CN106345481A - 超薄层三氧化二铁修饰的钒酸铋薄膜及其制备方法和应用 - Google Patents
超薄层三氧化二铁修饰的钒酸铋薄膜及其制备方法和应用 Download PDFInfo
- Publication number
- CN106345481A CN106345481A CN201610681054.8A CN201610681054A CN106345481A CN 106345481 A CN106345481 A CN 106345481A CN 201610681054 A CN201610681054 A CN 201610681054A CN 106345481 A CN106345481 A CN 106345481A
- Authority
- CN
- China
- Prior art keywords
- thin film
- spin coating
- bivo
- modified
- vanadic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 150000001621 bismuth Chemical class 0.000 title abstract 2
- 229910052742 iron Inorganic materials 0.000 title abstract 2
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 title abstract 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 36
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims abstract description 26
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 238000001179 sorption measurement Methods 0.000 claims abstract description 12
- 238000005342 ion exchange Methods 0.000 claims abstract description 10
- 238000007146 photocatalysis Methods 0.000 claims abstract description 10
- 230000001699 photocatalysis Effects 0.000 claims abstract description 10
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 6
- 239000000446 fuel Substances 0.000 claims abstract description 6
- 239000002351 wastewater Substances 0.000 claims abstract description 6
- 230000008021 deposition Effects 0.000 claims abstract description 4
- 239000010409 thin film Substances 0.000 claims description 66
- 238000004528 spin coating Methods 0.000 claims description 55
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 claims description 25
- 229910052797 bismuth Inorganic materials 0.000 claims description 21
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 21
- WQEVDHBJGNOKKO-UHFFFAOYSA-K vanadic acid Chemical group O[V](O)(O)=O WQEVDHBJGNOKKO-UHFFFAOYSA-K 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000002243 precursor Substances 0.000 claims description 10
- 238000010521 absorption reaction Methods 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 6
- 229910003206 NH4VO3 Inorganic materials 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 5
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 238000012546 transfer Methods 0.000 abstract description 3
- 229910002915 BiVO4 Inorganic materials 0.000 abstract 3
- 238000009987 spinning Methods 0.000 abstract 3
- 238000007605 air drying Methods 0.000 abstract 2
- 229960004887 ferric hydroxide Drugs 0.000 abstract 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 abstract 1
- 239000002244 precipitate Substances 0.000 abstract 1
- 238000007669 thermal treatment Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 11
- 239000010408 film Substances 0.000 description 10
- 239000012467 final product Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 230000005525 hole transport Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000593 degrading effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229960000907 methylthioninium chloride Drugs 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000005622 photoelectricity Effects 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/847—Vanadium, niobium or tantalum or polonium
- B01J23/8472—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
- Compounds Of Iron (AREA)
Abstract
本发明公开了一种超薄层Fe2O3修饰的BiVO4薄膜及其制备方法和应用,所述超薄层Fe2O3的厚度为8‑20nm,采用旋涂离子交换吸附反应进行可控沉积的,具体方案为:首先在制备的BiVO4薄膜上旋涂0.1M的硝酸铁溶液,自然晾干,再旋涂0.1M的氢氧化钠溶液,自然晾干,由此构成一次完整的旋涂;旋涂的硝酸铁与旋涂的氢氧化钠发生离子交换吸附反应,生成铁的氢氧化物沉淀;之后连续完成2~5次所述完整的旋涂,以控制超薄层Fe2O3的厚度范围为8‑20nm;旋涂完成后,450℃热处理3h,即获得超薄层Fe2O3修饰的BiVO4薄膜。所述超薄层Fe2O3修饰的BiVO4薄膜具有良好的可见光吸收性能、良好的稳定性、高光电效率和电荷转移效率,能够广泛应用于光催化、光电催化和光催化废水燃料电池等领域。
Description
技术领域
本发明涉及一种薄膜材料,具体涉及一种采用超薄层三氧化二铁修饰的钒酸铋薄膜及其制备方法和应用,属于纳米材料及应用技术领域。
技术背景
钒酸铋(BiVO4)光阳极作为一种新兴的电极材料受到研究者们越来越多的关注,因为BiVO4光阳极禁带较窄能够吸收绝大部分的可见光,其价带位置较正能够提供足够的氧化电位来氧化水。但是未经修饰的BiVO4光阳极存在有很多不足,如光生电子和空穴复合严重、表面反应动力学惰性等。因此研究者们通过各种办法来解决这些局限性以求进一步提高BiVO4光电极的性能,如:M.Li等用钨元素掺杂以改善BiVO4的导电性和空穴传输距离(J.Hydrogen Energy,2010,35,7127–7133.),Ho-Kimura与J.S.Lee分别通过与TiO2、WO3构建异质结来促进电荷分离(J.Mater.Chem.A,2014,2,3948–3953;Nano energy,2015,15,153-163.),X.Zhang与F.Lin等分别在钒酸铋表面修饰诸如Co和RhO2等助催化剂来获得合理的表面反应动力学以促进氧的析出(Electrochim.Acta,2016,195,51-58;EnergyEnviron.Sci.,2012,5,6400.)。但是上述方法采用了较为昂贵的元素或者复杂的工艺对BiVO4进行修饰改性,因而各有其不足。
Fe2O3由地壳中含量丰富的铁和氧元素构成,具有价格便宜和环境友好等优点。虽然尽管Fe2O3与BiVO4之间能级匹配,但是Fe2O3具有差的导电性和短的空穴传输距离,因此简单地在BiVO4表面修饰Fe2O3难以获得高的光催化性能或光电性能,如P.Cai等报道了利用Fe2O3修饰粉体BiVO4的研究(Nano-Micro Lett.,2015,7,183-193),尽管粉体BiVO4的光催化活性有一定程度的提高,但是其光分解水的能力下降。因此,如何使光生载流子空穴快速穿越Fe2O3修饰层,是获得高性能Fe2O3修饰BiVO4材料的难点。
发明内容
本发明针对Fe2O3导电性差、空穴传输距离短的不足,通过在BiVO4薄膜表面可控地修饰一超薄层Fe2O3共催化层,以获得具有高效光电催化性能和良好稳定性的可见光响应的Fe2O3/BiVO4薄膜材料。
为实现上述目的,本发明通过以下技术方案以解决其技术问题:
一种超薄层三氧化二铁修饰的钒酸铋薄膜,其特征在于,所述超薄层三氧化二铁的厚度为8-20nm。
本发明的另一技术方案为:
一种所述超薄层三氧化二铁修饰的钒酸铋薄膜的制备方法,其特征在于,所述的超薄层三氧化二铁是采用旋涂离子交换吸附反应进行可控沉积的,具体方案为:首先在制备的钒酸铋薄膜上旋涂0.1M的硝酸铁溶液,自然晾干,再旋涂0.1M的氢氧化钠溶液,自然晾干,由此构成一次完整的旋涂;旋涂的硝酸铁与旋涂的氢氧化钠发生离子交换吸附反应,生成铁的氢氧化物沉淀;之后连续完成2~5次所述完整的旋涂,以控制超薄层三氧化二铁的厚度范围为8-20nm;旋涂完成后,450℃热处理3h,即获得超薄层三氧化二铁修饰的钒酸铋薄膜。
所述的钒酸铋薄膜的制备方法如下:先将0.3M的Bi(NO3)3与NH4VO3溶于2M的HNO3溶液中,制成钒酸铋前驱体溶液,然后将该钒酸铋前驱体溶液旋涂到FTO导电玻璃上,每旋涂完一次后在450℃热处理15min,反复旋涂3次,最后于450℃热处理3h,即获得厚度为180nm的钒酸铋薄膜。
本发明的又一技术方案为:
一种所述超薄层三氧化二铁修饰的钒酸铋薄膜在光催化、光电催化和光催化废水燃料电池领域中的应用。
本发明所述的超薄层三氧化二铁修饰的钒酸铋薄膜与其他方法修饰的BiVO4薄膜以及未修饰的BiVO4薄膜相比,具有明显的优点:
(1)Fe2O3由地壳含量丰富的铁和氧元素构成,具有价格便宜和环境友好的优点;
(2)BiVO4与Fe2O3之间存在着能级匹配关系,见图1,这种能级匹配关系能够满足BiVO4光生空穴传输的能量要求;
(3)超薄的Fe2O3层有利于光生空穴通过Fe2O3层薄膜向电极/电解液界面传输,以减少空穴的表面聚集,从而克服Fe2O3导电性差、空穴传输距离短的不足,减少光生电荷的复合,其效果见图2;
(4)空穴在BiVO4表面聚集减少,对BiVO4起到了保护作用,从而使Fe2O3/BiVO4薄膜获得了高稳定性。
图1-图8所示的实验结果表明,所述的超薄层三氧化二铁修饰的钒酸铋薄膜具有良好的可见光吸收性能、良好的稳定性、高光电效率和电荷转移效率,能够广泛应用于光催化、光电催化、光催化废水燃料电池等领域,取得了良好的技术效果。
附图说明
图1是Fe2O3与BiVO4的能级结构示意图。
图2是BiVO4电极与Fe2O3/BiVO4电极的瞬态光电流的比较。
图3是实施例1中BiVO4薄膜及Fe2O3/BiVO4薄膜的光吸收曲线。
图4是实施例1中BiVO4薄膜及Fe2O3/BiVO4薄膜的SEM图。
图5是实施例1中BiVO4薄膜及Fe2O3/BiVO4薄膜的伏安曲线。
图6是实施例1中BiVO4薄膜及Fe2O3/BiVO4薄膜的光电转换效率曲线。
图7是实施例1中BiVO4薄膜及Fe2O3/BiVO4薄膜用于光电催化降解亚甲基蓝的降解效率图。
图8是Fe2O3/BiVO4薄膜循环用于光电催化降解亚甲基蓝的降解效率图。
图9是本发明的制备方法程序图。
具体实施方式
针对Fe2O3导电性差、空穴传输距离短等不足,本发明通过在BiVO4薄膜表面可控地修饰一超薄层Fe2O3共催化层,以获得具有高效光电催化性能、良好稳定性的可见光响应的Fe2O3/BiVO4薄膜材料。
所述的超薄层三氧化二铁修饰的钒酸铋薄膜中,超薄层Fe2O3的厚度为8-20nm。
所述的超薄三氧化二铁膜是采用基于旋涂的离子交换吸附反应进行可控沉积的,其制备过程见图9。
所述的BiVO4薄膜可以采用公有的方法,如旋涂法进行制备。
所述的超薄层三氧化二铁修饰的钒酸铋薄膜具有良好的可见光吸收性能、良好的稳定性、高光电效率和电荷转移效率,能够广泛应用于光催化、光电催化和光催化废水燃料电池等领域。
下面结合实施例和附图对本发明作详细说明,但不应以此限制本发明的保护范围。
实施例1
先采用旋涂法制备BiVO4薄膜(Appl.Catal.B:Environ.,2016,183,224-230.):将0.3M的Bi(NO3)3与NH4VO3溶于2M的HNO3溶液中,制成BiVO4前驱体溶液,然后将此前驱体溶液旋涂到FTO导电玻璃上,每旋涂完一次在450℃热处理15min,旋涂3次,然后于450℃热处理3h,即得薄膜厚度为180nm的BiVO4光阳极。之后采用旋涂离子交换吸附反应沉积Fe2O3层:首先在制备的BiVO4光阳极薄膜上旋涂0.1M的硝酸铁溶液,自然晾干,再旋涂0.1M的氢氧化钠溶液,自然晾干,由此构成一次完整的旋涂。此时旋涂的硝酸铁会与旋涂的氢氧化钠发生离子交换吸附反应,生成铁的氢氧化物沉淀。可通过调节完整的旋涂次数控制超薄层Fe2O3的厚度。本实施例进行3次完整的旋涂后,450℃热处理3h,即得超薄层Fe2O3厚度为12nm的超薄层三氧化二铁修饰的钒酸铋薄膜(Fe2O3/BiVO4薄膜)。该Fe2O3/BiVO4光阳极薄膜在0.1M的KH2PO4(pH 7)溶液中测试,光电流为1.63mA/cm2(1.23V vs RHE)。该薄膜材料可以作为光电催化电极用于光电催化制氢或降解有机物以及光催化废水燃料电池中。
图3给出了上述BiVO4薄膜和Fe2O3/BiVO4薄膜的光吸收曲线,可以看出两个薄膜都具有可见光吸收性能,但Fe2O3薄层的修饰使得BiVO4薄膜在可见光和紫外光区域的光吸收都有所增强。
图4给出了BiVO4薄膜和Fe2O3/BiVO4薄膜的SEM图;从侧面扫描图可以估算出超薄层三氧化二铁的厚度约为12nm。
图5给出了上述BiVO4薄膜和Fe2O3/BiVO4薄膜在pH=7的磷酸缓冲液中,于AM1.5(100mW/m2)光照下的伏安曲线;可以看出,修饰Fe2O3之后,超薄层三氧化二铁修饰的钒酸铋薄膜的光生电流密度明显提高,在1.23V(相对于氢电极)下的光生电流密度提高约114.5%。
图6给出了上述BiVO4薄膜和Fe2O3/BiVO4薄膜在pH=7的磷酸缓冲液中,1.23V(vs.RHE)偏压下,在各个波长的光照射下的IPCE图;可以看出经Fe2O3层修饰后BiVO4薄膜在400nm处的光电转换效率变为原来的3倍。
图7和图8给出了上述BiVO4薄膜和Fe2O3/BiVO4薄膜在1.23V(vs.RHE)偏压、AM1.5(100mW/m2)光照下,光电催化降解亚甲基蓝的降解率以及Fe2O3/BiVO4薄膜在多次重复使用中的降解率;可以看出所述的超薄层三氧化二铁修饰的钒酸铋薄膜具有高于修饰之前的BiVO4薄膜的降解效率,同时表现出良好的稳定性。
实施例2
先采用旋涂法制备BiVO4薄膜(Appl.Catal.B:Environ.,2016,183,224-230.):将0.3M的Bi(NO3)3与NH4VO3溶于2M的HNO3溶液中,制成BiVO4前驱体溶液,然后将此前驱体溶液旋涂到FTO导电玻璃上,每旋涂完一次在450℃热处理15min,旋涂3次,然后于450℃热处理3h,即得薄膜厚度为180nm的BiVO4光阳极。之后采用旋涂离子交换吸附反应沉积Fe2O3层:首先在制备的BiVO4薄膜上旋涂0.1M的硝酸铁溶液,自然晾干,再旋涂0.1M的氢氧化钠溶液,自然晾干,由此构成一次完整的旋涂。此时旋涂的硝酸铁会与旋涂的氢氧化钠发生离子交换吸附反应,生成铁的氢氧化物沉淀。可通过调节旋涂次数控制超薄层Fe2O3的厚度。本实施例进行5次完整的旋涂后,450℃热处理3h,即得Fe2O3超薄层厚度为20nm的Fe2O3修饰BiVO4(Fe2O3/BiVO4)薄膜。该Fe2O3/BiVO4光阳极薄膜在0.1M的KH2PO4(pH 7)溶液中测试,光电流为1.5mA/cm2(1.23V vs RHE)。
实施例3
先采用旋涂法制备BiVO4薄膜(Appl.Catal.B:Environ.,2016,183,224-230.):将0.3M的Bi(NO3)3与NH4VO3溶于2M的HNO3溶液中,制成BiVO4前驱体溶液,然后将此前驱体溶液旋涂到FTO导电玻璃上,每旋涂完一次在450℃热处理15min,旋涂3次,然后于450℃热处理3h,即得薄膜厚度为180nm BiVO4光阳极。之后采用旋涂离子交换吸附反应沉积Fe2O3层:首先在制备的BiVO4薄膜上旋涂0.1M的硝酸铁溶液,自然晾干,再旋涂0.1M的氢氧化钠溶液,自然晾干,由此构成一次完整的旋涂。此时旋涂的硝酸铁会与旋涂的氢氧化钠发生离子交换吸附反应,生成铁的氢氧化物沉淀。可通过调整旋涂次数来控制超薄层Fe2O3的厚度。本实施例进行2次完整的旋涂后,450℃热处理3h,即得Fe2O3超薄层厚度为8nm的Fe2O3修饰BiVO4(Fe2O3/BiVO4)薄膜。该Fe2O3/BiVO4光阳极在0.1M的KH2PO4(pH 7)溶液中测试,光电流为0.6mA/cm2(1.23V vs RHE)。
上述实施例不以任何方式限制本发明,凡是采用等同结构或等效方法获得的技术方案均落在本发明所要求的保护范围内。
Claims (4)
1.一种超薄层三氧化二铁修饰的钒酸铋薄膜,其特征在于,所述超薄层三氧化二铁的厚度为8-20nm。
2.一种权利要求1所述超薄层三氧化二铁修饰的钒酸铋薄膜的制备方法,其特征在于,所述的超薄层三氧化二铁是采用旋涂离子交换吸附反应进行可控沉积的,具体方案为:首先在制备的钒酸铋薄膜上旋涂0.1M的硝酸铁溶液,自然晾干,再旋涂0.1M的氢氧化钠溶液,自然晾干,由此构成一次完整的旋涂;旋涂的硝酸铁与旋涂的氢氧化钠发生离子交换吸附反应,生成铁的氢氧化物沉淀;之后连续完成2~5次所述完整的旋涂,以控制超薄层三氧化二铁的厚度范围为8-20nm;旋涂完成后,450℃热处理3h,即获得超薄层三氧化二铁修饰的钒酸铋薄膜。
3.根据权利要求2所述的超薄层三氧化二铁修饰的钒酸铋薄膜的制备方法,其特征在于,所述的钒酸铋薄膜的制备方法如下:先将0.3M的Bi(NO3)3与NH4VO3溶于2M的HNO3溶液中,制成钒酸铋前驱体溶液,然后将该钒酸铋前驱体溶液旋涂到FTO导电玻璃上,每旋涂完一次后在450℃热处理15min,反复旋涂3次,最后于450℃热处理3h,即获得厚度为180nm的钒酸铋薄膜。
4.一种权利要求1所述超薄层三氧化二铁修饰的钒酸铋薄膜在光催化、光电催化和光催化废水燃料电池领域中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610681054.8A CN106345481B (zh) | 2016-08-17 | 2016-08-17 | 超薄层三氧化二铁修饰的钒酸铋薄膜及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610681054.8A CN106345481B (zh) | 2016-08-17 | 2016-08-17 | 超薄层三氧化二铁修饰的钒酸铋薄膜及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106345481A true CN106345481A (zh) | 2017-01-25 |
CN106345481B CN106345481B (zh) | 2018-11-02 |
Family
ID=57844984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610681054.8A Active CN106345481B (zh) | 2016-08-17 | 2016-08-17 | 超薄层三氧化二铁修饰的钒酸铋薄膜及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106345481B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109440126A (zh) * | 2018-05-28 | 2019-03-08 | 许昌学院 | 一种钒酸铋光阳极薄膜及其制备方法 |
CN109999778A (zh) * | 2018-02-06 | 2019-07-12 | 中国科学院金属研究所 | 一种改性半导体金属氧化物光催化材料的掺杂方法 |
CN110227478A (zh) * | 2019-07-10 | 2019-09-13 | 西北师范大学 | 通过旋涂煅烧制备钴氧化物/钒酸铋复合材料的方法 |
CN113893869A (zh) * | 2020-07-06 | 2022-01-07 | 吕锋仔 | 半导体异质结/同质结及其制备方法和具有其的光催化剂 |
CN114162956A (zh) * | 2021-11-05 | 2022-03-11 | 华中科技大学 | 一种光电协同过氧化氢处理氯酚类污染物的装置及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1683074A (zh) * | 2005-03-11 | 2005-10-19 | 南京大学 | 可见光响应型光催化薄膜层的制备方法 |
CN103078013A (zh) * | 2013-01-29 | 2013-05-01 | 上海交通大学 | 钒酸铋/铁酸铋异质结薄膜太阳能电池的制备方法 |
CN105233816A (zh) * | 2014-07-08 | 2016-01-13 | 冯冠华 | 一种二氧化钛/钒酸铋多相复合异质结纳米光催化材料的制备方法 |
CN105679880A (zh) * | 2016-01-19 | 2016-06-15 | 新疆中兴能源有限公司 | 一种光解水用大面积钒酸铋薄膜的简易制备方法 |
-
2016
- 2016-08-17 CN CN201610681054.8A patent/CN106345481B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1683074A (zh) * | 2005-03-11 | 2005-10-19 | 南京大学 | 可见光响应型光催化薄膜层的制备方法 |
CN103078013A (zh) * | 2013-01-29 | 2013-05-01 | 上海交通大学 | 钒酸铋/铁酸铋异质结薄膜太阳能电池的制备方法 |
CN105233816A (zh) * | 2014-07-08 | 2016-01-13 | 冯冠华 | 一种二氧化钛/钒酸铋多相复合异质结纳米光催化材料的制备方法 |
CN105679880A (zh) * | 2016-01-19 | 2016-06-15 | 新疆中兴能源有限公司 | 一种光解水用大面积钒酸铋薄膜的简易制备方法 |
Non-Patent Citations (2)
Title |
---|
FATWA F. ABDI ET AL: ""Nature and Light Dependence of Bulk Recombination in Co-Pi Catalyzed BiVO4 Photoanodes"", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 * |
PING CAI ET AL: ""Fe2O3-modifided BiVO4 nanoplates with enhanced photocatalytic activity"", 《NANO-MICRO LETT.》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109999778A (zh) * | 2018-02-06 | 2019-07-12 | 中国科学院金属研究所 | 一种改性半导体金属氧化物光催化材料的掺杂方法 |
CN109999778B (zh) * | 2018-02-06 | 2021-07-23 | 中国科学院金属研究所 | 一种改性半导体金属氧化物光催化材料的掺杂方法 |
CN109440126A (zh) * | 2018-05-28 | 2019-03-08 | 许昌学院 | 一种钒酸铋光阳极薄膜及其制备方法 |
CN110227478A (zh) * | 2019-07-10 | 2019-09-13 | 西北师范大学 | 通过旋涂煅烧制备钴氧化物/钒酸铋复合材料的方法 |
CN113893869A (zh) * | 2020-07-06 | 2022-01-07 | 吕锋仔 | 半导体异质结/同质结及其制备方法和具有其的光催化剂 |
CN114162956A (zh) * | 2021-11-05 | 2022-03-11 | 华中科技大学 | 一种光电协同过氧化氢处理氯酚类污染物的装置及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106345481B (zh) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106345481B (zh) | 超薄层三氧化二铁修饰的钒酸铋薄膜及其制备方法和应用 | |
Karimi-Nazarabad et al. | Highly efficient photocatalytic and photoelectrocatalytic activity of solar light driven WO3/g-C3N4 nanocomposite | |
Bassi et al. | Recent progress in iron oxide based photoanodes for solar water splitting | |
CN105597784B (zh) | MoS2掺杂的氧化铁光催化薄膜、制备方法及其在处理含酚废水中的应用 | |
Zhang et al. | High carriers transmission efficiency ZnS/SnS2 heterojunction channel toward excellent photoelectrochemical activity | |
CN105110423A (zh) | 碳气凝胶负载双金属有机骨架电芬顿阴极及其制备方法 | |
Jin et al. | Graphdiyne based GDY/CuI/NiO parallel double S-scheme heterojunction for efficient photocatalytic hydrogen evolution | |
KR101981658B1 (ko) | 광전지화학 셀 및 그 제조방법, 물 전기분해 시스템 및 그 제조방법 | |
Wang et al. | Development of ABO4‐type photoanodes for photoelectrochemical water splitting | |
CN105803476A (zh) | 铁酸铋修饰钒酸铋的光阳极和制备方法及其在光解水制氢的应用 | |
KR101638366B1 (ko) | 페로브스카이트 태양전지용 전자 전달층의 형성 방법 및 페로브스카이트 태양전지 | |
CN110368962B (zh) | 一种BiOI/WO3异质结高效光电催化电极的制备方法、产品及应用 | |
Ren et al. | Ferrites as photocatalysts for water splitting and degradation of contaminants | |
Chen et al. | Surface-and interface-engineered heterostructures for solar hydrogen generation | |
CN102407150A (zh) | 二氧化钛/银/氯化银核壳结构光催化剂及其制备方法 | |
Dutta et al. | MOFs in photoelectrochemical water splitting: New horizons and challenges | |
CN105789352B (zh) | 一种三氧化钨/二氧化钛纳米异质结薄膜及其制备和应用 | |
CN102909008A (zh) | 一种TiO2/SiO2-Ag-SiO2纳米复合薄膜的制备方法 | |
CN102909039A (zh) | 一种二氧化钛/银/溴化银核壳结构光催化剂及制备方法 | |
Su et al. | 3D coral-like Fe doped NiCo2S4 cathode for stable high-efficiency photoelectrochemical tetracycline degradation and simultaneous energy recovery | |
Wang et al. | High-performance photocatalysis afforded by g-C3N4/NiCo2O4-decorated carbon cloth | |
Wu et al. | Carbon quantum dots modified Bi2WO6 nanoflowers for enhancing photocatalytic activity: an experimental and DFT study | |
Yao et al. | PPy/WO3 Co-modified TiO2 photoanode based photocatalytic fuel cell for degradation of Rhodamine B and electricity generation under visible light illumination | |
Fu et al. | Novel CoOx/CdS/TiO2 with multi-shelled porous heterostructure for enhanced charge separation efficiency of photoelectrochemical water splitting | |
Wang et al. | Recent advances in elaborate interface regulation of BiVO4 photoanode for photoelectrochemical water splitting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |