CN109999778A - 一种改性半导体金属氧化物光催化材料的掺杂方法 - Google Patents

一种改性半导体金属氧化物光催化材料的掺杂方法 Download PDF

Info

Publication number
CN109999778A
CN109999778A CN201810115598.7A CN201810115598A CN109999778A CN 109999778 A CN109999778 A CN 109999778A CN 201810115598 A CN201810115598 A CN 201810115598A CN 109999778 A CN109999778 A CN 109999778A
Authority
CN
China
Prior art keywords
metal oxide
catalysis material
oxide semiconductor
atom
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810115598.7A
Other languages
English (en)
Other versions
CN109999778B (zh
Inventor
刘岗
余宗宝
康向东
马秀良
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201810115598.7A priority Critical patent/CN109999778B/zh
Publication of CN109999778A publication Critical patent/CN109999778A/zh
Application granted granted Critical
Publication of CN109999778B publication Critical patent/CN109999778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化材料的改性技术,具体为一种“非入侵式”改性半导体金属氧化物光催化材料可见光性能的掺杂方法。在半导体金属氧化物纳米颗粒表面构筑一层含有异质掺杂原子的超薄层,将掺杂原子均匀束缚在超薄层中,使其不进入所包裹的内核光催化材料中。本发明提供的方法解决传统“入侵式”掺杂制备技术中,因在金属氧化物中引入掺杂异质原子,而增加光生载流子复合中心的弊端,从而在拓宽可见光光吸收范围的同时显著提高光催化活性,该发明普遍适用于改性各种半导体光催化材料。

Description

一种改性半导体金属氧化物光催化材料的掺杂方法
技术领域
本发明涉及光催化材料的改性技术,具体为一种改性半导体金属氧化物光催化材料的掺杂方法。
背景技术
半导体光催化技术因在环境和能源领域的重要应用而受到世界范围的广泛关注,实现光催化技术的关键是研发廉价高效的半导体光催化材料。具有强金属-氧化学键的宽带隙金属氧化物半导体是最主要的一类光催化剂,也是迄今研究最为广泛且实现商业化生产的光催化材料。但这类金属氧化物作为光催化材料的主要缺点是禁带宽度比较大,光催化活性局限于只占太阳光中4%左右的紫外区,而无法利用占高达45%的可见光区。因此,如何扩展宽带隙金属氧化物的光谱响应范围,同时提高光生电荷的利用率是该领域的核心研究课题。
掺杂作为一种最基本的改变功能材料电子结构的手段被广泛用来改变宽带隙金属氧化物光催化材料的可见光响应范围[文献1:Liu,G.;Wang,L.;Yang,H.G.;Cheng,H.M.;Lu,G.Q.,Titania-based photocatalysts----crystal growth,doping andheterostructuring,J.Mater.Chem,2010,20,831.]。常用的掺杂方式主要包括金属元素掺杂、非金属元素掺杂及非化学计量比工程等。研究表明,通过引入异质掺杂原子都能不同程度的改变金属氧化物光催化剂的电子结构而增加光吸收,但与此相伴的是,掺杂异质原子进入基体相往往导致大量光生载流子复合中心的产生,从而显著降低光生电荷的利用效率,降低光催化性能,进而限制传统“入侵式”掺杂策略在光催化领域的实际应用。
发明内容
本发明的目的在于提供一种改性半导体金属氧化物光催化材料的掺杂方法,该方法作为扩展半导体金属氧化物光催化材料可见光光响应范围的新掺杂策略,解决现有“入侵式”掺杂制备方法中因引入异质掺杂原子不可控,而导致产生光生载流子复合中心的问题。
本发明的技术方案是:
一种改性半导体金属氧化物光催化材料的掺杂方法,在金属氧化物光催化材料表面构筑一层含有活性异质掺杂原子的超薄层,将活性掺杂原子均匀束缚在所述超薄层中,使其不进入内核金属氧化物光催化材料中。
所述的金属氧化物光催化材料,优选为禁带宽度大于3eV的金属氧化物半导体光催化材料,金属氧化物光催化材料为二元金属氧化物、多元金属氧化物中之一种或两种以上的组合。
所述的异质掺杂原子超薄层,采用能够均匀束缚活性掺杂原子的无定形超薄层,并且具有良好的透光性能。
所述的异质掺杂原子超薄层自身应具有大于4eV的带隙,以允许入射光有效激发内核光催化材料。
所述的活性掺杂原子与异质掺杂原子超薄层基体间能形成较强的束缚力,而与内核光催化材料间存在远程强相互作用,远程调控内核的电子结构增加光吸收。
所述的活性掺杂原子,包括:非金属掺杂原子C、N、S、P、B、F中之一种或两种以上的组合。
所述的改性半导体金属氧化物光催化材料的掺杂方法,采用湿化学方法或气相沉积方法,在金属氧化物光催化材料颗粒表面先构建一层超薄的异质掺杂原子层,然后在含活性掺杂原子的气氛下进行活化处理,将活性掺杂原子均匀束缚在表面异质超薄层内。
所述的异质掺杂原子超薄层,其厚度为0.5~5nm。
所述的异质掺杂原子超薄层,其中活性掺杂原子的原子百分含量为0.1~12%。
本发明的设计思想是:
本发明在宽带隙半导体金属氧化物光催化纳米颗粒表面构筑一层无定形的超薄层束缚活性异质掺杂原子,从而形成以金属氧化物光催化材料为核、含活性异质原子的无定形超薄层为壳的核壳结构,超薄层应具有非常大的带隙,从而允许入射光可以有效激发内核光催化材料,同时超薄层中的活性原子可以远程调控内核电子结构增加光吸收,从而综合提升光催化材料的可见光吸收范围和光催化活性。
本发明的优点及有益效果在于:
1、不同于传统“入侵式”掺杂直接将掺杂异质原子不可控的引入光催化材料基体中易产生光生载流子复合中心,本发明提出的“非入侵式”方法通过分步处理方法在光催化材料表面构筑一层的超薄原子层来束缚活性掺杂原子,使其不进入光催化材料基体中而通过远程作用调变内核光催化材料电子结构,避免额外产生光生载流子复合中心降低光生电荷的利用效率,有利于提高光催化活性。
2、本发明为拓宽半导体金属氧化物光催化材料的吸光范围和提高光催化活性的“非入侵式”掺杂改性制备方法,在半导体金属氧化物纳米颗粒表面构筑一层超薄的异质掺杂原子层,将掺杂原子均匀束缚在超薄层中使其不进入内核光催化材料中。从而,解决传统“入侵式”掺杂制备技术中因在金属氧化物基体相中引入掺杂异质原子而增加光生载流子复合中心的弊端,在拓宽光吸收范围的同时提高光催化活性,该发明普遍适用于改性各种半导体光催化材料。
附图说明
图1:采用传统“入侵式”掺杂方法在光催化材料基体中引入异掺杂质原子和本发明提供的“非入侵式”方法仅在光催化材料表面构筑超薄异质原子层新策略的对比示意图。
图2:起始SrTiO3、N掺杂SrTiO3、BO包覆的SrTiO3、BON包覆的SrTiO3的X-射线图;图中,横坐标2theta为衍射角(degree),纵坐标Intensity为强度(a.u.)。
图3:SrTiO3和BON-SrTiO3纳米颗粒的透射电镜图。(a)为BON-SrTiO3纳米颗粒的透射电镜图;(b)和(c)为BON-SrTiO3纳米颗粒B和N的元素分布图;(d)和(e)为典型SrTiO3和BON-SrTiO3纳米颗粒的高分辨透射电镜图,boron oxynitride为硼氮氧化物。
图4:SrTiO3基样品在不同状态下的X-射线光电子能谱B1s、N1s、O1s和Ti2p图。(a)为BO-SrTiO3样品;(b)为BON-SrTiO3样品;(c)N-SrTiO3样品;(d)为SrTiO3样品;图中,横坐标Binding energy为结合能(eV),纵坐标Intensity为强度(a.u.)。
图5:吸光性能与光催化活性对比图。(a)BO-SrTiO3样品与BON-SrTiO3样品和(b)SrTiO3样品与N-SrTiO3样品的紫外-可见光光吸收谱;图中,横坐标Wavelength为波长(nm),纵坐标Absorbance为吸光度(a.u.);N-SrTiO3样品和BON-SrTiO3样品分别在(c)紫外-可见光(UV-visible light)全光谱下和(d)可见光(visible light,λ>420nm)下光照降解罗丹明B的光催化活性对比图;图中,横坐标Time为时间(min),纵坐标C/C0为光催化活性。
图6:TiO2和BON-TiO2纳米颗粒的透射电镜图;(a)为BON-TiO2纳米颗粒的透射电镜图;(b)和(c)为BON-TiO2纳米颗粒B和N的元素分布图;(d)和(e)为典型TiO2和BON-TiO2纳米颗粒的高分辨透射电镜图,boron oxynitride为硼氮氧化物。
图7:样品吸光特性对比图。(a)BO-TiO2和BON-TiO2样品和(b)TiO2和N-TiO2样品;图中,横坐标Wavelength为波长(nm),纵坐标Absorbance为吸光度(a.u.)。
图8:N-TiO2样品和BON-TiO2样品光降解罗丹明B的光催化活性对比图。(a)紫外-可见光(UV-visible light)全光谱下和(b)可见光下(visible light,λ>420nm);图中,横坐标Time为时间(min),纵坐标C/C0为光催化活性。
具体实施方式
在具体实施过程中,本发明改性半导体金属氧化物光催化材料的掺杂方法,包括如下步骤:
(1)选用商用的半导体金属氧化物纳米颗粒为光催化基体材料。
(2)采用湿化学浸渍法将金属氧化物颗粒分散在表面超薄层前驱体硼酸溶液中,搅扮至干燥粉末,然后将干燥粉末进一步在炉子中热处理获得氧化硼超薄层包覆的金属氧化物纳米颗粒。
(3)将氧化硼超薄层包覆的金属氧化物颗粒在氨气气氛下进行掺杂活化处理,生成含有活性掺杂氮原子的硼氮氧化物表面超薄层包覆的金属氧化物颗粒光催化材料。本发明中,优选制备条件为金属氧化物与前驱体硼酸的质量比小于10:1、热处理温度小于700℃,保温时间小于5小时,氨气气体流速小于200ml/min。
如图1所示,采用传统“入侵式”掺杂方法在光催化剂材料基体表层中引入异质原子和本发明提供的“非入侵式”方法仅在光催化剂材料基体表面构筑透光的含活性异质掺杂原子的异质超薄层新策略的对比示意图,可以看出新方法在保证具有与传统掺杂制备方法类似的可见光吸收特性的同时,因在光催化剂材料中不引入异质掺杂原子而避免产生载流子复合中心,体现该新策略在提升光催化活性方面的显著优势。
下面,通过实施例对本发明进一步详细阐述。
实施例1
本实施例中,主要以最常用的商业购买的SrTiO3宽带隙金属氧化物光催化纳米颗粒为例,对比说明本发明所提供的构筑表面包覆超薄异质层的金属氧化物光催化材料的制备方法和光催化活性方面的优越性。
采用原料为:商业购买的SrTiO3纳米颗粒、硼酸。将1.2克SrTiO3纳米颗粒分散在15毫升含0.24克硼酸的水溶液中,在90℃温度条件下搅扮至干燥,然后将收集的粉末样品在炉子中以5℃/min的加热速率加热至500℃并保温2小时,获得超薄氧化硼(BO)层包覆的SrTiO3纳米颗粒样品(简写为BO-SrTiO3)。进一步将BO-SrTiO3样品在流速为50ml/min的氨气气氛下加热至600℃并保温0.5小时,进行掺杂氮原子活化处理获得超薄硼氮氧化物包覆的氧化物纳米颗粒样品BON-SrTiO3
X-射线测试设备及条件:Rigaku D/max 2500,Cu Ka射线。图2给出在SrTiO3表面构筑超薄层前后的XRD图,结合与直接N掺杂SrTiO3样品相比较表明,在SrTiO3表面仅包覆一层无定型的BON异质超薄层,且对基体氧化钛光催化材料没有任何影响。
透射电子显微镜测试设备及条件:FEI Tecnai F30,操作电压300kV,配有HAADF探测器和EELS谱。图3对比SrTiO3包覆超薄层前后的形貌变化以及异质超薄层中的B、N元素分布情况,从图中看出,在金属氧化物表面构筑异质超薄层未改变金属氧化物的颗粒大小和形貌状态,而只是在整个氧化物颗粒表面包裹一层厚度仅约为1~2nm的无定型BNO异质超薄层,这也与XRD结果相一致。
X-射线光电子能谱测试设备及条件:VG ESCALAB 250,Al Ka X-射线源。元素的结合能根据C1s峰位(284.6eV)矫正。图4给出BON-SrTiO3以及SrTiO3基参考样品的化学态,分别对比B和N的X-射线光电子谱表明,BO-SrTiO3经过氮化处理后出现新的B和N峰,表明BO超薄层转变为含掺杂活性N原子的BON超薄层。根据XPS原子含量粗略估计BON超薄层的组成为BO0.84N0.78。与直接N掺杂SrTiO3样品相比,BON-SrTiO3样品中的N含量远高于前者,表明N在BO中的溶解度远高于SrTiO3。此外两者中N结合能的差异表明,BON-SrTiO3样品中的N原子只在表面超薄层中而未进入SrTiO3光催化材料中。
吸收光谱测试设备:UV-visible spectroscopy,JASCO-770。从图5不同样品的吸光特性对比表明,SrTiO3和BO-SrTiO3样品都基本没有可见光吸收能力,而经过N掺杂后两者都出现相似的肩膀状可见光吸收,这表明BON异质超薄层中的N与直接掺杂的N具有相似的调变SrTiO3电子结构的能力。此外,氮掺杂未改变SrTiO3的带隙表明掺杂氮原子只在表面而未均相的进入氧化物基体中。为了说明本发明所制备样品在提升光催化活性方面的显著优势,图5的(c)和(d)对比给出光降解罗丹明B的性能对比可以看出,在全光谱和可见光光照下,BON-SrTiO3样品都比N-SrTiO3样品具有更高的光催化活性,尤为显著的是在可见光下降解速率提高达5倍。这些结果充分说明,本发明提供的新掺杂策略在提高宽带隙金属氧化物光催化活性方面的显著优势。
实施例2
与实施例1不同之处在于,选用另一广泛应用的宽带隙金属氧化物TiO2为模型光催化材料,证实本方法提供新掺杂策略的普适性和有效性。
采用原料为商用购买的TiO2纳米颗粒和硼酸,样品制备过程同实施例1。图6对比TiO2包覆超薄层前后的形貌变化以及异质超薄层中的B、N元素分布情况,与BON-SrTiO3样品相似,形貌分析结果表明只在TiO2金属氧化物纳米颗粒表面包覆一层厚度约为1~2nm的无定型BNO异质超薄层。图7给出的对比吸光特性表明,与直接N掺杂TiO2样品相似,束缚在表面BO异质超薄层中的活性N原子可远程调变TiO2的电子结构,从而扩展样品的可见光吸收范围。图8给出的光降解罗丹明B的性能对比表明,与直接N掺杂TiO2样品不同的是,采用本发明提供的新掺杂策略所制备样品在全光谱和可见光下的光催化活性都得到显著的提高,进一步说明新掺杂策略的普适性和有效性。
实施例结果表明,本发明拓宽半导体金属氧化物光催化材料的吸光范围和提高光催化活性的“非入侵式”掺杂改性制备方法,其提供的新掺杂策略通过控制活性掺杂原子的引入,使其能够调变氧化物光催化材料的电子结构扩展可见光吸收范围,但又不进入光催化材料基体中产生额外的光生载流子复合中心而降低光生电荷空穴的利用效率,所以可显著提高光催化材料的光催化活性。

Claims (9)

1.一种改性半导体金属氧化物光催化材料的掺杂方法,其特征在于,在金属氧化物光催化材料表面构筑一层含有活性异质掺杂原子的超薄层,将活性掺杂原子均匀束缚在所述超薄层中,使其不进入内核金属氧化物光催化材料中。
2.按照权利要求1所述的改性半导体金属氧化物光催化材料的掺杂方法,其特征在于,所述的金属氧化物光催化材料,优选为禁带宽度大于3eV的金属氧化物半导体光催化材料,金属氧化物光催化材料为二元金属氧化物、多元金属氧化物中之一种或两种以上的组合。
3.按照权利要求1所述的改性半导体金属氧化物光催化材料的掺杂方法,其特征在于,所述的异质掺杂原子超薄层,采用能够均匀束缚活性掺杂原子的无定形超薄层,并且具有良好的透光性能。
4.按照权利要求3所述的改性半导体金属氧化物光催化材料的掺杂方法,其特征在于,所述的异质掺杂原子超薄层自身应具有大于4eV的带隙,以允许入射光有效激发内核光催化材料。
5.按照权利要求1所述的改性半导体金属氧化物光催化材料的掺杂方法,其特征在于,所述的活性掺杂原子与异质掺杂原子超薄层基体间能形成较强的束缚力,而与内核光催化材料间存在远程强相互作用,远程调控内核的电子结构增加光吸收。
6.按照权利要求1所述的改性半导体金属氧化物光催化材料的掺杂方法,其特征在于,所述的活性掺杂原子,包括:非金属掺杂原子C、N、S、P、B、F中之一种或两种以上的组合。
7.按照权利要求1所述的改性半导体金属氧化物光催化材料的掺杂方法,其特征在于,采用湿化学方法或气相沉积方法,在金属氧化物光催化材料颗粒表面先构建一层超薄的异质掺杂原子层,然后在含活性掺杂原子的气氛下进行活化处理,将活性掺杂原子均匀束缚在表面异质超薄层内。
8.按照权利要求1至7之一所述的改性半导体金属氧化物光催化材料的掺杂方法,其特征在于,所述的异质掺杂原子超薄层,其厚度为0.5~5nm。
9.按照权利要求1至7之一所述的改性半导体金属氧化物光催化材料的掺杂方法,其特征在于,所述的异质掺杂原子超薄层,其中活性掺杂原子的原子百分含量为0.1~12%。
CN201810115598.7A 2018-02-06 2018-02-06 一种改性半导体金属氧化物光催化材料的掺杂方法 Active CN109999778B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810115598.7A CN109999778B (zh) 2018-02-06 2018-02-06 一种改性半导体金属氧化物光催化材料的掺杂方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810115598.7A CN109999778B (zh) 2018-02-06 2018-02-06 一种改性半导体金属氧化物光催化材料的掺杂方法

Publications (2)

Publication Number Publication Date
CN109999778A true CN109999778A (zh) 2019-07-12
CN109999778B CN109999778B (zh) 2021-07-23

Family

ID=67164724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810115598.7A Active CN109999778B (zh) 2018-02-06 2018-02-06 一种改性半导体金属氧化物光催化材料的掺杂方法

Country Status (1)

Country Link
CN (1) CN109999778B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048753A (zh) * 2019-11-29 2020-04-21 上海应用技术大学 一种氧化铁掺杂磷原子复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150111725A1 (en) * 2013-10-21 2015-04-23 Peter C. Van Buskirk Photocatalytic thin film devices
CN106345481A (zh) * 2016-08-17 2017-01-25 上海交通大学 超薄层三氧化二铁修饰的钒酸铋薄膜及其制备方法和应用
CN106964339A (zh) * 2017-04-14 2017-07-21 武汉理工大学 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150111725A1 (en) * 2013-10-21 2015-04-23 Peter C. Van Buskirk Photocatalytic thin film devices
CN106345481A (zh) * 2016-08-17 2017-01-25 上海交通大学 超薄层三氧化二铁修饰的钒酸铋薄膜及其制备方法和应用
CN106964339A (zh) * 2017-04-14 2017-07-21 武汉理工大学 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048753A (zh) * 2019-11-29 2020-04-21 上海应用技术大学 一种氧化铁掺杂磷原子复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN109999778B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
Dong et al. Nanostructure Engineering and Modulation of (Oxy) Nitrides for Application in Visible‐Light‐Driven Water Splitting
Xue et al. A facile strategy for the synthesis of hierarchical TiO 2/CdS hollow sphere heterostructures with excellent visible light activity
Yu et al. Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis
Zhang et al. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method
Huang et al. Environmentally benign synthesis of Co3O4-SnO2 heteronanorods with efficient photocatalytic performance activated by visible light
Samsudin et al. Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response
Chen et al. Preparation, characterization and activity evaluation of p–n junction photocatalyst p-ZnO/n-TiO2
Wang et al. One-step calcination method for synthesis of mesoporous gC 3 N 4/NiTiO 3 heterostructure photocatalyst with improved visible light photoactivity
Huang et al. Facile synthesis of three-dimensional WO3-x/Bi/BiOCl hierarchical heterostructures with broad spectrum driven photocatalytic activity
Rajput et al. Recent advances in g-C3N4-based photocatalysts for hydrogen evolution reactions
Chen et al. 2D ultrathin CoP modified Mn x Cd 1− x S with controllable band structure and robust photocatalytic performance for hydrogen generation
Guo et al. Cotton fabric-based rGO/BiVO4 recyclable photocatalytic nanocomposites for dye degradation under visible light
Zhao et al. Noble metal-like behavior of plasmonic Bi particles deposited on reduced TiO2 microspheres for efficient full solar spectrum photocatalytic oxygen evolution
She et al. Spatially separated bimetallic cocatalysts on hollow-structured TiO 2 for photocatalytic hydrogen generation
Balakumar et al. In-situ growth of TiO2@ B-doped g-C3N4 core-shell nanospheres for boosts the photocatalytic detoxification of emerging pollutants with mechanistic insight
Ren et al. Novel ternary Ag/CeVO 4/gC 3 N 4 nanocomposite as a highly efficient visible-light-driven photocatalyst
Wang et al. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications
Zhao et al. RGO Boosts Band Gap Regulates for Constructing Ni 2 P/RGO/MoO 2 Z-Scheme Heterojunction to Achieve High Efficiency Photocatalytic H 2 Evolution
CN104772149B (zh) 一种Bi2O3/BiFeO3/TiO2纳米花光催化材料及其制备方法
CN114733540B (zh) 一种纳米级碳包覆Mo-Mo2C的异质纳米粒子及其制备方法和应用
Bhagya et al. In situ tuning of band gap of Sn doped composite for sustained photocatalytic hydrogen generation under visible light irradiation
Zhang et al. Novel adsorption-photocatalysis integrated bismuth tungstate modified layered mesoporous titanium dioxide (Bi2WO6/LM-TiO2) composites
Xing et al. Influence of calcination temperature on the microstructure and photocatalysis performance of B/Sm-TiO2 nanomaterials
CN108579775B (zh) 一种磷酸银/银/二氧化钛纳米花复合材料及其制备方法与应用
CN106423144A (zh) 一种碳纤维@氧化钨纳米颗粒核壳复合结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant