CN110004811A - 一种串联式沥青路面的热风加热装置及其加热控制方法 - Google Patents

一种串联式沥青路面的热风加热装置及其加热控制方法 Download PDF

Info

Publication number
CN110004811A
CN110004811A CN201910355364.4A CN201910355364A CN110004811A CN 110004811 A CN110004811 A CN 110004811A CN 201910355364 A CN201910355364 A CN 201910355364A CN 110004811 A CN110004811 A CN 110004811A
Authority
CN
China
Prior art keywords
heating
temperature
bituminous pavement
heating unit
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910355364.4A
Other languages
English (en)
Other versions
CN110004811B (zh
Inventor
顾海荣
齐博漪
李金平
徐信芯
焦生杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201910355364.4A priority Critical patent/CN110004811B/zh
Publication of CN110004811A publication Critical patent/CN110004811A/zh
Application granted granted Critical
Publication of CN110004811B publication Critical patent/CN110004811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/14Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces for heating or drying foundation, paving, or materials thereon, e.g. paint

Abstract

本发明提供的一种串联式沥青路面的热风加热装置及加热控制方法,通过将多个热风加热板连接起来,利用连续变功率的加热方式,确定了各个解热单元的加热功率,让加热单元在行驶过程中对沥青路面输出不同的加热功率,从而实现沥青路面表面温度和4cm深度处的温度精确控制;同时将多个加热单元接通,让前一个加热单元排放至环境的热风通过循环管路重新进入下一个加热单元的进风口,进一步提高了热风的循环利用率,减少了加热单元向周围大气排放携带有害气体的热风,保护了生态环境。

Description

一种串联式沥青路面的热风加热装置及其加热控制方法
技术领域
本发明涉及公路工程技术领域,具体为一种串联式沥青路面的热风加热装置及其加热控制方法。
背景技术
沥青路面就地热再生采用专用的就地热再生设备,对沥青路面进行加热、铣刨,就地掺入一定数量的新沥青、新沥青混合料、再生剂等,经热态拌和、摊铺、碾压等工序,一次性实现对表面一定深度范围内的旧沥青混凝土路面再生的技术。其再生过程,不需要对产生的废料进行搬运,对沥青路面可以进行连续机械化施工,施工周期短,对交通的干扰可降低到最小。因此,沥青路面就地热再生技术不仅可以节约大量的沥青和砂石材料,降低工程造价,节省材料转运费用以及旧料的储存占地,还大大减少了环境污染,具有良好的经济效益和社会效益。
目前而言,常用的就地热再生加热技术有3种:微波加热、热风循环加热和红外辐射加热。其中以热风循环加热应用最为广泛。热风循环加热就是通过燃烧燃料油对空气加热,然后通过循环装置使热空气不断的进行循环而对地面进行加热的方法。
使用沥青路面就地热再生技术的重点在于加热沥青路面,使其一定深度的温度达到铣刨要求,便于铣刨机将路面进行铣刨,再添加其他材料,从而实现沥青路面热再生。一般而言,沥青路面就地热再生所要求的铣刨温度为沥青路面表面温度达到180℃,4cm深度处温度为100℃。由于加热机在沥青路面上方,热量从沥青路面表面向下逐层传递,因此沥青路面表面温度将上升最快,路面深度越深,温度上升的越慢。这意味着路面表面将会首先达到180℃,而4cm处的温度则需要继续加热一段时间才能达要求温度。若加热单元的加热功率过大,沥青路面表面温度上升过快,难以控制,导致表面会被烧焦;若功率过小,则会延长就地热再生的加热时间,增加燃料的能耗。
目前沥青路面的热风加热主要使用多台加热机进行加热,每台加热机配备一套加热单元。在使用热风对沥青路面进行加热后,一部分热风被再次吸入循环风机,其余部分则被排放至大气中。而热风中含有的有害气体,随之排放到大气中从而对环境造成污染。同时,与沥青路面相接近的热风加热板暴露在周围环境中,使的热风的热量不断向周围空气中逸散。这会降低热风的利用效率,增加燃烧的燃料量,从而造成燃料浪费。
发明内容
针对现有技术中存在的问题,本发明提供一种串联式沥青路面的热风加热装置及其加热控制方法,克服现有热风加热过程中的向周围环境排放废气,以及热风加热板散失热量的问题和缺陷。
本发明是通过以下技术方案来实现:
一种串联式沥青路面的热风加热装置,包括首尾依次连接的多个加热单元,每个加热单元的末端设置一温度采集装置;
加热单元包括行走架,其上设置燃料燃烧室和循环风机,行走架的底部有加热装置;循环风机的出口与燃料燃烧室的入口连接,燃料燃烧室的热风出口与加热装置的入口连接,加热装置底部设置出风口,加热装置的底部还设置循环套管,循环套管用于收集对沥青路面加热后的热风,并将热风输入至与该加热单元相邻且位于后方的加热单元的循环风机中;
每个加热单元中还设置一控制单元,温度采集装置用于采集加热后的沥青路面的表面温度,控制单元根据采集的表面温度调节该加热单元的加热输出功率。
优选的,所述加热装置包括环向封闭的外框架和空心的加热板,外框架的顶部与行走架的底部连接,加热板的顶板与外框架的底部连接,加热板的底部、外框架的侧壁以及沥青路面的表面之间形成一个沥青路面的加热区,循环套管的入口设置在外框架上并与加热区连通,循环套管的出口与相邻后方加热单元的循环风机的入口连接。
优选的,所述加热板的底部均布有若干个热风分流孔。
优选的,所述外框架与加热板之间还设置有护热板,护热板的加热温度等于加热板的温度。
优选的,所述外框架与护热板之间,以及护热板与加热板之间均设置有隔热层。
优选的,燃料燃烧室的热风出口通过均分管路与加热板的顶面连接。
优选的,所述行走架包括隔板和设置在其底部的支撑轮。
优选的,所述温度采集装置为红外测温仪。
优选的,所述若干个加热单元通过牵引车进行移动,牵引车与最前端的加热单元连接。
本发明还提供了上述串联式沥青路面的热风加热装置的加热控制方法,其特征在于,包括以下步骤:
S1,将若干个加热单元依次记为第一加热单元、第二加热单元...第N加热单元,第一加热单元首先采用最大加热功率对沥青路面进行加热;
S2,第一加热单元末端的红外测温仪采集加热后的沥青路面的表面温度,并发送至第一加热单元的控制单元,当表面温度低于或高于表面预设温度时,执行步骤S3,当温度等于表面预设温度,执行步骤S4;
S3,控制单元调节第一加热单元的输出加热功率,第N加热单元对沥青路面的加热输出功率如下:
PN=h*A*(T热风-TN-1)
其中,PN为沥青路面加热至预设温度时第N加热单元的加热输出功率;h为沥青路面的对流换热系数;A为传热面积;T热风为热风的温度;TN-1为沥青路面表面在第N加热单元加热前的温度,N=1.2.3...N,当N为1时,TN-1为沥青路面的自然温度;
S4,第二加热单元根据最大加热输出功率对第一加热单元加热后的沥青路面再次加热,第二加热单元的红外测温仪采集再次加热后的沥青路面的表面温度,并发送至第二加热单元的控制单元,当表面温度低于或高于表面预设温度时,控制单元根据步骤S3的方法调节第二加热单元的加热输出功率,当温度等于表面预设温度,执行步骤S5;
S5,根据步骤S4的方法依次调控每一个加热单元的加热输出功率;
S6,当第N加热单元对沥青路面加热完毕后,铣刨车组加热后的路面进行刨铣,检测预定深度处的温度是否为预设温度;
S7,当预定深度处的温度大于预设温度,提高加热单元的移动速度,缩短加热时间,当刨铣路面预定深度温度小于预设温度,降低加热单元的移动速度,缩短加热时间;
S8,重复步骤S6和S7,直至路面的预定深度处的温度等于预设温度,并获取此刻加热单元的移动速度,加热单元根据获取的移动速度完成所有待铣刨路面的加热。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供的一种串联式沥青路面的热风加热装置,通过将多个热风加热板连接起来,利用连续变功率的加热方式,确定了各个加热单元的加热功率,让加热单元在行驶过程中对沥青路面输出不同的加热功率,从而实现沥青路面表面温度和指定深度处的温度精确控制;同时将多个加热单元接通,让前一个加热单元排放至环境的热风通过循环管路重新进入下一个加热单元的进风口,进一步提高了热风的循环利用率,缩短了加热时间;同时当热风循环到最后一个加热单元时,热风中的有害气体也随之累计到最后一个加热单元,除了用于再次循环加热路面的大部分热风外,逸散到周围大气的热风可以通过进行统一的废气处理,这不仅有利于降低废气处理的经济成本,还减少了加热单元向周围大气排放携带有害气体的热风,保护了生态环境。
在加热板的底部热风分流孔,保证对路面的加热温度保持一致。
在加热板的外围设置护热板,护热板的温度等于加热板的温度,从而消除护热板与加热板之间存在的温度差,防止加热板的热量向四周扩散,提高热量的利用率。由于存在控制精度,因此允许护热板的温度在加热板的温度附近来回微量波动。
进一步在加热装置中设置隔热层,阻止热量散失,进一步提高能量利用率。
本发明还提供串联式沥青路面的热风加热装置的加热控制方法,加热单元采用闭环控制,通过采集第一加热单元加热后路面温度,以该温度为基准调控第一加热单元的加热输出功率,然后第二加热单元对第一加热单元加热后的路面进行再次加热,并采集第二加热单元加热后路面温度,调控第二加热单元的加热输出功率,以此类推完成所有加热单元的输出加热功率的控制。然后通过控制所有加热单元的移动速度,对路面下指定深度的温度进行控制,从而实现沥青路面表面温度和指定深度处的温度精确控制,提高了能源的利用率,减少了燃料的浪费。
附图说明
图1是本发明装置主视图;
图2是本发明加热装置的剖视图;
图3是本发明加热装置的水平剖视图;
图4是热风分流孔的分布图;
图5是本发明装置俯视图;
图6是本发明护热板的结构示意图;
图7是本发明加热控制方法的逻辑图;
图8是本发明连续变功率加热过程各加热板的加热功率;
图9是本发明各加热单元达到稳态加热时沥青路面各深度层温度的变化状态;
图中:01-加热装置;02-牵引车;03-燃料燃烧室;04-循环风机;05-发动机;06-连接装置;07-热风管;08-加热板;09-隔板;10-支撑轮;11-循环套管;12-热风分流孔;16-护热板;17-隔热层;18-外框架;20-沥青路面;21-护热板接线柱;23-热风腔。
具体实施方式
下面结合附图对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
参阅图1-9,一种串联式沥青路面的热风加热装置,包括牵引车02、若干加热单元和温度采集装置,若干加热单元首尾依次连接,相邻两个加热单元通过连接装置06连接,牵引车02与最前方的加热单元连接,牵引车为后面的加热单元提供前行动力。
每个加热单元采用闭环控制,每个加热单元上设置一控制单元,并在每个加热单元的末端设置一个红外测温仪,红外测温仪用于测量沥青路面的表面温度,红外测温仪与控制单元连接,控制单元根据红外测温仪采集的参数控制对应加热单元的输出加热功率。
加热单元包括行走架,行走架包括隔板9和设置在其底部的支撑轮10,隔板9的顶部燃料燃烧室03、循环风机04和发动机05,隔板9的底部设置有加热装置01,加热装置01通过热风管07与燃料燃烧室03连接。
循环风机04与燃料燃烧室03连接,发动机05与循环风机04连接,发动机为04循环风机提供动力,循环风机04不断吸收周围环境的常温风即冷风,冷风进入燃料燃烧室03,燃料燃烧室03通过燃烧燃料,对进入到燃料燃烧室03的冷风进行加热,冷风吸收燃料燃烧的热量从而温度升高转变为热风,热风通过热风分流管07经过隔板09进入加热装置01中,并通过加热装置的底部喷出,对沥青路面进行加热。
继续参阅图2,加热装置01包括自外而内依次设置的外框架18、护热板16、加热板08。
外框架18设置在隔板9的底部,外框架18和护热板16均为下端开口的盒体结构,外框架18套设在护热板16的外部,加热板08为空心结构,其内部的空间为热风腔23,加热板08套设在护热板16的内部,螺栓的一端穿过隔板将外框架18护热板16和加热板08连接。
热风管07的一端与燃料燃烧室03连接,另一端依次穿过隔板09、外框架18、护热板16和加热板08的顶部与热风腔23连通,外框架18的下端低于加热板08的底面,使加热板08的底部、外框架18的侧壁以及沥青路面20的表面之间形成一个沥青路面的加热区。
继续参阅图3,外框架18和护热板16的侧壁和顶部之间,以及护热板16与加热板08的侧壁和顶部之间均设置有隔热层17。
继续参阅图4,热分通过热风管07进入热风腔23中,加热板08的底部设置均匀排布有多个热风分流孔12,热分通过热风分流孔12均匀的喷射到沥青路面20上对其加热,这有利于沥青路面的加热变得更加平衡。
外框架18侧壁的下部连接有循环套管11,循环套管11的一端与沥青路面的加热区连通,循环套管11的另一端与相邻加热单元的循环风机04的进风口连接。
继续参阅图5,自左到右,第一加热单元的循环套管11与第二加热单元循环风机04的进风口连接,第二加热单元的循环套管11与第三加热单元循环风机04的进风口连接,依次连接,直至到最后一个加热单元。
由于多个加热单元是缓慢移动对20沥青路面进行加热的,热风在经过热风分流孔12对沥青路面20加热完后,除少量热风逸散到周围到环境中,一部分热风重新回到所属本加热单元的循环风机04中,再通过循环风机04被送入燃料燃烧室03经过加热循环利用;剩下的热风则是通过循环套管11进入下一个加热单元的循环风机04中,然后与下一个加热单元的循环风机04吸收的冷风一起送入燃料燃烧室03,经过加热转变为达到就地热再生所要求的温度的热风,热风加热完沥青路面后又分为三部分,少量的一部分同样散热到周围环境中,一部分热风重新进入到所属本加热单元的循环风机中,剩余的热风通过循环套管进入下一个加热单元的循环风机中,如此往复。当热风循环到最后一个加热单元时,加热完沥青路面的热风分为两部分:大部分热风重新进入本加热单元的循环风机中,剩余部分的热风通过循环套管则可以进行统一的废气处理,从而消除热风中的有害气体,进一步保护了生态环境。
在加热板08与护热板16上均埋设有温度传感器,用于监控加热板08和护热板16的温度。由于热风腔23内带有极高的热量,所以热风腔23周围的加热板08温度也会升高。在加热板08与护热板16之间填充隔热层17,其主要作用是尽可能的减少加热板08向外散失热量。
护热板16的作用是通过对护热板16进行加热,使其温度升高到与加热板08的温度相同,防止加热板08的温度向低温区扩散,隔绝热风通过加热板08向护热板16散失热量,使热量最大可能性的用于沥青路面20的加热。
在护热板16与外框架18之间,同样填充隔热层17,目的是为了减少护热板16向外散失的热量,从而减少加热16护热板至与08加热板相同温度的能耗。
继续参阅图6,护热板16采用铜作为材料,在其内部埋设电阻丝,通过护热板接线柱21与电源相连接,使电阻丝发热,从而为护热板16提供热量。
燃料燃烧室03,内装有燃料,通过燃烧,使进入03燃料燃烧室的冷风吸收燃料释放的热能后转变为可以加热沥青路面的热风。
循环风机04,吸收周围环境中的冷风,同时吸收已经加热过沥青路面的热风,将其送入燃料燃烧室,进行加热。
热风管07,采用耐高温的隔热材料,将已经加热完毕的热风传递到热风腔内。
11循环套管采用金属材料,其套管外壁铣有螺纹,通过螺纹与18外框架连接。循环套管将加热完沥青路面的热风输送到下一个加热单元的循环风机,进行重复利用,减少其排放到周围大气中,以免污染环境。
热风分流孔12,使进入热风腔内的热风均匀的喷射到沥青路面上,从而加热均匀。
外框架18采用绝缘材料,作为整个加热区域结构的最外层,与循环套管连接。
热风腔23,热风从燃料燃烧室加热完毕后,在热风腔内积蓄,开始加热沥青路面后通过热风分流孔流出。
如图7所示,下面对发明提供的一种串联式沥青路面的热风加热装置的加热控制方法进行详细的阐述,包括以下步骤;
S1,将若干个加热单元依次记为第一加热单元、第二加热单元...第n加热单元,第一加热单元首先采用最大功率对沥青路面进行加热;
S2,第一加热单元末端的红外测温仪采集加热后的沥青路面的表面温度,并发送至第一加热单元的控制单元,
当表面温度低于或高于180℃,执行步骤S3,当温度等于180℃,该加热单元达到稳定状态,执行步骤S4;
S3,控制单元控制第一加热单元的输出加热功率,第N加热单元对沥青路面的加热功率如下;
PN=h*A*(T热风-TN-1)
其中,PN为沥青路面加热至预设温度时第N加热单元的加热输出功率,单位W;h为沥青路面的对流换热系数W/(m2*K);A为传热面积,即加热板的加热面积m2;T热风为热风的温度K;TN-1为沥青路面表面在第N加热单元加热前的温度,N=1.2.3...N,当N为1时,TN-1为沥青路面的自然温度。
通常,沥青路面的对流换热系数h按照Solaimanian经验公式计算如下如下:
其中,v是热风的风速,m/s。
由上式可得:对流换热系数h与热风风速v成正比。因此,当热风的风温一定时,控制热风的风速来调节对流换热系数,进一步的实现控制加热功率的目的。
具体如下,当沥青路面表面温度高于180℃时,第一加热单元可以通过控制循环风机降低热风的风速,从而降低沥青路面的表面温度;当沥青路面的表面温度低于180℃时,第一加热单元则通过控制循环风机提高热风的风速,从而提高沥青路面的表面温度。
S4,第二加单元热根据最大加热输出功率对第一单元加热后的沥青路面再次加热,第二加热单元的红外测温仪采集再次加热后的沥青路面的表面温度,并发送至第二加热单元的控制单元,当表面温度低于或高于表面预设温度时,控制单元根据步骤S3的方法调节第二加热单元的加热输出功率,当温度等于表面预设温度,执行步骤S5;
S5,根据步骤S4的方法依次调控每一个加热单元的加热输出功率。
由于第二加热单元是在第一加热单元对沥青路面加热完毕后的基础上对路面加热的,因此第二加热单元加热路面达到相同预设温度的加热输出功率小于第一加热单元,以此类推,第三加热单元加热输出功率又小于第二加热单元加热输出功率等,从而使的加热单元的加热输出功率依次递减。
当各加热单元的加热功率调整完毕,对沥青路面的加热达到稳定状态时,经过所有加热单元的加热后,沥青路面的表面、2cm深度、4cm深度的温度变化趋势如图9所示。
S6,当所有的加热单元对沥青路面加热完毕后,判定沥青路面4cm深度处的温度是否达到100℃,则需要通过牵引车驾驶室控制牵引车车速来实现,这是一个与加热单元的控制系统相互独立的闭环控制系统。
具体措施如下:在牵引车后面跟随着用以对沥青路面铣刨的铣刨车组,铣刨车组上设置红外测温仪,用来测量4cm深度处的温度。当所有加热单元对沥青路面加热完毕后,铣刨车对4cm以上的沥青路面铣刨,红外测温仪便测量4cm处的温度,并将其传递到牵引车驾驶室,驾驶室对其进行判定。
S7,当预定深度处的温度大于预设温度,提高加热单元的移动速度,缩短加热时间,当刨铣路面预定深处的温度小于预设温度,降低加热单元的移动速度,缩短加热时间;
具体措施如下:当4cm深度处温度低于100℃时,通过降低牵引车的车速来增加沥青路面的加热时间,进而提升4cm深度处的温度;当4cm深度处的温度高于100℃时,通过增加牵引车的车速来减少沥青路面的加热时间,进而降低4cm深度处的温度。
S8,重复步骤S6和S7,直至路面的预定深度处的温度等于预设温度,并获取此刻加热单元的移动速度,加热单元根据获取的移动速度完成所有待铣刨路面的加热。
在实际施工过程,由于闭环系统的反馈存在延迟时间,因此允许沥青路面的就地热再生过程存在一定的调整。虽然这部分用于调整的热再生路段的加热效果难以达到要求,但是相对于数以万计的加热里程来说这部分调整路段是极其微小的。
同样,在实际施工过程中,由于各个路段的沥青路面的导热系数、密度、比热容等热物性参数存在一定的差异,因此允许各个加热单元达到稳定状态后的加热功率在一个数值的上下进行微量波动。
对于实际加热过程而言,控制每个加热单元按照连续变功率的曲线逐渐减小功率来对路面加热是难以实现的,因此本发明的加热方法根据确定各个加热单元在稳定加热状态时的加热功率,由于各个加热单元的加热功率逐渐减小,从而形成阶梯加热曲线,如图8所示。当加热单元越多时,阶梯也就越密集,形成的阶梯加热曲线会更加相近与理想中的连续变功率加热曲线。在确定热风的风速和风温后,启动发动机,循环风机向燃料燃烧室输送冷风,燃料燃烧室开始加热冷风。
进一步通过护热板接线柱将护热板接通至程控电源,对其通电加热。同时将提前埋设的在护热板和加热板各个面上的温度传感器连接至控制单元,监测护热板和加热板上的温度,通过控制单元控制程控电源的功率进而控制护热板的温度。
进一步热风加热完沥青路面后,由于加热过程是动态,少量热风逸散到周围环境中,一部分热风返回到本加热单元的循环风机,剩下的热风则被吸收到下一个加热单元的循环风机中,使热风重复利用。
进一步可设置多个加热单元,这样就可确定多个加热板的加热功率,形成的阶梯加热曲线就会更接近于连续变功率曲线,加热过程更加接近于连续变功率的加热工程。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种串联式沥青路面的热风加热装置,其特征在于,包括首尾依次连接的多个加热单元,每个加热单元的末端设置一温度采集装置;
加热单元包括行走架,其上设置燃料燃烧室(03)和循环风机(04),行走架的底部有加热装置(01);循环风机(04)的出口与燃料燃烧室(03)的入口连接,燃料燃烧室(03)的热风出口与加热装置(01)的入口连接,加热装置(01)底部设置出风口,加热装置(01)的底部还设置循环套管(11),循环套管(11)用于收集对沥青路面加热后的热风,并将热风输入至与该加热单元相邻且位于后方的加热单元的循环风机(04)中;
每个加热单元中还设置一控制单元,温度采集装置用于采集加热后的沥青路面的表面温度,控制单元根据采集的表面温度调节该加热单元的加热输出功率。
2.根据权利要求1所述串联式沥青路面的热风加热装置,其特征在于,所述加热装置包括环向封闭的外框架(18)和空心的加热板(08),外框架(18)的顶部与行走架的底部连接,加热板(08)的顶板与外框架(18)的底部连接,加热板(08)的底部、外框架(18)的侧壁以及沥青路面(20)的表面之间形成一个沥青路面的加热区,循环套管(11)的入口设置在外框架(18)上并与加热区连通,循环套管(11)的出口与相邻后方加热单元的循环风机(04)的入口连接。
3.根据权利要求2所述串联式沥青路面的热风加热装置,其特征在于,所述加热板(08)的底部均布有若干个热风分流孔(12)。
4.根据权利要求2所述串联式沥青路面的热风加热装置,其特征在于,所述外框架(18)与加热板(08)之间还设置有护热板(16),护热板(16)的加热温度等于加热板(08)的温度。
5.根据权利要求4所述串联式沥青路面的热风加热装置,其特征在于,所述外框架(18)与护热板(16)之间,以及护热板(16)与加热板(08)之间均设置有隔热层(17)。
6.根据权利要求1所述串联式沥青路面的热风加热装置,其特征在于,燃料燃烧室(03)的热风出口通过均分管路与加热板(08)的顶面连接。
7.根据权利要求1所述串联式沥青路面的热风加热装置,其特征在于,所述行走架包括隔板(9)和设置在其底部的支撑轮(10)。
8.根据权利要求1所述串联式沥青路面的热风加热装置,其特征在于,所述温度采集装置为红外测温仪。
9.根据权利要求1所述串联式沥青路面的热风加热装置,其特征在于,所述若干个加热单元通过牵引车进行移动,牵引车与最前端的加热单元连接。
10.一种权利要求1-9任一项所述串联式沥青路面的热风加热装置的加热控制方法,其特征在于,包括以下步骤:
S1,将若干个加热单元依次记为第一加热单元、第二加热单元...第N加热单元,第一加热单元首先采用最大加热功率对沥青路面进行加热;
S2,第一加热单元末端的红外测温仪采集加热后的沥青路面的表面温度,并发送至第一加热单元的控制单元,当表面温度低于或高于表面预设温度时,执行步骤S3,当温度等于表面预设温度,执行步骤S4;
S3,控制单元调节第一加热单元的输出加热功率,第N加热单元对沥青路面的加热输出功率如下:
PN=h*A*(T热风-TN-1)
其中,PN为沥青路面加热至预设温度时第N加热单元的加热输出功率;h为沥青路面的对流换热系数;A为传热面积;T热风为热风的温度;TN-1为沥青路面表面在第N加热单元加热前的温度,N=1.2.3...N,当N为1时,TN-1为沥青路面的自然温度;
S4,第二加热单元根据最大加热输出功率对第一加热单元加热后的沥青路面再次加热,第二加热单元的红外测温仪采集再次加热后的沥青路面的表面温度,并发送至第二加热单元的控制单元,当表面温度低于或高于表面预设温度时,控制单元根据步骤S3的方法调节第二加热单元的加热输出功率,当温度等于表面预设温度,执行步骤S5;
S5,根据步骤S4的方法依次调控每一个加热单元的加热输出功率;
S6,当第N加热单元对沥青路面加热完毕后,铣刨车组加热后的路面进行刨铣,检测预定深度处的温度是否为预设温度;
S7,当预定深度处的温度大于预设温度,提高加热单元的移动速度,缩短加热时间,当刨铣路面预定深度温度小于预设温度,降低加热单元的移动速度,缩短加热时间;
S8,重复步骤S6和S7,直至路面的预定深度处的温度等于预设温度,并获取此刻加热单元的移动速度,加热单元根据获取的移动速度完成所有待铣刨路面的加热。
CN201910355364.4A 2019-04-29 2019-04-29 一种串联式沥青路面的热风加热装置及其加热控制方法 Active CN110004811B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910355364.4A CN110004811B (zh) 2019-04-29 2019-04-29 一种串联式沥青路面的热风加热装置及其加热控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910355364.4A CN110004811B (zh) 2019-04-29 2019-04-29 一种串联式沥青路面的热风加热装置及其加热控制方法

Publications (2)

Publication Number Publication Date
CN110004811A true CN110004811A (zh) 2019-07-12
CN110004811B CN110004811B (zh) 2023-06-02

Family

ID=67175295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910355364.4A Active CN110004811B (zh) 2019-04-29 2019-04-29 一种串联式沥青路面的热风加热装置及其加热控制方法

Country Status (1)

Country Link
CN (1) CN110004811B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112900213A (zh) * 2021-01-25 2021-06-04 江苏集萃道路工程技术与装备研究所有限公司 一种具有控温系统的热风循环加热装置及控温方法
CN113296518A (zh) * 2021-05-25 2021-08-24 山东交通学院 就地热再生机组编队无人驾驶系统及方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017499A1 (en) * 1979-04-04 1980-10-15 Thormack Engineering Limited Heating apparatus
CA1300417C (en) * 1989-08-23 1992-05-12 Tatsuhiko Chiba Apparatus for reproducing the asphalt road surface
US20030194273A1 (en) * 2002-04-11 2003-10-16 Enviro-Pave Inc. Hot-in-place asphalt recycling machine and process
CN101565926A (zh) * 2008-04-25 2009-10-28 鞍山森远路桥股份有限公司 热风式沥青路面热再生修补车
CN102337717A (zh) * 2011-08-03 2012-02-01 福建泉成机械有限公司 沥青混合料就地热再生车
CN102587259A (zh) * 2012-02-23 2012-07-18 福建铁拓机械有限公司 一种带热再生功能的沥青搅拌设备
CA2838710A1 (en) * 2011-06-06 2012-12-13 Hot Mix Mobile, Llc Mobile asphalt concrete production machine
CN202730181U (zh) * 2012-06-06 2013-02-13 镇江市万源电子有限公司 用于冷轧铝材的燃气加热节能环保退火炉
KR20140051873A (ko) * 2014-03-12 2014-05-02 황익현 열순환식 아스팔트 노면 가열장치
KR20140091833A (ko) * 2013-01-14 2014-07-23 황익현 아스팔트 노면 가열 및 혼합장치
DE102013004948A1 (de) * 2013-03-21 2014-09-25 Bomag Gmbh Arbeitszug mit von einer Bodenfräsmaschine gezogenem Siloanhänger und Anhängeeinrichtung für einen solchen Arbeitszug
EP2857108A1 (de) * 2013-10-07 2015-04-08 Wirtgen GmbH Vorrichtung sowie Verfahren zum Bearbeiten von Böden oder Fahrbahnen
CN104612029A (zh) * 2014-12-22 2015-05-13 无锡锡通工程机械有限公司 路面热再生热风循环分层加热装置
CN205171341U (zh) * 2015-11-06 2016-04-20 北京盈翰士技术开发有限公司 沥青路面就地再生加热机
CN105970782A (zh) * 2016-05-12 2016-09-28 吉林省嘉鹏集团有限公司 一种移动就地热再生机用沥青混合料集中加热滚筒
CN106854848A (zh) * 2016-12-21 2017-06-16 泉州信息工程学院 一种车载式再生沥青混凝土再生剂管路供应配置系统
CN206385426U (zh) * 2016-12-30 2017-08-08 长安大学 一种阶梯化功率沥青路面就地热再生加热装置
CN107268402A (zh) * 2017-08-07 2017-10-20 江苏集萃道路工程技术与装备研究所有限公司 一种微波加热耙松机及其微波加热墙
US20180187384A1 (en) * 2017-01-03 2018-07-05 Roadtec, Inc. Cold in-place recycling with in-line heater for asphalt cement
CN108867288A (zh) * 2018-06-27 2018-11-23 徐州徐工养护机械有限公司 一种适用于沥青路面修补的多功能养护车
CN108872301A (zh) * 2018-04-19 2018-11-23 长安大学 一种沥青路面热风加热试验装置及试验方法
CN109183583A (zh) * 2018-09-29 2019-01-11 江苏集萃道路工程技术与装备研究所有限公司 分层热铣刨设备、热风微波复合就地热再生成套机组及其分层施工方法
CN109653067A (zh) * 2017-10-10 2019-04-19 吉林省嘉鹏集团有限公司 一种以空气为载体的低氧循环路面再生加热器及加热方法

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0017499A1 (en) * 1979-04-04 1980-10-15 Thormack Engineering Limited Heating apparatus
CA1300417C (en) * 1989-08-23 1992-05-12 Tatsuhiko Chiba Apparatus for reproducing the asphalt road surface
US20030194273A1 (en) * 2002-04-11 2003-10-16 Enviro-Pave Inc. Hot-in-place asphalt recycling machine and process
CN101565926A (zh) * 2008-04-25 2009-10-28 鞍山森远路桥股份有限公司 热风式沥青路面热再生修补车
CA2838710A1 (en) * 2011-06-06 2012-12-13 Hot Mix Mobile, Llc Mobile asphalt concrete production machine
CN102337717A (zh) * 2011-08-03 2012-02-01 福建泉成机械有限公司 沥青混合料就地热再生车
CN102587259A (zh) * 2012-02-23 2012-07-18 福建铁拓机械有限公司 一种带热再生功能的沥青搅拌设备
CN202730181U (zh) * 2012-06-06 2013-02-13 镇江市万源电子有限公司 用于冷轧铝材的燃气加热节能环保退火炉
KR20140091833A (ko) * 2013-01-14 2014-07-23 황익현 아스팔트 노면 가열 및 혼합장치
DE102013004948A1 (de) * 2013-03-21 2014-09-25 Bomag Gmbh Arbeitszug mit von einer Bodenfräsmaschine gezogenem Siloanhänger und Anhängeeinrichtung für einen solchen Arbeitszug
EP2857108A1 (de) * 2013-10-07 2015-04-08 Wirtgen GmbH Vorrichtung sowie Verfahren zum Bearbeiten von Böden oder Fahrbahnen
KR20140051873A (ko) * 2014-03-12 2014-05-02 황익현 열순환식 아스팔트 노면 가열장치
CN104612029A (zh) * 2014-12-22 2015-05-13 无锡锡通工程机械有限公司 路面热再生热风循环分层加热装置
CN205171341U (zh) * 2015-11-06 2016-04-20 北京盈翰士技术开发有限公司 沥青路面就地再生加热机
CN105970782A (zh) * 2016-05-12 2016-09-28 吉林省嘉鹏集团有限公司 一种移动就地热再生机用沥青混合料集中加热滚筒
CN106854848A (zh) * 2016-12-21 2017-06-16 泉州信息工程学院 一种车载式再生沥青混凝土再生剂管路供应配置系统
CN206385426U (zh) * 2016-12-30 2017-08-08 长安大学 一种阶梯化功率沥青路面就地热再生加热装置
US20180187384A1 (en) * 2017-01-03 2018-07-05 Roadtec, Inc. Cold in-place recycling with in-line heater for asphalt cement
CN107268402A (zh) * 2017-08-07 2017-10-20 江苏集萃道路工程技术与装备研究所有限公司 一种微波加热耙松机及其微波加热墙
CN109653067A (zh) * 2017-10-10 2019-04-19 吉林省嘉鹏集团有限公司 一种以空气为载体的低氧循环路面再生加热器及加热方法
CN108872301A (zh) * 2018-04-19 2018-11-23 长安大学 一种沥青路面热风加热试验装置及试验方法
CN108867288A (zh) * 2018-06-27 2018-11-23 徐州徐工养护机械有限公司 一种适用于沥青路面修补的多功能养护车
CN109183583A (zh) * 2018-09-29 2019-01-11 江苏集萃道路工程技术与装备研究所有限公司 分层热铣刨设备、热风微波复合就地热再生成套机组及其分层施工方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
庞振领;: "基于热风循环工艺的沥青路面就地热再生补热机", no. 07 *
徐广鹏;: "沥青路面再生机在实际施工中的应用", no. 11 *
王莉华;蔡燕霞;: "浅谈沥青路面热再生技术现状", no. 14 *
郭小宏;李朋伟;欧阳结新;郭伟;钟黎;: "沥青路面就地热再生加热机的加热方式对比", no. 02 *
顾海荣;董强柱;李金平;梁奉典;张飞;王作家;: "沥青路面就地热再生加热方式与传热过程", no. 11 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112900213A (zh) * 2021-01-25 2021-06-04 江苏集萃道路工程技术与装备研究所有限公司 一种具有控温系统的热风循环加热装置及控温方法
CN112900213B (zh) * 2021-01-25 2022-11-25 江苏集萃道路工程技术与装备研究所有限公司 一种具有控温系统的热风循环加热装置及控温方法
CN113296518A (zh) * 2021-05-25 2021-08-24 山东交通学院 就地热再生机组编队无人驾驶系统及方法

Also Published As

Publication number Publication date
CN110004811B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN110004811A (zh) 一种串联式沥青路面的热风加热装置及其加热控制方法
US20110277341A1 (en) Method and Apparatus for Rationalizing the Allocation of Heat Energy Generated From Catalytic Combustion Process for Enameling Machine
CN103147381B (zh) 沥青路面就地热再生加热装置
CN109506876B (zh) 一种大气边界层环境风洞中温度层结模拟装置及方法
CN103541303B (zh) 连续式沥青再生料热风循环升温设备
CN105912802A (zh) 就地热再生过程中的沥青路面加热功率控制计算方法
CN208023383U (zh) 一种模块化分区热风循环式沥青路面加热机
CN203077522U (zh) 半固化片烘干装置及上胶机
CN201660562U (zh) 一种石灰窑用的燃烧梁
CN208155915U (zh) 一种红外加热测试装置
CN2915286Y (zh) 立式上胶机热辐射烘箱装置
KR20110058542A (ko) 재생 가열 아스팔트혼합물 생산을 위한 평행류형 경사 조절 드럼믹서
CN210104521U (zh) 一种串联式沥青路面的热风加热装置
CN102184271B (zh) 一种基于热流耦合分析技术的硫化炉的设计方法
CN104612029A (zh) 路面热再生热风循环分层加热装置
CN203837478U (zh) 铝或铝合金生产用的熔炼炉
CN106871436A (zh) 电热水器
CN206450056U (zh) 节能环保型茶叶烘干装置
CN204332547U (zh) 一种温度分布可控的漆包线烘焙装置
CN204982607U (zh) 一种新型沥青路面就地热再生机
CN201517884U (zh) 隧道窑预热带的改进结构
CN201187032Y (zh) 远红外加热墙
CN206247840U (zh) 一种单通道双推板隧道炉
CN207793835U (zh) 用于旧沥青路面热再生的热风式沥青路面加热设备
CN209478507U (zh) 一种养护窑

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant