CN110028961A - 碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还原制氨应用 - Google Patents

碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还原制氨应用 Download PDF

Info

Publication number
CN110028961A
CN110028961A CN201910178288.4A CN201910178288A CN110028961A CN 110028961 A CN110028961 A CN 110028961A CN 201910178288 A CN201910178288 A CN 201910178288A CN 110028961 A CN110028961 A CN 110028961A
Authority
CN
China
Prior art keywords
nanometer sheet
boron
boron carbide
quantum dot
carbide nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910178288.4A
Other languages
English (en)
Other versions
CN110028961B (zh
Inventor
邱建丁
邱伟斌
梁汝萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201910178288.4A priority Critical patent/CN110028961B/zh
Publication of CN110028961A publication Critical patent/CN110028961A/zh
Application granted granted Critical
Publication of CN110028961B publication Critical patent/CN110028961B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还原制氨应用,属于电化学催化技术领域。将碳化硼超声剥离成碳化硼纳米片,高温处理后在碳化硼纳米片表面原位生成硼掺杂石墨烯,再通过水热和超声处理将碳化硼纳米片表面的硼掺杂石墨烯打碎成量子点,制备碳化硼纳米片/硼掺杂石墨烯量子点(B4C‑BGQDs)复合材料。B4C‑BGQDs上的BGQDs的尺寸很小,可暴露更多的活性位点、具有比碳化硼纳米片更好的导电性、对氮气更好的吸附性以及更好的电催化氮气还原的活性,在常温常压下可实现无副产物水合肼产生的高效电催化氮气还原合成氨,此外,B4C‑BGQDs还具有优异的可循环利用性和电化学稳定性。

Description

碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还原 制氨应用
技术领域
本发明公开了一种碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还原制氨应 用,属于电化学催化技术领域。
背景技术
氨是至关重要的化工产品,广泛应用于农业化肥、药剂、染料等领域。同时,因为氨强大的氢含量以及高能量密度,可作为替代能源载体而受到关注,以期促进低碳社会发展。对氨需求的不断增长,激发了人们对人工N2固定的研究兴趣。目前,工业规模的NH3生产 主要使用N2和H2作为进料气体,依靠Haber-Bosch工艺在高温高压下合成,约占全球能源 使用量的2%。然而该过程耗能严重,因此开发低能耗的固氮方法非常必要。
将太阳能、风能等环境友好能源参与到常温常压下电催化氮气还原(NRR)中是十分 有前景和必要的发展方式,而N2活化和高效NRR催化剂的开发则是以上方式面临的主要挑战(M.A.Shipman,M.D.Symes.Recent progress towards the electrosynthesis ofammonia from sustainable resources,Catal.Today,2017,286,57-68)。贵金催化剂(如,Au、Rh等)催 化性能较优(D.Bao,Q.Zhang,F.Meng,H.Zhong,M.Shi,Y.Zhang,J.Yan,Q.Jiang,X.Zhang. Electrochemical reduction of N2 under ambient conditions forartificial N2 fixation and renewable energy storage using N2/NH3 cycle,Adv.Mater.,2017,29,1604799;H.Liu,S.Han,Y.Zhao,Y. Zhu,X.L.Tian,J.Zeng,J.Jiang,B.Y.Xia,Y.Chen.Surfactant-free atomically ultrathin rhodium nanosheetnanoassemblies for efficient nitrogen electroreduction,J.Mater.Chem.A,2018,6,3211-3217),但是却受限于成本以及稳定性等诸多因素,人们将催化剂的选材投向了非贵金属催化剂以及非金属催化剂。虽然非贵金属催化剂(如,Fe、Mo基催化剂)近年来得到 了很大发展(S.Chen,S.Perathoner,C.Ampelli,C.Mebrahtu,D.Su,G.Centi.Electrocatalytic synthesis of ammonia at room temperature andatmospheric pressure from water and nitrogen on a carbon-nanotube-basedelectrocatalyst,Angew.Chem.,Int.Ed.,2017,56,2699-2703;L.Zhang, X.Ji,X.Ren,Y.Ma,X.Shi,Z.Tian,A.M.Asiri,L.Chen,B.Tang,X.Sun.Electrochemical ammoniasynthesis via nitrogen reduction reaction on MoS2 catalyst:theoretical andexperimental studies,Adv.Mater.,2018,30,1800191),但其低的法拉第效率以及金属泄露等问题仍限制了 其在NRR领域的进一步应用。非金属材料(如,硼和氮掺杂碳材料、氮化碳等)不存在金 属离子释放的问题(X.M.Yu,P.Han,Z.X.Wei,L.S.Huang,Z.X.Gu,S.J.Peng,J.M.Ma,G. F.Zheng.Boron-doped graphene for electrocatalytic N2reduction,Joule,2018,2,1610-1622;C. D.Lv,Y.M.Qian,C.S.Yan,Y.Ding,Y.Y.Liu,G.Chen,G.H.Yu.Defect engineering metal-free polymeric carbon nitrideelectrocatalyst for effective nitrogen fixation under ambient conditions,Angew.Chem.,Iht.Ed.,2018,57,10246-10250),可减少对环境的影响。目前,发展高法拉第效率和高产氨速率的非金属氮还原电催化剂仍是期待解决的难题(C.Guo,J.Ran,A.Vasileff, S.Qiao.Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia(NH3)under ambient conditions,Energy Environ.Sci.,2018,11,45-56)。
碳化硼(B4C)是继金刚石和立方氮化硼之后自然界中最坚硬的材料之一,具有较高的 机械强度、(电)化学稳定性和良好的电子导电性,作为电池、燃料电池和人工固氮的电极材 料或催化剂受到了广泛关注(W.Qiu,X.Xie,J.Qiu,W.Fang,R.Liang,X.Ren,X.Ji,G.Cui,A. M.Asiri,G.Cui,B.Tang,X.Sun.High-performance artificial nitrogenfixation at ambient conditions using a metal-freeelectrocatalyst.Nat.Commun.,2018,9,3485;M.Minakshi,M.G.Blackford.Electrochemical characteristics of B4C or BN added MnO2 cathodematerial for alkaline batteries,Mater.Chem.Phys.,2010,123,700-705;S.Mu,X.Chen,R.Sun,X,Liu,H. Wu,D.He,K.Cheng.Nano-size boron carbide intercalatedgraphene as high performance catalyst supports and electrodes for PEM fuelcells,Carbon,2016,103,449-456)。研究表明B4C 纳米片的理论氮气还原起始电位为-0.34V,但实验结果为-0.65V,因此可通过改善B4C纳 米片的导电性获得更佳的NRR性能(W.Qiu,X.Xie,J.Qiu,W.Fang,R.Liang,X.Ren,X.Ji,G. Cui,A.M.Asiri,G.Cui,B.Tang,X.Sun.High-performance artificial nitrogen fixation at ambient conditionsusing a metal-free electrocatalyst.Nat.Commun.,2018,9,3485)。硼掺杂石墨烯量子点(BGQDs)具有优异的导电性能,其尺寸比硼掺杂石墨烯更小,因此可暴露更多的活性 位点并有更好的催化性能(S.Zhao,Z.Tang,S.Guo,M.Han,C.Zhu,Y.Zhou,L.Bai,J.Gao,H.Huang,Y.Li.Selective electrochemical production of formate from carbondioxide with bismuth-based catalysts in an aqueous electrolyte,ACS Catal.,2018,8,931-937)。本发明建立了 在B4C纳米片上原位负载硼掺杂石墨烯量子点制备碳化硼纳米片/硼掺杂石墨烯量子点 (B4C-BGQDs)复合材料的方法,实现了常温常压下高效且无副产物水合肼产生的电催化 氮气还原合成氨,B4C-BGQDs在电催化还原氮气制氨方面具有良好的应用前景。
发明内容
本发明的目的在于提供了一种碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还 原制氨应用。碳化硼纳米片/硼掺杂石墨烯量子点上的硼掺杂石墨烯量子点的尺寸很小,可 暴露更多的活性位点、具有比碳化硼纳米片更好的导电性、对氮气更好的吸附性以及更好 的电催化氮气合成氨的催化活性,在常温常压下可实现无副产物水合肼产生的高效电催化 氮气还原合成氨,碳化硼纳米片/硼掺杂石墨烯量子点还具有优异的可循环利用性和电化学 稳定性,具有良好的应用前景。
本发明通过如下技术方案实现上述目的:
本发明提供了一种碳化硼纳米片/硼掺杂石墨烯量子点的制备方法,将碳化硼超声剥离 成碳化硼纳米片,然后进行高温处理,在碳化硼纳米片表面原位生成硼掺杂石墨烯,再通 过水热和超声处理将碳化硼纳米片表面上原位生成的硼掺杂石墨烯打碎成硼掺杂石墨烯量 子点,制成碳化硼纳米片/硼掺杂石墨烯量子点复合材料。
作为优选方案,上述的碳化硼纳米片/硼掺杂石墨烯量子点的制备方法包括如下具体步 骤:
(1)将1g碳化硼分散于10mL乙醇中,用超声波细胞破碎仪超声1h,将得到的分散液在3000rpm条件下离心,取上清液于60℃真空干燥,制成碳化硼纳米片;
(2)将步骤(1)中制备的碳化硼纳米片置于刚玉石英舟中,再将装载了碳化硼纳米片 的刚玉石英舟置于管式炉中,在氮气气氛保护下,以5℃/min升温速率升温至1600℃并保 持3h,自然冷却至室温,制得碳化硼纳米片/硼掺杂石墨烯;
(3)将步骤(2)中制备的碳化硼纳米片/硼掺杂石墨烯置于40%的硝酸中回流24h,抽滤洗涤至溶液呈中性,将滤饼置于小烧杯中于60℃真空干燥后,再加入30mL浓硝酸和10mL浓硫酸,在超声波清洗仪中以100W的功率超声17h;将混合液用超纯水稀释至250 mL,经0.22μm微孔滤膜抽滤,并用超纯水洗涤至中性,滤饼在60℃真空干燥5h,将得 到的干燥的黑色固体超声溶解分散于20mL pH 8.0的NaOH溶液中,再用NaOH调节溶液 pH为8.0~8.5;将上述溶液置于50mL高压反应釜中,于200℃反应11.5h,冷却至室温后, 离心洗涤,收集沉淀在60℃真空干燥,制得碳化硼纳米片/硼掺杂石墨烯量子点。
本发明还提供了一种上述碳化硼纳米片/硼掺杂石墨烯量子点复合材料在电催化还原氮 气制氨上的应用,即将碳化硼纳米片/硼掺杂石墨烯量子点涂覆在碳纸电极上,制成的碳化 硼纳米片/硼掺杂石墨烯量子点修饰碳纸电极作为工作电极,将工作电极、参比电极和对电 极用Nation 211膜隔开,置于含0.1M盐酸电解质溶液的H型电解槽中,通过电化学工作 站在工作电极上施加电压,将高纯氮气持续通入阴极室,实现常温常压下电催化氮气还原 合成氨。
作为优选,上述的工作电极的制备方法为:将5mg碳化硼纳米片/硼掺杂石墨烯量子点 和40μL质量比为5%的Nation溶液加入到1mL体积比为3∶1的乙醇-水混合溶液中,超声 30min,取20μL混合液滴加到面积为1cm×1cm的碳纸电极表面,自然晾干,制成碳化硼纳米片/硼掺杂石墨烯量子点修饰碳纸电极。
作为优选,上述的碳化硼纳米片/硼掺杂石墨烯量子点电催化氮气还原制氨的最大产氨 速率为28.6μg h-1mg-1,最大法拉第效率为16.7%。
本发明相较于现有技术,其有益效果为:
1、通过原位结构转换在碳化硼纳米片表面负载上硼掺杂石墨烯量子点,建立了碳化硼 纳米片/硼掺杂石墨烯量子点复合材料的制备方法;
2、碳化硼纳米片/硼掺杂石墨烯量子点表面的硼掺杂石墨烯量子点尺寸小,可暴露更多 的活性位点,碳化硼纳米片/硼掺杂石墨烯量子点具有比碳化硼纳米片更好的导电性、对氮 气更好的吸附性以及更好的电催化氮气合成氨的活性;
3、碳化硼纳米片/硼掺杂石墨烯量子点在常温常压下可实现无副产物水合肼产生的高效 电催化氮气还原合成氨,还具有优异的可循环利用性和电化学稳定性,有良好的应用前景。
附图说明
图1是制备B4C-BGQDs的示意图。
图2是B4C-BGQDs的(a)XRD图谱,(b)TEM图,(c)高倍TEM图,(d)高倍TEM图的 傅里叶转换图。
图3是B4C-BGQDs/CPE在(a)不同电位下催化N2还原的计时电流曲线,(b)不同电位NRR后的电解液通过靛酚蓝法进行NH3定量的紫外吸收光谱图,(c)不同电位下的平均产氨速率和法拉第效率图,(d)B4C-BGQDs/CPE、B4C NSs/CPE和CPE在-0.45V电解2h后产 氨的质量对照图。
图4是(a)B4C NSs/CPE和(b)B4C-BGQDs/CPE在5-200mV s-1扫描速率下的循环伏安曲线,(c)B4C NSs/CPE和B4C-BGQDs/CPE在-0.2V电位下的电流密度相对扫描速率的曲线,(d)B4C NSs和B4C-BGQDs在0.1M盐酸溶液中的交流阻抗图。
图5是B4C-BGQDs和B4C NSs的N2程序升温脱附曲线。
图6是在电位为-0.45V时,B4C-BGQDs/CPE在N2饱和的0.1M HCl电解质溶液中的(a)循环测试实验和(b)电解20h的计时电流曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步阐述,本发明并不限于此;
实施例1
B4C-BGQDs的制备及表征
将碳化硼(B4C)超声剥离成碳化硼纳米片(B4C NSs),然后进行高温处理,在B4CNSs 表面原位生成硼掺杂石墨烯,再通过水热和超声处理将碳化硼纳米片表面上原位生成的硼 掺杂石墨烯打碎成硼掺杂石墨烯量子点(BGQDs),制成碳化硼纳米片/硼掺杂石墨烯量子 点(B4C-BGQDs)复合材料。B4C-BGQDs的制备过程如图1所示。
B4C-BGQDs复合材料的具体步骤如下:
(1)将1g的B4C分散于10mL乙醇中,用超声波细胞破碎仪超声1h,将得到的分散 液在3000rpm条件下离心,取上清液于60℃真空干燥,制成B4C NSs固体;
(2)将制备的B4C NSs置于刚玉石英舟中,再将装载了B4C NSs的刚玉石英舟置于管式炉中,在氮气气氛保护下,以5℃/min升温速率升温至1600℃并保持3h,自然冷却至 室温,制得碳化硼纳米片/硼掺杂石墨烯;
(3)将制备的碳化硼纳米片/硼掺杂石墨烯置于40%的硝酸中回流24h,抽滤洗涤至溶 液呈中性,将滤饼置于小烧杯中于60℃真空干燥后,再加入30mL浓硝酸和10mL浓硫酸,在超声波清洗仪中以100W的功率超声17h;将混合液用超纯水稀释至250mL,经0.22 μm微孔滤膜抽滤,并用超纯水洗涤至中性,滤饼在60℃真空干燥5h,将得到的干燥的黑 色固体超声溶解分散于20mL pH 8.0的NaOH溶液中,再用NaOH调节溶液pH为8.0~8.5; 将上述溶液置于50mL高压反应釜中,于200℃反应11.5h,冷却至室温后,离心洗涤, 收集沉淀在60℃真空干燥,制得B4C-BGQDs。
采用X-射线衍射法(XRD)和透射电镜法(TEM)对B4C-BGQDs进行表征,结果如 图2所示。其中,图2中的a、b、c、d分别为B4C-BGQDs的XRD图、TEM图、高倍TEM 图和高倍TEM图的傅里叶转换图。由图2a可见,B4C-BGQDs的XRD图中,26.6°处的衍 射峰对应于BGQDs(JCPDSNo.26-1079)的(003)晶面,其他峰对应于B4C的衍射峰(JCPDS No.35-0798)。利用谢乐公式对26.6°处的衍射峰进行计算处理,得到BGQDs的粒径为11.8 nm。由TEM图可见,B4C NSs表面负载了大量的BGQDs(图2b),进而由B4C-BGQDs的 高倍TEM图(图2c)和傅里叶转换图(图2d)可见,B4C-BGQDs有两个不同的晶格条纹, 间距分别为0.45nm和0.34nm,分别对应于B4CNSs的(101)晶面和BGQDs的(003) 晶面。上述结果表明,采用本发明方法将BGQDs成功负载在B4C NSs上制成了B4C-BGQDs。
采用X射线光电子能谱法(XPS)对B4C NSs和B4C-BGQDs进行表征。B4C NSs的C 1s谱中的三个峰分别对应于281.7eV(C-B)、284.7eV(sp2C)和286.2eV(C-O),B4C NSs 的B 1s谱中的两个峰分别对应于187.5eV(B-B)和189.1eV(B-C),与文献结果一致(T.V. Vineesh,M.P.Kumar,C.Takahashi,G.Kalita,S.Alwarappan,D.K.Pattanayak,T.N.Narayanan.Bifunctional electrocatalytic activity of boron-doped graphene derived fromboron carbide,Adv. Energy Mater.,2015,5,1500658)。B4C-BGQDs的C 1s谱中的五个峰分别对应于C-B(284 eV)、sp2C(284.6eV)、C-O(285.6eV)、C=O(286.5eV)和O-C=O(288.3eV),B4C-BGQDs 的B 1s谱中的四个峰分别对应于B4C(187.4eV)、BC3(189eV)、BC2O(190.5eV)和BCO2 (191.5eV)。与B4C NSs的C 1s和B 1s谱相比,B4C-BGQDs的C 1s和B 1s谱中分别多出 了C=O和O-C=O以及BC3、BC2O和BCO2,BCO2对应于BGQDs的特征峰(L.Zhang,Z.Y.Zhang,R.P.Liang,Y.H.Li,J.D.Qiu.Boron-doped graphene quantum dots forselective glucose sensing based on the“abnormal”aggregation-inducedphotoluminescence enhancement, Anal.Chem.,2014,86,4423-4430;T.Van Tam,S.G.Kang,K.F.Babu,E.-S.Oh,S.G.Lee,W. M.Choi.Synthesis of B-doped graphenequantum dots as a metal-free electrocatalyst for the oxygen reductionreaction,J.Mater.Chem.A,2017,5,10537-10543)。上述结果进一步表明, 采用本发明方法成功合成了B4C-BGQDs。
实施例2
B4C-BGQDs的NRR性能测试
B4C-BGQDs的NRR性能通过计时电流法测试研究。
将5mg的B4C-BGQDs和40μL质量比为5%的Nafion溶液加入到1mL体积比为3∶1 的乙醇-水混合溶液中,超声30min,取20μL混合液滴加到面积为1cm×1cm的碳纸电极 (CPE)表面,自然晾干,制成碳化硼纳米片/硼掺杂石墨烯量子点修饰碳纸电极 (B4C-BGQDs/CPE)。以B4C-BGQDs/CPE为工作电极,Ag/AgCl电极为参比电极,石墨棒 电极为对电极,将工作电极和参比电极置于含0.1M盐酸溶液的H型电解槽的阴极室中, 将对电极置于含0.1M盐酸溶液的H型电解槽的阳极室中,用Nation 211膜将H型电解槽 的阴极室和阳极室隔开,通过电化学工作站在B4C-BGQDs/CPE上施加相应电压,将高纯 N2持续通入阴极室,实现常温常压下电催化N2还原合成NH3
为了探究B4C-BGQDs的NRR最佳催化电位,研究了B4C-BGQDs/CPE在不同电极电 势下的NRR活性,结果如图3所示。其中,图3a为B4C-BGQDs/CPE在不同电位下NRR 的计时电流曲线,可见,在不同的施加电位下,B4C-BGQDs/CPE的NRR的计时电流曲线 的阴极电流密度在1000s内均先降低,这可能是电极表面局部H+和N2浓度降低以及双电 容电层充电所致(F.Zhou,L.M.Azofra,M.Ali,M.Kar,A.N.Simonov,C.McDonnell-Worth,C. Sun,X.Zhang,D.R.MacFarlane,Electro-synthesis of ammonia from nitrogen at ambienttemperature and pressure in ionic liquids,Energy Environ.Sci.,10,2516-2520),继续延长时间 至1000s以上则阴极电流密度均趋于稳定,表明B4C-BGQDs/CPE具有良好的稳定性。图 3b为采集B4C-BGQDs/CPE在不同电位下NRR后的电解液,使用UV-2450紫外可见分光光 度计通过靛酚蓝法进行NH3浓度定量分析的紫外吸收光谱图,当施加电压为-0.45V时,对 NH3浓度检测的吸光度达到最大,表明此时的产氨速率最佳。图3c为不同施加电位下, B4C-BGQDs/CPE的平均产氨速率和法拉第效率图,在电位为-0.45V时,B4C-BGQDs NRR的最大产氨速率为28.6μg h-1mg-1。本发明方法的产氨速率比报道的B4C NSs NRR的26.57 μg h-1mg-1(W.Qiu,X.Xie,J.Qiu,W.Fang,R.Liang,X.Ren,X.Ji,G.Cui,A.M.Asiri,G.Cui,B.Tang and X.Sun,High-performance artificial nitrogen fixation at ambientconditions using a metal-free electrocatalyst.Nat.Commnn.,2018,9,3485)、硼掺杂石墨烯NRR的9.8μg h-1 cm-2 (X.M.Yu,P.Han,Z.X.Wei,L.S.Huang,Z.X.Gu,S.J.Peng,J.M.Ma and G.F.Zheng, Boron-doped graphene for electrocatalytic N2reduction.Joule,2018,2,1610-1622)、富含缺陷的 氮化碳NRR的8.09μg h-1mg-1(C.D.Lv,Y.M.Qian,C.S.Yan,Y.Ding,Y.Y.Liu,G.Chen and G.H.Yu,Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixationunder Ambient Conditions.Angew.Chem.,Int.Ed.,2018,57,10246-10250)等 等都要高。B4C-BGQDs的NRR产氨速率随着电位的下降而增大,在-0.45V时达到最大, 随后氨的产量明显减少,法拉第效率在-0.35V时达到最大16.7%,随后随电位的减小而降 低,这可能是由于N2和H+在催化剂表面的竞争吸附所致。图3d为CPE、B4C NSs/CPE和 B4C-BGQDs/CPE在-0.45V电解2h后产氨的质量对照图。由图3d可见,CPE和B4C NSs/CPE 的产氨活性较差,而B4C-BGQDs/CPE可产生大量的氨(5.71μg),大大高于CPE的0.53μg 和B4C NSs/CPE的0.95μg。以上结果表明,在B4C NSs表面原位负载BGQDs能显著提高 电催化合成氨的催化活性。
图4a和4b分别为B4C NSs/CPE和B4C-BGQDs/CPE在5-200mV s-1扫描速率范围内的循环伏安曲线,图4c为-0.2V电位下的电流密度对扫描速率作图的曲线,曲线的斜率为对应的双层电容(Cdl),可见,B4C-BGQDs的Cdl为0.18μF cm-2,B4C NSs的Cdl为0.06μF cm-2,B4C-BGQDs的Cdl是B4C NSs的3倍,表明B4C-BGQDs具有更高的电化学活性面积。图 4d为B4CNSs和B4C-BGQDs在0.1M盐酸溶液中的交流阻抗图谱,可见,B4C-BGQDs的 阻抗值明显比B4CNSs的阻抗值小,表明B4C-BGQDs的导电性比B4C NSs更好。
图5为B4C-BGQDs和B4C NSs的N2程序升温脱附曲线,B4C-BGQDs的吸附峰在 530.8℃,B4C NSs的吸附峰为387.5℃,表明B4C-BGQDs具有更强的N2吸附活性。 B4C-BGQDs比B4CNSs具有更高的电化学活性面积、更小的传质阻抗以及更强的N2吸附 活性,因而B4C-BGQDs具有更高的催化活性。
在实际应用中,稳定性是评估NRR性能的一个关键参数。图6a为在电位为-0.45V时, B4C-BGQDs/CPE在N2饱和的0.1M HCl电解质溶液中进行的7次循环N2电催化还原性能测试,可见,7次循环测试的产氨速率以及法拉第效率基本保持不变;图6b为在-0.45V电 位下,B4C-BGQDs/CPE在N2饱和的0.1M HCl电解质溶液中电解20h的计时电流曲线, 可见,随着电解时间的延长电流密度基本保持稳定,表明B4C-BGQDs/CPE具有很好的NRR 稳定性。
以上结果表明,本发明方法制备的B4C-BGQDs可作为性能良好的电催化剂,在常温常 压下实现无副产物水合肼产生的高效电催化还原氮气合成氨,B4C-BGQDs还具有优异的循 环利用性和电化学稳定性,具有良好的应用前景。

Claims (6)

1.碳化硼纳米片/硼掺杂石墨烯量子点的制备方法,其特征在于:将碳化硼纳米片进行高温处理,在碳化硼纳米片表面原位生成硼掺杂石墨烯,再将碳化硼纳米片表面上原位生成的硼掺杂石墨烯处理成硼掺杂石墨烯量子点,制成碳化硼纳米片/硼掺杂石墨烯量子点复合材料。
2.如权利要求1所述的碳化硼纳米片/硼掺杂石墨烯量子点的制备方法,其特征在于,包括如下具体步骤:
(1)将1g碳化硼分散于10mL乙醇中,用超声波细胞破碎仪超声1h,将得到的分散液在3000rpm条件下离心,取上清液于60℃真空干燥,制成碳化硼纳米片;
(2)将步骤(1)中制备的碳化硼纳米片置于刚玉石英舟中,再将装载了碳化硼纳米片的刚玉石英舟置于管式炉中,在氮气气氛保护下,以5℃/min升温速率升温至1600℃并保持3h,自然冷却至室温,制得碳化硼纳米片/硼掺杂石墨烯;
(3)将步骤(2)中制备的碳化硼纳米片/硼掺杂石墨烯置于40%的硝酸中回流24h,抽滤洗涤至溶液呈中性,将滤饼置于小烧杯中于60℃真空干燥后,再加入30mL浓硝酸和10mL浓硫酸,在超声波清洗仪中以100W的功率超声17h;将混合液用超纯水稀释至250mL,经0.22μm微孔滤膜抽滤,并用超纯水洗涤至中性,滤饼在60℃真空干燥5h,将得到的干燥的黑色固体超声溶解分散于20mL pH8.0的NaOH溶液中,再用NaOH调节溶液pH为8.0~8.5;将上述溶液置于50mL高压反应釜中,于200℃反应11.5h,冷却至室温后,离心洗涤,收集沉淀在60℃真空干燥,制得碳化硼纳米片/硼掺杂石墨烯量子点。
3.碳化硼纳米片/硼掺杂石墨烯量子点在电还原制氨上的应用,其特征在于:将如权利要求1或2所述的碳化硼纳米片/硼掺杂石墨烯量子点涂覆在碳纸上,制成的碳化硼纳米片/硼掺杂石墨烯量子点修饰碳纸电极作为工作电极,将工作电极、参比电极和对电极用Nafion211膜隔开,置于含0.1M盐酸电解质溶液的H型电解槽中,通过电化学工作站在工作电极上施加电压,将高纯氮气持续通入阴极室,实现电催化氮气还原合成氨。
4.如权利要求3所述的碳化硼纳米片/硼掺杂石墨烯量子点在电还原制氨上的应用,其特征在于,所述工作电极的制备方法包括如下步骤:
取权利要求1或2所述的碳化硼纳米片/硼掺杂石墨烯量子点5mg,并将其和40μL质量比为5%的Nafion溶液一同加入到1mL体积比为3∶1的乙醇-水混合溶液中,超声30min,取20μL混合液滴加到面积为1em×1cm的碳纸电极表面,自然晾干,制成碳化硼纳米片/硼掺杂石墨烯量子点修饰碳纸电极。
5.如权利要求3所述的碳化硼纳米片/硼掺杂石墨烯量子点在电还原制氨上的应用,其特征在于,所述的电化学还原氮气合成氨在常温常压下进行的。
6.如权利要求3所述的碳化硼纳米片/硼掺杂石墨烯量子点在电还原制氨上的应用,其特征在于,碳化硼纳米片/硼掺杂石墨烯量子点催化氮气还原制氨的最大产氨速率为28.6μg h-1mg-1,最大法拉第效率为16.7%。
CN201910178288.4A 2019-03-08 2019-03-08 碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还原制氨应用 Active CN110028961B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910178288.4A CN110028961B (zh) 2019-03-08 2019-03-08 碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还原制氨应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910178288.4A CN110028961B (zh) 2019-03-08 2019-03-08 碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还原制氨应用

Publications (2)

Publication Number Publication Date
CN110028961A true CN110028961A (zh) 2019-07-19
CN110028961B CN110028961B (zh) 2020-07-14

Family

ID=67235221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910178288.4A Active CN110028961B (zh) 2019-03-08 2019-03-08 碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还原制氨应用

Country Status (1)

Country Link
CN (1) CN110028961B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713843A (zh) * 2021-09-28 2021-11-30 南京林业大学 六方形氮化硼/石墨烯平面异质结三维多孔碳材料及其制备方法与应用
CN116219469A (zh) * 2023-05-06 2023-06-06 东莞理工学院 一种电催化氮气还原催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771398A (zh) * 2012-10-25 2014-05-07 海洋王照明科技股份有限公司 硼掺杂石墨烯及其制备方法与应用
CN105225844A (zh) * 2015-09-09 2016-01-06 南京航空航天大学 氮掺杂石墨烯/ 氮掺杂碳纳米管/钴酸锌复合材料的制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771398A (zh) * 2012-10-25 2014-05-07 海洋王照明科技股份有限公司 硼掺杂石墨烯及其制备方法与应用
CN105225844A (zh) * 2015-09-09 2016-01-06 南京航空航天大学 氮掺杂石墨烯/ 氮掺杂碳纳米管/钴酸锌复合材料的制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI ZHANG等: "Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the "Abnormal" Aggregation-Induced Photoluminescence Enhancement", 《ANAL.CHEM.》 *
THAZHE VEETTIL VINEESH等: "Bifunctional Electrocatalytic Activity of Boron-Doped Graphene Derived from Boron Carbide", 《ADV.ENERGY MATER.》 *
WATARU NORIMATSU等: "Epitaxial growth of boron-doped graphene by thermal decomposition of B4C", 《J.PHYS.:CONDENS.MATTER》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713843A (zh) * 2021-09-28 2021-11-30 南京林业大学 六方形氮化硼/石墨烯平面异质结三维多孔碳材料及其制备方法与应用
CN113713843B (zh) * 2021-09-28 2023-06-02 南京林业大学 六方形氮化硼/石墨烯平面异质结三维多孔碳材料及其制备方法与应用
CN116219469A (zh) * 2023-05-06 2023-06-06 东莞理工学院 一种电催化氮气还原催化剂及其制备方法

Also Published As

Publication number Publication date
CN110028961B (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
CN106694007B (zh) 一种单分散金属原子/石墨烯复合催化剂及其制备方法和应用
CN106654300B (zh) 一种电化学溶胀石墨制备单分散金属原子/石墨烯复合材料的方法
Zhang et al. Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect of intermediate activation and radical mediator for electrocatalytic urea splitting
Jiang et al. Enhanced electrochemical performance by nickel-iron layered double hydroxides (LDH) coated on Fe3O4 as a cathode catalyst for single-chamber microbial fuel cells
CN107829107B (zh) 一种石墨烯/碳纳米管负载单分散金属原子复合催化剂及其制备方法和应用
Xu et al. Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production
CN110970630B (zh) 一种CuO纳米片及其自上而下的制备方法与应用
Wan et al. A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell
CN110846678A (zh) 一种泡沫镍负载作尿素电解辅助制氢双功能催化剂电极
CN111001428B (zh) 一种无金属碳基电催化剂及制备方法和应用
CN108588748A (zh) 一种二氧化碳电化学还原制备甲烷和乙烯的方法
CN107299362B (zh) 一种活性炭负载钴镍合金材料的制备方法及其电化学应用
CN112191260B (zh) 一种氮化碳纳米片-碳化钛-石墨烯三维复合电极催化剂的制备方法
Sayed et al. Enhancing the performance of direct urea fuel cells using Co dendrites
CN110965076A (zh) 一种双功能三维分层核壳结构电解水电极的制备方法
Son et al. Flexible, compressible, versatile biomass-derived freestanding carbon monoliths as binder-and substrate-free tri-functional electrodes for solid-state zinc-air batteries and overall water splitting
Song et al. Self-supported amorphous nickel-iron phosphorusoxides hollow spheres on Ni-Fe foam for highly efficient overall water splitting
Chen et al. One-pot scalable route to tri-functional electrocatalysts FeCoPx nanoparticles for integrated electrochemical devices
CN110028961A (zh) 碳化硼纳米片/硼掺杂石墨烯量子点的制备方法及其电还原制氨应用
CN116676604A (zh) 一种氮杂环有机氢载体的电化学加脱氢方法
Wang et al. Self-supported microbial carbon aerogel bioelectrocatalytic anode promoting extracellular electron transfer for efficient hydrogen evolution
Xu et al. In situ construction of NiCo 2 O 4 nanosheets on nickel foam for efficient electrocatalytic oxidation of benzyl alcohol
Song et al. Synthesis of Mo-doped NiFe-phosphate hollow bird-nest architecture for efficient and stable seawater electrolysis
CN113851664A (zh) 一种制备含sp-氮掺杂石墨炔空心球电催化剂的方法及制得的材料和应用
Zhou et al. A biomass derived porous carbon materials with adjustable interfacial electron transmission dynamics as highly-efficient air cathode for Zn-Air battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant