度下循环2000次,其电容保持率为85%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种球形聚苯胺/石墨烯复合膜材料的制备方法,其特征在于,包括以下步骤:
(1)将苯胺、苯酚和乳化剂加入溶剂中,混合并搅拌溶解,加入氧化剂,在0-5℃下反应12-24小时,得到球形聚苯胺;
(2)将质量比为100:(10-50):10的氧化石墨烯、球形聚苯胺和还原剂加入溶剂中,混合均匀,然后在60-80℃反应2-6小时,得到球形聚苯胺/石墨烯复合膜材料;
步骤(1)所述溶剂为浓度为0.1mol/L的盐酸溶液;
步骤(1)所述苯胺与溶剂的质量比为1:200,苯胺、苯酚和乳化剂的质量比为1:10:0.01;或所述苯胺与溶剂的质量比为1:100,苯胺、苯酚和乳化剂的质量比为1:5:0.05;或所述苯胺与溶剂的质量比为1:50,苯胺、苯酚和乳化剂的质量比为1:2:0.02;或所述苯胺与溶剂的质量比为1:200,苯胺、苯酚和乳化剂的质量比为1:2:0.02。
2.根据权利要求1所述一种球形聚苯胺/石墨烯复合膜材料的制备方法,其特征在于,步骤(1)所述氧化剂与苯胺的质量比为(1~5):1。
3.根据权利要求1所述一种球形聚苯胺/石墨烯复合膜材料的制备方法,其特征在于,步骤(1)所述乳化剂为十二烷基磺酸钠、十二烷基硫酸钠、吐温20 和吐温80中的至少一种;所述氧化剂为过硫酸铵和/或过硫酸钾;
步骤(2)所述还原剂为抗坏血酸和/或氢碘酸。
4.根据权利要求1所述一种球形聚苯胺/石墨烯复合膜材料的制备方法,其特征在于,步骤(1)所述溶剂为浓度为0.1mol/L的盐酸溶液;所述苯胺与溶剂的质量比为1:(50~200);
步骤(2)所述溶剂为水和乙醇的混合液,所述溶剂与氧化石墨烯的质量比100:(1~5)。
5.根据权利要求1所述一种球形聚苯胺/石墨烯复合膜材料的制备方法,其特征在于,步骤(2)所述混合为采用超声方式混合1-2小时。
6.权利要求1-5任一项所述方法制得的一种球形聚苯胺/石墨烯复合膜材料。
7.权利要求6所述一种球形聚苯胺/石墨烯复合膜材料在电池、电容电极材料和传感器中的应用。
CN201910336529.3A 2019-04-25 2019-04-25 一种球形聚苯胺/石墨烯复合膜材料及其制备方法与应用 Active CN110041701B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910336529.3A CN110041701B (zh) 2019-04-25 2019-04-25 一种球形聚苯胺/石墨烯复合膜材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910336529.3A CN110041701B (zh) 2019-04-25 2019-04-25 一种球形聚苯胺/石墨烯复合膜材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN110041701A CN110041701A (zh) 2019-07-23
CN110041701B true CN110041701B (zh) 2021-11-19

Family

ID=67279162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910336529.3A Active CN110041701B (zh) 2019-04-25 2019-04-25 一种球形聚苯胺/石墨烯复合膜材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN110041701B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667021A (zh) * 2005-03-23 2005-09-14 南京大学 聚苯胺纳米结构的可控合成方法和用途
CN101798462A (zh) * 2010-03-26 2010-08-11 武汉工程大学 石墨烯/导电高分子复合膜及其制备方法
CN105504277A (zh) * 2015-12-30 2016-04-20 上海应用技术学院 一种高度有序多孔的石墨烯/聚苯胺复合材料及其制备方法
CN109535419A (zh) * 2018-12-05 2019-03-29 中国科学技术大学 聚苯胺微球及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569651B1 (en) * 1999-06-16 2003-05-27 The United States Of America As Represented By The Secretary Of The Army Enzymatic polymerization of anilines or phenols around a template
US8497225B2 (en) * 2007-08-27 2013-07-30 Nanotek Instruments, Inc. Method of producing graphite-carbon composite electrodes for supercapacitors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1667021A (zh) * 2005-03-23 2005-09-14 南京大学 聚苯胺纳米结构的可控合成方法和用途
CN101798462A (zh) * 2010-03-26 2010-08-11 武汉工程大学 石墨烯/导电高分子复合膜及其制备方法
CN105504277A (zh) * 2015-12-30 2016-04-20 上海应用技术学院 一种高度有序多孔的石墨烯/聚苯胺复合材料及其制备方法
CN109535419A (zh) * 2018-12-05 2019-03-29 中国科学技术大学 聚苯胺微球及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode;Mahbub Hassan等;《Composites science and technology》;20140424;第98卷;第1-8页 *
Vertically oriented polyaniline-graphene nanocomposite based on functionalized graphene for supercapacitor electrode;Zhao qiang等;《J. APPL. POLYM. SCI.》;20170116;第134卷(第19期);44808 *

Also Published As

Publication number Publication date
CN110041701A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
Shi et al. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review
Wu et al. Carbonaceous hydrogels and aerogels for supercapacitors
CN111755259B (zh) 基于石墨烯/聚合物/水泥复合材料的结构超级电容器及其制备方法
CN107522241A (zh) 一种镍钴双金属氢氧化物的制备方法及其应用
Fan et al. Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process
CN109755579B (zh) 锂离子电池用正极复合导电粘结剂的制备方法
CN109192539A (zh) 机械化学聚合法制备石墨烯/导电高分子复合电极材料
CN110407194A (zh) 三维多孔氮掺杂中空碳纳米球及其可控制备方法和应用
CN104264267A (zh) 一种多孔三维结构的掺杂聚苯胺纳米纤维材料及其制备方法和应用
CN110970226A (zh) 一种复合电极材料及制备方法、超级电容器
CN106298254A (zh) 聚苯胺/多孔金属薄膜材料、复合正极极片、制备方法及应用
CN108011076B (zh) 锂离子电池、电池极片及其制备方法
Li et al. A cellulose-based interpenetrating network hydrogel electrolyte for flexible solid-state supercapacitors
Zheng et al. PAAS-β-CDp-PAA as a high-performance easily prepared and water-soluble composite binder for high-capacity silicon anodes in lithium-ion batteries
CN105374574A (zh) 一种氢氧化钴/石墨烯柔性电极材料的制备方法及其应用
Jiao et al. In-situ polymerized polyacrylamide/magnesium phosphate cement electrolyte for structural supercapacitor
CN111785530B (zh) 一种可拉伸微型超级电容器及其制备方法
Zhang et al. A high energy density flexible solid-state supercapacitor based on poly (arylene ether sulfone) copolymers with polyether side chains for Li+ conducting polymer electrolytes
CN110041701B (zh) 一种球形聚苯胺/石墨烯复合膜材料及其制备方法与应用
CN103280339A (zh) 一种用于超级电容器的氧化铈电极的制备方法
CN105513835A (zh) 一种氢氧化镍/石墨烯柔性电极材料的制备方法及其应用
CN109979764B (zh) 用于超级电容器的纤维素基离子凝胶电解质的制备方法
CN109920656B (zh) 碳纳米管-胡桃醌聚合物复合柔性电极及制备方法
Mu et al. Construction of mesoporous carbon microsphere/polyaniline composites as high performance pseudocapacitive electrodes
CN106653388A (zh) 高导电率的三维纯粹石墨烯水凝胶材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 400700 5th floor, 74 Yunhe Road, Beibei District, Chongqing

Applicant after: ZHONGKE GUANGHUA (CHONGQING) NEW MATERIAL RESEARCH INSTITUTE Co.,Ltd.

Applicant after: Zhongke Testing Technology Service (Guangzhou) Co.,Ltd.

Applicant after: GUANGZHOU CHEMISTRY Co.,Ltd. CHINESE ACADEMY OF SCIENCES

Address before: 400700 5th floor, 74 Yunhe Road, Beibei District, Chongqing

Applicant before: ZHONGKE GUANGHUA (CHONGQING) NEW MATERIAL RESEARCH INSTITUTE Co.,Ltd.

Applicant before: GUANGZHOU CAS TESTING TECHNOLOGY SERVICE Co.,Ltd.

Applicant before: GUANGZHOU CHEMISTRY Co.,Ltd. CHINESE ACADEMY OF SCIENCES

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant