CN110028055A - 一种基于甲基化修饰制备半导体性单壁碳纳米管的方法 - Google Patents

一种基于甲基化修饰制备半导体性单壁碳纳米管的方法 Download PDF

Info

Publication number
CN110028055A
CN110028055A CN201910289620.4A CN201910289620A CN110028055A CN 110028055 A CN110028055 A CN 110028055A CN 201910289620 A CN201910289620 A CN 201910289620A CN 110028055 A CN110028055 A CN 110028055A
Authority
CN
China
Prior art keywords
walled carbon
substrate
semi
carbon nanotube
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910289620.4A
Other languages
English (en)
Other versions
CN110028055B (zh
Inventor
胡悦
王赢
钱金杰
黄少铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201910289620.4A priority Critical patent/CN110028055B/zh
Publication of CN110028055A publication Critical patent/CN110028055A/zh
Application granted granted Critical
Publication of CN110028055B publication Critical patent/CN110028055B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/125Quantum wire structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于甲基化修饰制备半导体性单壁碳纳米管的方法。所述半导体性单壁碳纳米管的制备方法如下:(1)利用化学气相沉积在ST‑cut石英上生长单壁碳纳米管。(2)将在ST‑cut石英中生长的单壁碳纳米管转移到将SiO2/Si基底。(3)将上述SiO2/Si基底放入含有过氧化二叔丁基的溶液中,并在紫外氙灯照射,最后用乙醇清洗并用氮气吹干。本发明所制备出的半导体性单壁碳纳米管纯度高于90%。此方法的创新点在于选择不去除金属性单壁碳纳米管,而使其呈现半导体性能。该方法方便快捷,一定程度上减少传统分离方法所带来的各种消极因素的影响,为半导体性单壁碳纳米管的控制制备提出了一种新的研究方向。

Description

一种基于甲基化修饰制备半导体性单壁碳纳米管的方法
技术领域
本发明属于微纳米材料制备技术领域,具体涉及一种半导体性单壁碳纳米管制备方法。
背景技术
单壁碳纳米管以其完美的共轭管状结构和优异的物理化学性质,自1993被人们发现以来,就迅速成为纳米材料研究的宠儿。单壁碳纳米管在纳电子材料,能源转换领域,功能复合材料,商业化产品等方面具有巨大的潜在应用价值。尤其是在纳电子学领域,研究表明,单壁碳纳米管的载流子迁移率约为109A/cm2,是单晶Si的10倍,由单壁碳纳米管构建的场效应晶体管(field effect transistors,FETs)具有优良的亚阈值斜率,因此单壁碳纳米管被认为是构建纳电子器件的理想材料。然而,我们通常合成的单壁碳纳米管是金属性单壁碳纳米管和半导体性单壁碳纳米管的混合物,金属性单壁碳纳米管的存在大大降低了器件的性能。因此,获得半导体性单壁碳纳米管是研究碳纳米管在纳电子学领域应用的关键。
发明内容
本发明实施例所要解决的技术问题在于,提供一种基于甲基化修饰制备半导体性单壁碳纳米管的方法,该方法利用了过氧化二叔丁基在紫外氙灯的照射下产生甲基并与单壁碳纳米管发生反应。由于金属/半导体性单壁碳纳米管反应活性的差异,以选择性的与金属性单壁碳纳米管进行甲基化反应,使其转变为半导体管,从而使整体的单壁碳纳米管呈现半导体性能。
为实现上述目的,其技术方案是包括以下步骤:
步骤(1)利用化学气相沉积(CVD)在ST-cut石英上生长单壁碳纳米管;
步骤(2)将步骤(1)在ST-cut石英中生长的单壁碳纳米管转移到SiO2/Si基底上;
步骤(3)将步骤(2)中的SiO2/Si基底放入含有过氧化二叔丁基的溶液中,并在紫外氙灯照射,最后用乙醇清洗并用氮气吹干;
步骤(1)包括如下步骤:
在生长单壁碳纳米管之前,将所述ST-cut石英进行预处理;
ST-cut石英预处理:超纯水、丙酮、乙醇和超纯水中各超声清洗10min,氮气吹干后,在2h内由室温升至1100℃后恒温8h,再在10h内降温至300℃,再自然降温至室温;
铁、钴、镍、铜作为生长单壁碳纳米管的催化剂,在这里优先选用铁。铁/乙醇溶液的含量为0.01-0.1mmol/L,优选0.05mmol/L;
所述化学气相沉积步骤方法中,碳源是含碳气体或蒸汽压较大并易裂解的含碳液体,具体可为CH4、C2H4、乙醇或异丙醇,在这里优先选用乙醇,乙醇碳源是通过氩气鼓泡乙醇溶液产生的;
碳源的气体流量为10sccm-500sccm,在这里优先选用30sccm;
还原气氛均为氢气气氛;氢气的气体流量为30-500sccm,在这里优先选用300sccm;
还原气氛所用载气均为氩气;所述载气的气流流量为50-500sccm,在这里优先选用300sccm;
生长温度均为600℃-900℃,具体为830℃,生长时间均为1min~1h,具体为30min;
步骤(1)还包括如下步骤:在所述化学气相沉积步骤之后,将体系降温;所述降温具体为自然降温或程序控制降温。
步骤(2)包括如下步骤:
在转移单壁碳纳米管之前,将所述SiO2/Si基底进行预处理;
SiO2/Si基底在超纯水、丙酮、乙醇和超纯水中各超声清洗10min,氮气吹干后,用氧等离子体清洗系统清洗5-10min;
利用匀胶机在ST-cut石英上涂上PMMA,旋涂时间为20-60s,优选40s,并烘干,时间为1-5min,优选3min;
利用HF作为转移的溶液,HF溶液浓度为1%-10%,优选5%;
转移到SiO2/Si基底上PMMA薄膜(粘着单壁碳纳米管)通过热台烘干,烘干时间为1h-4h,优选2h;
SiO2/Si基底上PMMA薄膜(粘着单壁碳纳米管)浸泡在丙酮中,去除PMMA,浸泡时间为1min-10min,优选5min。
步骤(3)包括如下步骤:
将上述SiO2/Si基底放入含有过氧化二叔丁基的溶液中,紫外氙灯下照射,照射功率为10w/cm2-40w/cm2,优选25w/cm2,照射时间为10min-60min,优选30min;
本发明制备单壁碳纳米管的场效应晶体管包括如下步骤:
利用电子束光刻技术(EBL)在SiO2/Si基底上定位并蒸镀Cr/Au来制备单壁碳纳米管的FET器件,Cr的厚度为1-5nm,优选3nm,Au的厚度为30-80nm,优选60nm。
利用探针台对制备的FET器件进行电学测试,结果表明此方法制备出的半导体性单壁碳纳米管纯度高于90%。
本发明的优点在于:此方法是一种金属性和半导体性单壁碳纳米管新的“分离”方法,其创新点在于不用去除金属性单壁碳纳米管,而使其呈现半导体性能。该方法方便快捷,一定程度上减少传统分离方法所带来的各种消极因素的影响,为半导体性单壁碳纳米管的控制制备提出了一种新的研究方向。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1在紫外氙灯照射下单壁碳纳米管示甲基化意图;
图2(a,b,c)在ST-cut石英上生长的单壁碳纳米管扫描电子显微镜(scanningelectron microscope,SEM)图像、原子力显微镜(atomic force microscopy,AFM)图像和透射电子显微镜(transmission electron microscopy,TEM)图像。(d)在532nm激光下转移到SiO2/Si基底上的单壁碳纳米管的拉曼光谱;
图3(a,b)单根的单壁碳纳米管FET器件SEM图像,(c)在Vds=1V时单根的单壁碳纳米管甲基化前后典型Ids-Vg曲线;(d,e)单壁碳纳米管水平阵列FET器件SEM图像;(f)在Vds=1V时单壁碳纳米管水平阵列甲基化前后典型Ids-Vg曲线;(g,h)单壁碳纳米管薄膜FET器件SEM图像;(i)在Vds=1V时单壁碳纳米管薄膜甲基化前后典型Ids-Vg曲线;
图4(a)单壁碳纳米管水平阵列甲基化前后Ion/Ioff比率统计。(b)单壁碳纳米管阵列甲基化后30天前和30天后典型的Ids-Vg曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
实施例1单根的单壁碳纳米管甲基化修饰
(1)选用SiO2/Si基底作为碳纳米管生长的基底,依次在超纯水、丙酮、乙醇和超纯水中各超声清洗10min,氮气吹干后,用氧等离子体清洗系统清洗5min;
(2)在SiO2/Si基底的一边负载上催化剂Fe然后置入化学气相沉积系统内,催化剂条带垂直于气流方向,升温到950℃,通入300sccm氩气5min,300sccm氢气,最后用30sccm氩气鼓泡乙醇,生长30min,生长完成后,关闭鼓乙醇用的氩气,保持氢气和其余氩气继续通入,自然降至室温,至此气流定向单壁碳纳米管生长结束。
图3a,3b是单根单壁碳纳米管FET器件的SEM图像,图3c是在Vds=1V时单根单壁碳纳米管甲基化前后典型Ids-Vg曲线,结果显示单壁碳纳米管甲基化后变为具有半导体性能的单壁碳纳米管。
实施例2单壁碳纳米管水平阵列甲基化修饰
(1)选用ST-cut石英基底作为碳纳米管生长的基底,依次在超纯水、丙酮、乙醇和超纯水中各超声清洗10min,再用高纯氮气吹干。将清洗干净的基底放入马弗炉中,空气中高温退火,2h升到900℃,在900℃恒温8h,再10h降温至300℃,自然降温冷却,此过程用来修复由于生产加工过程中产生的晶格缺陷。
(2)在ST-cut石英负载上催化剂Fe然后置入化学气相沉积系统内,升温到830℃,通入300sccm氩气5min,300sccm氢气,最后用30sccm氩气鼓泡乙醇,生长30min,生长完成后,关闭鼓乙醇用的氩气,保持氢气和其余氩气继续通入,自然降至室温。SEM、AFM图像表征其密度达到3-4根/微米,如图2a,2b。图2c中的TEM图像显示生长的单壁碳纳米管是干净无缺陷的。其拉曼谱图如图2d所示,表明生长的单壁碳纳米管中同时存在半导体性和金属性单壁碳纳米管。
(3)将ST-cut石英上的单壁碳纳米管转移至SiO2/Si基底上,构筑场效应晶体管,进行电学性能测试。图3d,3e是单壁碳纳米管水平阵列FET器件的SEM图像,图3f是在Vds=1V时单壁碳纳米管水平阵列甲基化前后的典型Ids-Vg曲线,结果显示单壁碳纳米管甲基化后呈现半导体性能。图4a是单壁碳纳米管阵列甲基化前后Ion/Ioff比率统计,表明此甲基化方法制备出纯度90%以上的半导体性单壁碳纳米管水平阵列。图4b单壁碳纳米管阵列甲基化后30天前和30天后典型的Ids-Vg曲线,表明甲基化方法是非常稳定的;
实施例3单壁碳纳米管薄膜甲基化修饰
(1)选用SiO2/Si基底作为碳纳米管生长的基底,依次在超纯水、丙酮、乙醇和超纯水中各超声清洗10min,氮气吹干后,用氧等粒子清洗系统清洗5-10min;
(2)在SiO2/Si基底的负载上催化剂Fe然后置入化学气相沉积系统内,升温到830℃,通入300sccm氩气5min,300sccm氢气,最后用30sccm氩气鼓泡乙醇,生长30min,生长完成后,关闭鼓乙醇用的氩气,保持氢气和其余氩气继续通入,自然降至室温。
图3g,3h是单壁碳纳米管薄膜FET器件的SEM图像,图3i是在Vds=1V时单壁碳纳米管薄膜甲基化前后典型Ids-Vg曲线,显示单壁碳纳米管薄膜甲基化后变为具有半导体性能的单壁碳纳米管薄膜。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

1.一种基于甲基化修饰制备半导体性单壁碳纳米管的方法,其特征在于包括以下步骤:
(1)利用化学气相沉积方法在基底上生长单壁碳纳米管;
(2)将步骤(1)在ST-cut石英中生长的单壁碳纳米管转移到SiO2/Si基底上;
(3)将步骤(2)处理的SiO2/Si基底放入含有过氧化二叔丁基的溶液中,并在紫外氙灯照射,使得步骤(1)所制备的金属性单壁碳纳米管发生甲基化反应,使其转变为半导体性单壁碳纳米管,最后用乙醇清洗并用氮气吹干。
2.根据权利要求1所述的方法,其特征在于:所述步骤(1)中单壁碳纳米管生长的基底包括ST-cut石英、r-cut石英、SiO2/Si、a面α氧化铝、r面α氧化铝或氧化镁。
3.根据权利要求1所述的方法,其特征在于:所述的步骤(1)的基底为ST-cut石英,其在生长碳纳米管之前还进行预处理:依次在超纯水、丙酮、乙醇和超纯水中各超声清洗10min,再用高纯氮气吹干;然后将清洗干净的基底放入马弗炉中,空气中高温退火,2h升到900℃,在900℃恒温8h,再10h降温至300℃,自然降温冷却,此过程用来修复由于生产加工过程中产生的晶格缺陷。
4.根据权利要求1所述的方法,其特征在于:步骤(1)中化学气相沉积方法所用的催化剂前驱体为是Fe,Co,Ni,Cu,Au,Mo,Zn,W,Ru,Cr,Rh,V,Ti,Al,Mg或Pd,其浓度为该金属/乙醇溶液的含量为0.01-0.1mmol/L。
5.根据权利要求1所述的方法,其特征在于:步骤(1)中将化学气相沉积方法的控制参数为:在830℃,300sccm氩气、300sccm氢气下进行生长,乙醇作碳源是通过氩气做载气将其带入反应腔体,其流量为10~500sccm,生长时间为1min~1h。
6.根据权利要求1所述的方法,其特征在于:步骤(2)中SiO2/Si基底在转移单壁碳纳米管之前进行预处理:依次在超纯水、丙酮、乙醇和超纯水中各超声清洗10min,氮气吹干后,用氧等离子体清洗系统清洗5-10min。
7.根据权利要求1所述的方法,其特征在于:步骤(2)中利用HF作为转移的溶液,HF的体积溶液浓度为1%-10%。
8.根据权利要求1所述的方法,其特征在于:步骤(3)中将步骤(2)所处理的SiO2/Si基底件放入含有过氧化二叔丁基的溶液中,紫外氙灯下照射,照射功率为10w/cm2-40w/cm2,照射时间为10min-60min。
9.一种如权利要求1-9之一所述的方法所制备的基于甲基化修饰制备半导体性单壁碳纳米管。
10.一种如权利要求9所述的半导体性单壁碳纳米管在制备单壁碳纳米管的场效应晶体管的应用。
CN201910289620.4A 2019-04-11 2019-04-11 一种基于甲基化修饰制备半导体性单壁碳纳米管的方法 Active CN110028055B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910289620.4A CN110028055B (zh) 2019-04-11 2019-04-11 一种基于甲基化修饰制备半导体性单壁碳纳米管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910289620.4A CN110028055B (zh) 2019-04-11 2019-04-11 一种基于甲基化修饰制备半导体性单壁碳纳米管的方法

Publications (2)

Publication Number Publication Date
CN110028055A true CN110028055A (zh) 2019-07-19
CN110028055B CN110028055B (zh) 2022-04-26

Family

ID=67238003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910289620.4A Active CN110028055B (zh) 2019-04-11 2019-04-11 一种基于甲基化修饰制备半导体性单壁碳纳米管的方法

Country Status (1)

Country Link
CN (1) CN110028055B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010031900A1 (en) * 1998-09-18 2001-10-18 Margrave John L. Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers
CN101830454A (zh) * 2009-03-10 2010-09-15 国家纳米科学中心 一种单壁碳纳米管直径选择性分离的方法
CN102079519A (zh) * 2009-11-17 2011-06-01 温州大学 可控生长碳纳米管的制备方法及其生产设备
WO2015133387A1 (ja) * 2014-03-01 2015-09-11 昭和電工株式会社 カーボンナノチューブアレイ、材料、電子機器、カーボンナノチューブアレイの製造方法および電界効果トランジスタの製造方法
CN105702923A (zh) * 2016-01-29 2016-06-22 中国科学院宁波材料技术与工程研究所 一种氧化锰/碳/碳纳米管纳米杂化材料及其制备方法和应用
US9391287B1 (en) * 2013-12-19 2016-07-12 The Board Of Regents Of The University Of Nebraska Photovoltaic perovskite material and method of fabrication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010031900A1 (en) * 1998-09-18 2001-10-18 Margrave John L. Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers
CN101830454A (zh) * 2009-03-10 2010-09-15 国家纳米科学中心 一种单壁碳纳米管直径选择性分离的方法
CN102079519A (zh) * 2009-11-17 2011-06-01 温州大学 可控生长碳纳米管的制备方法及其生产设备
US9391287B1 (en) * 2013-12-19 2016-07-12 The Board Of Regents Of The University Of Nebraska Photovoltaic perovskite material and method of fabrication
WO2015133387A1 (ja) * 2014-03-01 2015-09-11 昭和電工株式会社 カーボンナノチューブアレイ、材料、電子機器、カーボンナノチューブアレイの製造方法および電界効果トランジスタの製造方法
CN105702923A (zh) * 2016-01-29 2016-06-22 中国科学院宁波材料技术与工程研究所 一种氧化锰/碳/碳纳米管纳米杂化材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
承倩怡等: "碳纳米材料的超分子表面修饰及应用", 《高等学校化学学报》 *

Also Published As

Publication number Publication date
CN110028055B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
KR100668352B1 (ko) 질소 도핑된 단일벽 탄소나노튜브의 제조방법
JP3442032B2 (ja) カーボンナノチューブの合成方法
JP4602304B2 (ja) カーボンナノチューブの製造装置及び製造方法
JP3484441B2 (ja) 炭素ナノチューブの製造方法
US8057778B2 (en) Method and apparatus for forming carbon nanotube array
JP2001020072A (ja) カーボンソースガス分解用触媒金属膜を用いたカーボンナノチューブの低温合成方法
JP5029603B2 (ja) カーボンナノチューブの製造方法
CN111943171B (zh) 一种高密度单壁碳纳米管水平阵列的可控制备方法
US7585484B2 (en) Apparatus and method for synthesizing carbon nanotubes
Chang et al. Iron and cobalt silicide catalysts-assisted carbon nanostructures on the patterned Si substrates
Maruyama et al. Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations
CN109678138B (zh) 一种单手性单壁碳纳米管的制备方法
CN113213454B (zh) 以石墨烯为催化剂制备单壁碳纳米管的方法
US20080279752A1 (en) Method for producing a single-wall carbon nanotube
JP2006036593A (ja) 単層カーボンナノチューブの製造方法およびその製造装置
CN110255533A (zh) 基于苯基化修饰方法制备半导体性单壁碳纳米管的方法及其制品和应用
CN110028055A (zh) 一种基于甲基化修饰制备半导体性单壁碳纳米管的方法
CN108910868B (zh) 一种在绝缘衬底上制备石墨烯枝晶的方法
Prasek et al. Chemical vapor depositions for carbon nanotubes synthesis
Taniguchi et al. Preparation of dense carbon nanotube film using microwave plasma-enhanced chemical vapor deposition
Saengmee-anupharb et al. Growth of Vertically Aligned Carbon Nanotubes on Silicon Using a Sparked Iron‐Cobalt Catalyst
JP2016088815A (ja) 炭素ナノ構造体集合物およびその製造方法
JP4466773B2 (ja) カーボンナノチューブの製造方法
Roy et al. Growth of multiwall carbon nanotubes at 300° C using CO2 as a weak oxidant to (CH4+ H2) microwave plasma
Bae et al. Single-walled carbon nanotube growth on glass

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant