CN110001764A - 高带宽通用电动转向系统控制器 - Google Patents

高带宽通用电动转向系统控制器 Download PDF

Info

Publication number
CN110001764A
CN110001764A CN201910004422.9A CN201910004422A CN110001764A CN 110001764 A CN110001764 A CN 110001764A CN 201910004422 A CN201910004422 A CN 201910004422A CN 110001764 A CN110001764 A CN 110001764A
Authority
CN
China
Prior art keywords
motor
angle
torque
torsion
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910004422.9A
Other languages
English (en)
Other versions
CN110001764B (zh
Inventor
H·D·卡夫
J·迪特默
A·J·尚帕涅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexteer Beijing Technology Co Ltd
Steering Solutions IP Holding Corp
Original Assignee
Nexteer Beijing Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexteer Beijing Technology Co Ltd filed Critical Nexteer Beijing Technology Co Ltd
Publication of CN110001764A publication Critical patent/CN110001764A/zh
Application granted granted Critical
Publication of CN110001764B publication Critical patent/CN110001764B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0472Controlling the motor for damping vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/427Teaching successive positions by tracking the position of a joystick or handle to control the positioning servo of the tool head, master-slave control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

所描述的技术方案用于在诸如电动助力转向(EPS)系统的电气系统中产生和提供电动机扭矩命令。例如,示例EPS系统包括电动机和操作电动机产生扭矩的控制器。控制器基于扭矩参考值来确定扭矩参考扭转。控制器还基于角度差值,通过使角度差值与自主模式使能信号相乘来确定电动机角度参考扭转。自主模式使能信号表示EPS是否正在自主模式下操作。控制器还基于扭矩参考扭转和电动机角度参考扭转来计算总参考扭转,并且基于总参考扭转和手轮角度来计算电动机角度参考值。控制器还使用电动机角度参考值来产生电动机扭矩命令,并且发送电动机扭矩命令至电动机。

Description

高带宽通用电动转向系统控制器
技术领域
本申请大体涉及电动助力转向(EPS)系统,并且特别地涉及EPS系统,其以诸如位置控制模式、扭矩控制模式、速度控制模式等多种操作模式操作。
背景技术
电动助力转向(EPS)系统可以在不同的控制模式下被操作,而用于各种转向功能和应用。例如,在人类操作员驾驶车辆期间,EPS可以在扭矩控制模式下操作。另外,在自主驾驶、或自动停车、或任何其他这样的自主操作期间,EPS可以在位置控制模式下被操作。
在驾驶车辆(例如:人类驾驶员、自主、半自主)期间,从车辆的一个操作模式到另一个的转换导致该EPS从一个操作模式转换到另一个。典型地,EPS包括用于EPS的各操作模式的独立模块。在用于不同控制模式的EPS机械设计以及软件设计中,在电动机惯性、手轮惯性和系统中的刚性方面,存在有相当大的差异。但是,从一个操作模式到另一个的转换可能致使操作员的延迟以及不适,并且还进一步地,致使相应操作模式的各控制模块的调谐作用(tuning efforts)。
因此,期望具有操作EPS的单个控制模块,而不管操作模式是用于自主驾驶的位置控制还是用于人类操作员驾驶的扭矩控制。
发明内容
所描述的技术方案用于在诸如电动助力转向(EPS)系统的电气系统中产生和提供电动机扭矩命令。例如,示例EPS系统包括电动机和控制器,该控制器操作电动机以产生扭矩。该控制器基于扭矩参考值(torque reference,扭矩参考)来确定扭矩参考扭转(torquereference twist,扭矩参考扭转度)。该控制器还基于角度差值,通过使角度差值乘以自主模式使能信号来确定电动机角度参考扭转。该自主模式使能信号表示EPS是否正在自主模式下操作。该控制器进一步基于扭矩参考扭转和电动机角度参考扭转来计算总参考扭转,并且基于总参考扭转和手轮角度来计算电动机角度参考值。该控制器使用电动机角度参考值来进一步产生电动机扭矩命令,并且将该电动机扭矩命令发送至电动机。
根据一个或多个实施例,用于提供电动机扭矩命令至转向系统的电动机的方法包括基于扭矩参考值来确定扭矩参考扭转。该方法还包括基于角度差值,通过使角度差值乘以自主模式使能信号来确定电动机角度参考扭转,该自主模式使能信号表示该转向系统正在自主模式下操作。该方法还包括基于扭矩参考扭转和电动机角度参考扭转来计算总参考扭转。该方法还包括基于总参考扭转和手轮角度来计算电动机角度参考值。该方法还包括使用电动机角度参考值来产生将被提供到电动机的电动机扭矩命令。
根据一个或多个实施例,电动机控制系统提供电动机扭矩命令至转向系统的电动机,以产生扭矩。该电动机控制系统基于扭矩参考值来确定扭矩参考扭转。该电动机控制系统还基于角度差值,通过使角度差值乘以自主模式使能信号来确定电动机角度参考扭转,该自主模式使能信号表示该转向系统正在自主模式下操作。该电动机控制系统基于扭矩参考扭转和电动机角度参考扭转来进一步计算总参考扭转。该电动机控制系统基于总参考扭转和手轮角度来进一步计算电动机角度参考值。该电动机控制系统使用电动机角度参考值进一步产生将被提供到电动机的电动机扭矩命令。
这些和其他优点和特征将从下面结合附图的描述而变得更为明显。
附图说明
被视为本发明的主题在作为说明书结论的权利要求书中被特别地指出并被清楚地请求保护。本发明的前述和其他特征和优点从下面结合附图的详细描述而变得明显,其中:
图1是根据一个或多个实施例的电动助力转向系统(EPS)40的示例性实施例
图2示出根据一个或多个实施例的示例控制器的方块图;
图3示出根据一个或多个实施例的示例控制器的方块图;
图4示出根据一个或多个实施例的示例参考值发生器(generator)的方块图;
图5示出根据一个或多个实施例的使用单控制器用于位置和角度控制两者一起的示例方法的流程图;以及
图6示出根据一个或多个实施例的使用单控制器用于位置控制和角度控制两者一起的示例场景。
具体实施方式
如在本文中所使用的,术语模块和子模块指的是一个或多个处理电路,诸如专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的处理器(共享的、专用的或组)和记忆体、组合逻辑电路,和/或提供所述功能的其他合适组件。如可以被理解的,下面描述的子模块可以被组合和/或进一步被分割。
现在参考附图,其中将参考特定实施例描述多个技术方案,但并非对其限制,图1是适于实施所公开实施例的电动助力转向系统(EPS)40的示例性实施例。转向机构36是齿轮齿条式系统,并且包括处在壳体50内的齿条(未示出)以及被定位在齿轮箱52下方的齿轮(pinion gear,小齿轮)(也未示出)。当操作者输入件、在后面被表示为方向盘26(例如手轮等)被转动,上转向轴29转动,并且通过万向节34连接到上转向轴29的下转向轴51转动齿轮。齿轮的转动移动齿条,该齿条移动多个拉杆38(仅示出一个)继而移动转动(一个或多个)导向轮44(仅示出一个)的多个转向节39(仅示出一个)。
电动助力转向辅助通过整体上以附图标记“24”标识的控制设备来提供,并且包括控制器16和电机46,该电机可以为电动机,诸如有刷电动机、永磁同步电动机(PMSM)或任意其他类型的电动机,并在后面表示为电动机46。该控制器16通过线12由车辆电源10供电。该控制器16从车辆速度传感器17接收代表车辆速度的车速信号14。转向角通过位置传感器32来实测,该位置传感器可以是光学编码型传感器、可变电阻型传感器,或任何其他合适类型的位置传感器,并且将位置信号20供给至控制器16。电动机速度可以通过速度计或任何其他装置来实测,并且作为电动机速度信号21被传输到控制器16。标识为ωm的电动机速度可以被实测、计算或其组合。例如,电动机速度ωm可以被计算为由位置传感器32在规定的时间间隔上实测的电动机位置θ的变化。例如,电动机速度ωm可以从公式ωm=Δθ/Δt中作为电动机位置θ的导数被确定,其中Δt是采样时间,Δθ是采样间隔期间的位置变化量。可选地,电动机速度可以作为位置的时间变化率而从电动机位置导出。将理解的是,存在许多用于执行导数功能的众所周知的方法。
当转动方向盘26时,扭矩传感器28感测由车辆操作者施加到方向盘26的扭矩。扭矩传感器28可以包括扭力杆(未示出)和可变电阻型传感器(也未示出),该扭矩传感器与扭力杆上的扭转量相关地,将可变扭矩信号18输出至控制器16。尽管这是一种类型的扭矩传感器,但是与已知的信号处理技术一起使用的任何其他合适的扭矩传感装置将是足够的。响应于各种输入,该控制器发送命令22至电力电动机46,该电力电动机通过涡杆47和涡轮48将扭矩辅助提供到转向系统,以给车辆转向提供扭矩辅助。
应注意的是,尽管通过参考用于电动转向应用的电动机控制来描述所公开的实施例,将理解的是,这些参考仅是说明性的,并且所公开的实施例可以被应用于采用电力电动机的任何电动机控制应用,例如转向、阀控制等。而且,本文中的参考和描述可用于许多形式的参数传感器,包括但不限于扭矩、位置、速度等。还应注意的是,本文中对于电机的参考包括但不限于电动机,以下为了简洁和简单起见,将仅参考但不限于电动机。
在所描述的控制系统24中,控制器16使用扭矩、位置和速度等,来计算(一个或多个)命令,以传送所需的输出功率。控制器16被设置为与各种系统和电动机控制系统的传感器相关联。控制器16接收来自各系统传感器的信号,量化所接收的信息,并且响应于此而提供输出(一个或多个)命令信号(在这种情况下)例如至电动机46。控制器16被配置为从逆变器(未示出)产生相应的(一个或多个)电压,该逆变器可以选择性地与控制器16结合,并且将在本文中被称为控制器16,以便期望的扭矩或位置在被供给到电动机46时产生。在一个或多个示例中,控制器24作为电流调节器在反馈控制模式下操作,以产生命令22。可选地,在一个或多个示例中,控制器24在前馈控制模式下操作,以产生命令22。因为这些电压与电动机46的位置和速度以及期望的扭矩相关,所以要确定转子的位置和/或速度以及操作者施加的扭矩。位置编码器被连接到转向轴51,以便检测角位置θ。编码器可以基于光学检测、磁场变化或其他方法学来感应旋转位置。典型的位置传感器包括电位器、解析器、同步器、编码器等,以及包括前述至少其中之一的组合。位置编码器输出位置信号20,该位置信号表示转向轴51的角位置以及由此电动机46的角位置。
期望的扭矩可通过一个或多个扭矩传感器28来确定,该扭矩传感器传送表示所施加的扭矩的扭矩信号18。一个或多个示例性实施例包括这样的扭矩传感器28以及来自该扭矩传感器的扭矩信号18,其可以响应于柔性(compliant)扭力杆、T形杆、弹簧、或被配置为提供表示所施加的扭矩的响应的类似设备(未示出)。
在一个或多个示例中,(一个或多个)温度传感器23被定位在电机46处。优选地,温度传感器23被配置为直接实测电动机46的传感部分的温度。温度传感器23将温度信号25传输到控制器16,以便于进行本文中所规定的处理和补偿。典型的温度传感器包括热电偶、热敏电阻、恒温器等以及包括前述传感器至少其中之一的组合,其在被适当放置时提供与特定温度成比例的可校准信号。
位置信号20、速度信号21和(一个或多个)扭矩信号18等被提供至控制器16。控制器16处理所有的输入信号,以产生对应于每个信号的值,使得转子位置值、电动机速度值和扭矩值可用于在本文中所规定的算法中进行处理。诸如上述信号的实测信号通常还根据需要被共同地线性化、补偿和滤波,以便增强所需信号的特征或消除不期望的特征。例如,信号可以被线性化,以便提高处理速度,或解决信号的大动态范围。此外,可以采用基于补偿和滤波的频率或时间来消除噪声或避免不期望的光谱特性。
为了执行规定的功能和期望的处理以及因此的计算(例如电动机参数、(一个或多个)控制算法等的识别),控制器16可以包括但不限于(一个或多个)处理器、(一个或多个)计算机、(一个或多个)DSP、记忆体、存储器、(一个或多个)寄存器、定时器、(一个或多个)中断器、(一个或多个)通信接口、和输入/输出信号接口等,以及包括前述至少其中之一的组合。例如,控制器16可以包括输入信号处理和滤波,以实现来自通信接口的这种信号的准确采样和转换或获取。控制器16的附加特征和其中的某些处理稍后在本文中详细讨论。
图2示出根据一个或多个实施例的示例控制器的方块图。控制器16接收一个或多个输入信号,诸如来自转向系统40中的一个或多个传感器的控制和传感器信号。作为响应,该控制器16计算通过转向系统40的电动机46产生的电动机扭矩,并且以命令(诸如扭矩命令、电流命令、电压命令,或其组合)的形式发送至电动机46。
典型地,在转向系统40中使用的控制器16包括至少两个控制单元、一扭矩控制器110和一角度控制器120,用于在车辆10的不同操作模式下控制转向系统40。扭矩控制器110可以是开环扭矩控制器或闭环扭矩控制器。该开环和/或闭环扭矩控制器110产生扭矩命令,以便控制作为扭矩控制模式的非自主转向模式的驱动扭矩。该角度控制器120产生扭矩命令,以便控制作为位置控制模式的自主转向模式的车辆方向。
扭矩控制器110和角度控制器120中的每一者被独立地调谐。而且,控制器16包括模式切换模块130,其基于驾驶员是否在控制车辆10时进行干预,例如通过在自主驾驶期间进行干预,而在扭矩控制器110与角度控制器120之间实现切换。在一个或多个示例中,扭矩控制器110和角度控制器120均使用来自传感器的数据,执行计算,以产生相应的电动机扭矩命令。该模式切换模块从来自至少两个控制器的两个电动机扭矩命令选出发送至电动机46的最后的电动机扭矩命令。应注意的是,在其他示例中,除了扭矩控制器110和角度控制器120之外,控制器16还包括附加的控制器,其产生相应的多个电动机扭矩命令,模式切换模块130从这些电动机扭矩命令选出最后的电动机扭矩命令并将其发送至电动机46。
使用控制器16内的这些多个控制器单元,除了增加硬件、软件和其它组件之外,还需要对各组件独立地调谐,增加费用。而且,在转向系统40的操作期间,从一个控制器到另一个的模式切换可能致使延迟和/或不适,因为当从(自主的)位置控制模式切换至(非自主的)扭矩控制模式时,驾驶员可能不得不施加额外的力。
本文描述的这些技术方案解决了这些技术挑战,并且通过使用单个通用控制器消除了使用不同的控制器、切换和控制调谐。
图3示出根据一个或多个实施例的示例控制器的方块图。该控制器16B包括电动机角度跟踪模块210,其是被调谐用于闭环角度和扭矩控制的唯一模块。参考值发生器220混合角度参考值和扭矩参考值的计算。而且,控制器16B包括EPS状态评估模块230,其基于传感器输入数据来评估EPS状态。可以使用一个或多个可用的状态评估技术(诸如线性二次评估)来执行状态评估。例如,可以使用线性二次评估来评估电动机角度、电动机速度、Tbar相对角度、Tbar相对速度、电动机扭矩、驱动扭矩、转向力(rack force)等或其组合的其中一个或多个。
通过参考值发生器220和电动机角度跟踪控制模块210这两者使用来自EPS状态评估模块230的评估状态,以便产生用于控制电动机46的电动机扭矩命令。电动机角度跟踪控制模块210使用电动机评估状态和由参考值发生器220计算的电动机角度参考值来产生电动机扭矩命令。在一个或多个示例中,通过使用线性二次高斯(LQG)控制技术或使用线性动态反馈和/或部分状态反馈的任何其他技术,电动机角度跟踪控制模块210产生电动机扭矩命令。LQG控制可以使用线性二次调节器(LQR),其使用来自使用卡尔曼滤波的线性二次评估器(LQE)230的评估状态。
应注意的是,尽管本文中所描述的附图和实施例示出和描述了控制电动机46,通过控制器16产生的电动机命令也被用于控制转向系统40的其他组件,诸如机械转向致动器、底盘硬件等或其组合。
图4描述了根据一个或多个实施例的示例参考值发生器的方块图。除了其他部件之外,该参考值发生器220包括扭矩参考值发生器410、扭矩参考扭转模块420、电动机角度参考值发生器430、总参考值计算和限制模块440、以及电动机角度参考值计算模块450。通过扭矩参考值发生器410产生的参考扭矩值由上面列出的其余模块使用,以便确定被输入到电动机角度跟踪控制模块210的电动机角度参考值。
扭矩参考值发生器410使用EPS状态输入和车辆输入(未示出)来产生参考扭矩。该参考扭矩作为车速和转向力的函数被计算,例如用以确定在没有使用角度参考值控制的状态下的驾驶员施力(非自动驾驶)。在其他示例中,车速和转向力之外的车辆输入可以被用于确定驾驶员施力。该驾驶员施力被表示为由参考扭矩发生器410执行的计算所产生的扭矩值。
扭矩参考扭转模块420计算参考扭转角,该参考扭转角对应于来自参考扭矩发生器410的参考扭矩值。考虑所实测到的由操作者施加至方向盘26的扭矩是在车辆10中,通过实测扭力杆(Tbar)参考位置(诸如方向盘26的预定中心位置)之上和之下的角度而获得的。所施加的驱动扭矩然后被计算为上述角度之间的差值乘以Tbar刚性值,该刚性值是用于转向系统40的预定值。
驱动扭矩=Tbar刚性值x(角度差值)。
在Tbar之上(和之下)的差值角度可以被评估为转向手轮角度(HwAngle)与电动机角度(MtrAngle,在转向坐标系中)之间的差值。这样,上述计算可被表示为:
驱动扭矩=Tbar刚性值x(HwAngle-MtrAngle)。
HwAngle和MtrAngle两者都可用作从EPS状态评估模块230接收到的评估状态。扭矩参考扭转模块420计算参考扭转角,其从参考扭矩被导出为:
扭矩参考扭转=(驱动扭矩参考值/Tbar刚性值)。
电动机角度参考值发生器430基于由一个或多个传感器实测的方向盘26的手轮角度来计算电动机角度参考值。可选地,电动机角度参考值可以基于用于确定电动机位置的一个或多个传感器。使用手轮角度和/或电动机位置的比例和速率限制来产生该电动机角度参考值。
总参考扭转计算和限制模块440接收来自扭矩参考扭转模块420的参考扭转角、以及来自电动机角度参考值发生器430的电动机角度参考值。该总参考扭转计算和限制模块440还接收手轮角度。在没有角度控制(自主操作模式)的情况下,总参考扭转计算和限制模块440跟踪参考扭转角,并对通过扭矩参考值发生器410产生的参考扭矩提供闭环控制。此外,总参考扭转计算和限制模块440通过包含电动机角度参考值(在转向坐标中)和手轮角度两者来跟踪参考角。例如,总参考扭转计算和限制模块440计算如下:
总参考扭转=扭矩参考扭转+电动机角度参考值-手轮角度。
而且,为了优化驾驶舒适性,计算的总参考扭转通过总参考扭转计算和限制模块440被限制为预定限制值。
参考值发生器220根据驾驶员是否正在控制方向盘26、或者驾驶员是否在自主控制操作中进行干涉来接收角度控制使能控制信号。该角度控制使能信号在非自主模式下(如果驾驶员正在控制方向盘26)为逻辑真值FALSE,而在自主模式下为逻辑假值TRUE。总参考扭转的计算基于角度控制使能控制信号而变。例如,总参考扭转在非自主模式下不使用(电动机角度参考值-手轮角度),而是在自主模式下使用该值(如上式中所示)。在一个或多个示例中,在计算总参考扭转的加法模块之前,角度控制使能信号与输入值(电动机角度参考值-手轮角度)相乘。因此,不需要切换逻辑/模块来切换基于操作模式使用的控制器,因为所执行的计算将当前的操作模式结合为输入数据/信号。
该电动机角度参考值计算模块450使用总参考扭转角和手轮角度来计算被输入到电动机角度跟踪控制模块210的最终电动机角度参考值。在一个或多个示例中,该计算如下:
电动机角度参考值=手轮角度-总参考扭转(被限制的)。
图5示出根据一个或多个实施例的使用单控制器用于位置和角度控制两者一起的示例方法的流程图。该方法包括基于方向盘26的角度(手轮角度)和诸如车速等的其他车辆输入来计算扭矩参考值,如方块510所示。该方法还包括基于扭矩参考值使用Tbar刚性值参数来计算扭矩参考扭转,该Tbar刚性值参数可以是预定常数,或者是使用一个或多个传感器实测的值,如方块515所示。
而且,该方法包括计算手轮角度与电动机角度之间的角度差值,如方块520所示。在一个或多个示例中,该差值被限制为预定的扭转限制,如方块525所示。
该方法还包括使被限制的角度差值与角度控制使能值460相乘以确定角度扭转,如方块530所示。如果转向系统正在自主模式下操作,则该角使能信号为逻辑真值TRUE(1),因此角度扭转代表该被限制的角度差值;否则,如果转向系统正在非自主模式下操作,则该角使能信号为逻辑假值FALSE(0),因此角度扭转导致为零(0)。这样,在这种情况下的计算结合了自主/非自主操作模式,而不需要对单独的多个控制器单元进行额外的调谐,并且也不需要针对不同的控制模式在不同的控制器单元之间进行切换。
该方法还包括计算总参考扭转=扭矩参考扭转+角度扭转。在非自主模式下,该角扭转为零,并因此对总参考扭转结果没有影响,如方块535所示。
而且,使用手轮角度和总参考扭转来计算该电动机角度参考值,电动机角度参考值=手轮角度-总参考扭转,如方块540所示。
该电动机角度参考值还被转送至电动机角度跟踪控制模块230。该电动机角度跟踪控制模块230使用电动机角度参考值和一个或多个评估的EPS状态产生用于电动机46的电动机扭矩命令,如方块545所示。例如,电动机扭矩命令可以使用LQG或其他技术产生。然后,电动机扭矩命令被发送到电动机46(和其他组件),以便控制通过转向系统40施加的扭矩量,如方块550所示。
图6示出根据一个或多个实施例的使用单控制器16B用于位置和角度控制两者一起的示例场景。在图6中,曲线610描述了实测的Tbar扭矩612和由扭矩参考值发生器410所输出的参考扭矩614。而且,曲线620描述实测的角度622和如由参考值发生器220所计算出的电动机参考角624。
在所示示例场景中,控制器16B正以非自主模式操作一持续时间T1(在这个示例中为23秒),因此控制器16B仅跟踪扭矩参考值(角度跟踪未激活)。在所示示例中,如线622所示,在该持续时间T1期间,操作者将方向盘26沿一个方向(例如沿顺时针方向)移动至行程终点(+EOT,其为一预定值),并且还沿另一个方向(例如沿逆时针方向)移动至行程终点(-EOT),此后在中心上来回增加频率转向。相应地,在曲线610中,除了行程终点的情况,实测的Tbar扭矩612跟踪匹配于计算出的参考扭矩614。在这个模式中,控制器16B不使用角度跟踪。响应于检测到和/或接收到表示操作者握持或接触方向盘26的信号,该控制器16B确定绕过角度跟踪。在一个或多个示例中,一个或多个传感器与方向盘26相关联,以便检测操作者是否接触方向盘26。
返回参考图6,考虑车辆10以及因此转向系统40在第一持续时间T1结束时转换到自主驾驶模式、且由此(转换到)角度控制模式。因此,控制器16B使用模块420、430、440和450,来执行除了扭矩跟踪之外的角度跟踪。在正在说明的示例中,考虑在自主驾驶情况下在基本上25秒的标记处出现驾驶员干预,并且在角度控制激活并且电动机参考角度被设定为0度的情况下,驾驶员来回操纵方向盘26到行程终点。
控制器16B便于驾驶员从角度控制模式接管控制,并转向到行程终点,而不用从一个操作模式切换到另一个操作模式,这是因为扭矩跟踪和角度跟踪是单控制器16B的一部分。而且,在对应于这种干预操纵实测到的Tbar扭矩612中,可以看到被设定到预定范围(±扭转限制)的扭转限制的效果。该扭转限制确保了,当驾驶员抵抗角度控制(其正将方向盘26移动到中心)工作时,驾驶员的施力根据预定的扭转限制被限制到舒适水平。
而且,当驾驶员释放方向盘26(实测的Tbar扭矩612基本为0)时,控制器16B在这种情况下使用角度控制将电动机角度参考值返回到0度。
曲线610和620还示出,在无驾驶员干预的情况下,控制器16B仅应用角度跟踪,而无扭矩跟踪,如能够在参考角曲线(622)中所看到的,以便例如在42到48秒(T2)的时间跨度内自动改变电动机参考角度,并且类似地,电动机参考角度在57和62秒(T3)之间切换。
本申请提供一种电动机控制系统,其被配置为将电动机扭矩命令提供给电动机以产生扭矩,所述提供该电动机扭矩命令包括:基于扭矩参考值确定扭矩参考扭转;基于角度差值,通过使该角度差值乘以自主模式使能信号来确定电动机角度参考扭转,该自主模式使能信号表示该电动机正在自主模式下操作;基于该扭矩参考扭转和该电动机角度参考扭转来计算总参考扭转;基于该总参考扭转和手轮角度来计算电动机角度参考值;以及使用该电动机角度参考值产生将被应用到该电动机的电动机扭矩命令。
在该电动机控制系统中,可通过使该扭矩参考值除以Tbar刚性值来计算该扭矩参考扭转。
该电动机控制系统还可被配置为计算该角度差值作为该手轮角度与电动机角度之间的差值。
该电动机控制系统还可被配置为限制该角度差值到预定的阈值扭转极限值。
在该电动机控制系统中,可通过从该手轮角度减去该总参考扭转来计算该电动机角度参考值。
在本文中描述的多个技术方案由此通过消除对于不同操作模式(诸如角度/位置控制、扭矩控制等)使用多个单独的控制单元的需要,从而改进了转向系统,并且特别地改进了用于转向系统的电动机的控制器。在本文中描述的多个技术方案便于将基于扭矩的角度命令和由自主驱动器(在角度控制中)产生的角命令加在一起,而与操作模式无关。这些改进提高了控制器的角度跟踪带宽和扭矩控制带宽。
而且,在这里描述的多个技术方案消除了对多个单独的控制单元的调谐以及由此使用特定于不同控制模式的多个单独的调谐参数组。相反,通过在为了确定用于操作电动机的电动机命令所执行的计算中结合操作模式的状态,在本文中描述的技术方案便于单控制器在多种操作模式下普遍地操作,而无需切换逻辑和/或使用不同的调谐参数。
该技术方案可以是处于任何可能的技术细节集成水平的系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质(或媒介),其上具有计算机可读程序指令,用于致使处理器完成这些技术方案的多个方面。
在本文中参照根据这些技术方案的实施例的方法、设备(系统)和计算机程序产品的流程图和/或方块图描述了这些技术方案的多个方面。将理解的是,流程图和/或方块图的每个方块、以及流程图和/或方块图的方块的组合可以通过计算机可读程序指令来实施。
附图中的流程图和方块图绘示了根据这些技术方案的不同实施例的系统、方法和计算机程序产品的可能实施的构造、功能和操作。在这方面,在流程图或方块图中的每个方块可以代表指令模块、区段或部分,其包括一个或多个可执行指令,用于实施特定的(一个或多个)逻辑功能。在一些替代的实施方式中,方块中所示的功能可以不按附图中所示的顺序发生。例如,连续示出的两个方块实际上可以基本上同时执行,或者这些方块有时候可以以相反的顺序执行,这取决于所涉及的功能。还将注意的是,方块图和/或流程图的每个方块、以及方块图和/或流程图中的方块的组合可以通过专用硬件系统实施,其执行特定功能或作用或实现专用硬件和计算机指令的组合。
还将理解的是,在本文中示例的执行指令的任何模块、单元、组件、服务器、计算机、终端或装置可以包括或以其它方式访问计算机可读媒介,诸如存储媒介、计算机存储媒介或数据存储装置(可移动和/或不可移动的),例如磁盘、光盘或磁带。计算机存储媒介可以包括易失性和非易失性的、可移动和不可移动的媒介,其在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施。这种计算机存储媒介可以是装置的一部分,或者是可访问或可连接到其上的。本文中描述的任何应用或模块可以使用计算机可读的/可执行的指令被实施,该指令可以被这种计算机可读媒介存储或以其他方式保存。
当仅结合有限数量的实施例详细描述这些技术方案时,应容易理解的是,这些技术方案并非限制为这些公开的实施例。而是,这些技术方案可以被修改为结合此前并未描述但与技术方案的精神和范围相当的任意数量的变型、改变、替换或等同设置。另外,虽然已经被描述了多个技术方案的不同实施例,但应该理解的是,这些技术方案的多个方面可以仅包括所描述的多个实施例中的一些。因此,这些技术方案不应被视为受前述描述所限制。

Claims (15)

1.一种电动助力转向EPS系统,其提供电动机扭矩命令,该EPS系统包括:
电动机;以及
控制器,被配置为产生和发送该电动机扭矩命令至该电动机以产生扭矩,该控制器被配置为:
基于扭矩参考值来确定扭矩参考扭转;
基于角度差值,通过使该角度差值乘以自主模式使能信号来确定电动机角度参考扭转,该自主模式使能信号表示该EPS正在自主模式下操作;
基于该扭矩参考扭转和该电动机角度参考扭转来计算总参考扭转;
基于该总参考扭转和手轮角度来计算电动机角度参考值;以及
使用该电动机角度参考值来产生该电动机扭矩命令,并且发送该电动机扭矩命令至该电动机。
2.根据权利要求1所述的电动助力转向EPS系统,其中该控制器还被配置为基于该手轮角度来计算该扭矩参考值。
3.根据权利要求1所述的电动助力转向EPS系统,其中通过使该扭矩参考值除以与该EPS相关联的Tbar刚性值来计算该扭矩参考扭转。
4.根据权利要求1所述的电动助力转向EPS系统,其中该控制器还被配置为计算该角度差值作为该手轮角度与电动机角度之间的差值。
5.根据权利要求4所述的电动助力转向EPS系统,其中该控制器限制该角度差值到预定的阈值扭转极限值。
6.根据权利要求1所述的电动助力转向EPS系统,其中通过从该手轮角度减去该总参考扭转来计算该电动机角度参考值。
7.根据权利要求1所述的电动助力转向EPS系统,其中通过将该扭矩参考扭转加上该电动机角度参考扭转来计算该总参考扭转。
8.根据权利要求1所述的电动助力转向EPS系统,其中该自主模式使能信号是二进制信号,该二进制信号在该EPS正在自主模式下操作时为TRUE,并且在该EPS正在非自主模式下操作时为FALSE。
9.一种将电动机扭矩命令提供至电动机的方法,该方法包括:
基于扭矩参考值来确定扭矩参考扭转;
基于角度差值,通过使该角度差值乘以自主模式使能信号来确定电动机角度参考扭转,该自主模式使能信号表示该电动机正在自主模式下操作;
基于该扭矩参考扭转和该电动机角度参考扭转来计算总参考扭转;
基于该总参考扭转和手轮角度来计算电动机角度参考值;以及
使用该电动机角度参考值来产生将被提供到该电动机的该电动机扭矩命令。
10.根据权利要求9所述的方法,还包括基于该手轮角度来计算该扭矩参考值。
11.根据权利要求9所述的方法,其中通过使该扭矩参考值除以与该电动机相关联的Tbar刚性值来计算该扭矩参考扭转。
12.根据权利要求9所述的方法,还包括计算该角度差值作为该手轮角度与电动机角度之间的差值。
13.根据权利要求12所述的方法,还包括限制该角度差值到预定的阈值扭转极限值。
14.根据权利要求9所述的方法,其中通过从该手轮角度减去该总参考扭转来计算该电动机角度参考值。
15.根据权利要求9所述的方法,其中通过将该扭矩参考扭转加上该电动机角度参考扭转来计算该总参考扭转。
CN201910004422.9A 2018-01-03 2019-01-03 高带宽通用电动转向系统控制器 Active CN110001764B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/861,114 US10793188B2 (en) 2018-01-03 2018-01-03 High bandwidth universal electric steering system controller
US15/861,114 2018-01-03

Publications (2)

Publication Number Publication Date
CN110001764A true CN110001764A (zh) 2019-07-12
CN110001764B CN110001764B (zh) 2021-11-30

Family

ID=66817003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910004422.9A Active CN110001764B (zh) 2018-01-03 2019-01-03 高带宽通用电动转向系统控制器

Country Status (3)

Country Link
US (1) US10793188B2 (zh)
CN (1) CN110001764B (zh)
DE (1) DE102019100035B4 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019203040A1 (de) * 2019-03-06 2020-09-10 Thyssenkrupp Ag Verfahren zur Steuerung eines Steer-by-Wire-Lenksystems und Steer-by-Wire-Lenksystem für ein Kraftfahrzeug
JP7205373B2 (ja) * 2019-05-07 2023-01-17 株式会社デンソー 回転電機制御装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104477231A (zh) * 2014-08-19 2015-04-01 广东技术师范学院 集成电动助力转向和主动转向的组合控制系统
US20150375780A1 (en) * 2013-02-21 2015-12-31 Nissan Motor Co., Ltd. Vehicle steering control device and vehicle steering control method
WO2016208399A1 (ja) * 2015-06-22 2016-12-29 日立オートモティブシステムズ株式会社 自動操舵機能を持つ車両操舵装置
JP6102851B2 (ja) * 2014-07-24 2017-03-29 マツダ株式会社 電動パワーステアリングの制御装置
JP2017065606A (ja) * 2015-10-01 2017-04-06 Kyb株式会社 電動パワーステアリング装置
CN106741136A (zh) * 2016-12-15 2017-05-31 上海拓为汽车技术有限公司 具有主动转向功能的电动助力转向系统
EP3173314A1 (en) * 2015-11-27 2017-05-31 Jtekt Corporation Steering control device
CN107010102A (zh) * 2015-11-27 2017-08-04 株式会社捷太格特 转向操作控制装置
CN107207045A (zh) * 2015-02-04 2017-09-26 日本精工株式会社 电动助力转向装置
CN107207042A (zh) * 2014-12-02 2017-09-26 日本精工株式会社 电动助力转向装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3453592B1 (en) 2016-06-06 2020-02-26 NSK Ltd. Electric power steering device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150375780A1 (en) * 2013-02-21 2015-12-31 Nissan Motor Co., Ltd. Vehicle steering control device and vehicle steering control method
JP6102851B2 (ja) * 2014-07-24 2017-03-29 マツダ株式会社 電動パワーステアリングの制御装置
CN104477231A (zh) * 2014-08-19 2015-04-01 广东技术师范学院 集成电动助力转向和主动转向的组合控制系统
CN107207042A (zh) * 2014-12-02 2017-09-26 日本精工株式会社 电动助力转向装置
CN107207045A (zh) * 2015-02-04 2017-09-26 日本精工株式会社 电动助力转向装置
WO2016208399A1 (ja) * 2015-06-22 2016-12-29 日立オートモティブシステムズ株式会社 自動操舵機能を持つ車両操舵装置
JP2017065606A (ja) * 2015-10-01 2017-04-06 Kyb株式会社 電動パワーステアリング装置
EP3173314A1 (en) * 2015-11-27 2017-05-31 Jtekt Corporation Steering control device
CN107010102A (zh) * 2015-11-27 2017-08-04 株式会社捷太格特 转向操作控制装置
CN106741136A (zh) * 2016-12-15 2017-05-31 上海拓为汽车技术有限公司 具有主动转向功能的电动助力转向系统

Also Published As

Publication number Publication date
CN110001764B (zh) 2021-11-30
DE102019100035B4 (de) 2022-09-01
DE102019100035A1 (de) 2019-07-04
US10793188B2 (en) 2020-10-06
US20190202498A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
CN101332834B (zh) 电动力转向系统的控制设备
US11046359B2 (en) Steer-by-wire system and control method thereof
CN106515849B (zh) 基于模型的驾驶员转矩估计
CN107303903B (zh) 使用eps信号的驾驶员手触方向盘检测
US6801012B1 (en) Sensorless control of switched reluctance electric machines
CN110182253B (zh) 用于转向系统的轮胎负载估算的象限型摩擦补偿
CN109756169B (zh) 永磁dc驱动转向系统的电流传感器故障缓解
EP1885054B1 (en) Method of estimating the state of a system and related device for estimating position and speed of the rotor of a brushless motor
CN106494499B (zh) 基于转矩梯度和所需速度误差禁用受控速度返回
CN104163198A (zh) 电动动力转向装置
US11404984B2 (en) Parameter learning for permanent magnet synchronous motor drives
CN104890720A (zh) 电动动力转向装置
CN101981806A (zh) 电动机控制器和电动助力转向设备
CN103153758A (zh) 电动转向系统中的驾驶员辅助控制
JP2015095032A (ja) 自律走行台車、及び、予定走行経路データのデータ構造
US11424706B2 (en) Battery current limiting of permanent magnet synchronous motor drives using operation condition monitoring
CN110341786A (zh) 转向系统中位置控制的干扰前馈补偿
CN110001764A (zh) 高带宽通用电动转向系统控制器
CN111559379A (zh) 使用转向系统信号的道路摩擦系数估计
CN110341785A (zh) 转向系统的级联位置控制架构
US6982537B2 (en) Identification of parameters for switched reluctance electric machines
CN111824249B (zh) 在没有扭矩传感器的转向系统操作中提供辅助扭矩
CN112838798A (zh) 使用机器电流限制的永磁同步马达驱动器的功率管理
KR101987703B1 (ko) 스티어 바이 와이어 시스템 및 그 제어방법
JP6000901B2 (ja) 電動パワーステアリング制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant