CN109988280B - 一种活性氧响应性的可降解聚氨酯材料及其制备方法 - Google Patents

一种活性氧响应性的可降解聚氨酯材料及其制备方法 Download PDF

Info

Publication number
CN109988280B
CN109988280B CN201910286276.3A CN201910286276A CN109988280B CN 109988280 B CN109988280 B CN 109988280B CN 201910286276 A CN201910286276 A CN 201910286276A CN 109988280 B CN109988280 B CN 109988280B
Authority
CN
China
Prior art keywords
active oxygen
polyurethane
responsive
diisocyanate
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910286276.3A
Other languages
English (en)
Other versions
CN109988280A (zh
Inventor
高长有
姚跃君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910286276.3A priority Critical patent/CN109988280B/zh
Publication of CN109988280A publication Critical patent/CN109988280A/zh
Application granted granted Critical
Publication of CN109988280B publication Critical patent/CN109988280B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3228Polyamines acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6648Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6651Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/20Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/14Polyurethanes having carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明公开了一种活性氧响应性的可降解聚氨酯材料及其制备方法,它包括可生物降解的聚酯二醇软段和由饱和脂肪族二异氰酸酯及活性氧响应性小分子二胺组成的硬段。该材料以聚ε‑己内酯二醇(PCL)或聚富马酸丙二醇酯(PPF)为大分子二元醇,以饱和脂肪族二异氰酸酯为原料,以活性氧响应性小分子二胺为扩链剂,采用二步扩链法制备。本发明制备的聚氨酯弹性体具有良好的生物相容性,且具有对活性氧的响应性,材料本身及降解产物对人体无害,能广泛应用于生物医药及组织工程等领域,可用于骨修复和心肌再生。

Description

一种活性氧响应性的可降解聚氨酯材料及其制备方法
技术领域
本发明涉及一种活性氧响应性的可降解聚氨酯材料及其制备方法,属于生物医用材料技术领域。
背景技术
聚氨酯材料由于其硬段和软段间的热力学不相容所产生的微相分离结构,赋予了它良好的力学性能,且其结构中大量极性氨基甲酸酯基团的存在为材料提供了良好的生物相容性,因此聚氨酯材料是一类非常具有医用价值的高分子材料。
目前许多科研工作者致力于生物响应性材料的研究,以期望解决生物材料的降解速率与体内组织再生速率的匹配问题。生物响应性高分子材料能够在生物体内微环境的变化时,改变材料本身的性能,触发材料结构发生断裂,造成响应性降解。活性氧作为生物因素一直备受关注,活性氧(ROS)响应性生物材料也大量涌现出来。
酮缩硫醇化合物能够对活性氧敏感,而对酸、碱和蛋白酶催化的降解具有良好的耐受性,有报道利用巯基乙胺为原料合成了ROS响应性的链接剂,再通过缩合反应得到活性氧响应性的聚合物作为DNA的运输载体,该聚合物对酸碱具有良好的稳定性,用于高浓度活性氧环境的癌症细胞的靶向基因传递。然而,迄今为止报道的大部分基于酮缩硫醇化合物的材料都是以纳米粒子的形式存在,多用于作为药物的传递载体。
本发明将酮缩硫醇二胺小分子化合物作为扩链剂引入聚氨酯材料中,制得的含有活性氧响应性的聚氨酯材料能够提供干预生物体内ROS变化的响应位点,具有良好的生物响应性和生物可降解性。该活性氧响应性的聚氨酯材料不仅能够保留聚氨酯材料优异的力学性能和良好的生物相容性,同时该材料为线型高分子,加热可以熔融且在适当溶剂中可以溶解,具有良好的可加工性能,可以加工成薄膜或支架材料,因此在骨修复、心肌再生等方面的具有重要的应用。
发明内容
本发明的目的是为了解决现有医用可降解聚氨酯材料的降解速率与体内组织再生速率的匹配问题,提供一种活性氧响应性的可降解聚氨酯材料及其制备方法。该材料具有优异的力学性能和良好的生物相容性,且具有设计性强的优点,可以通过调控软硬段比例来调节材料的力学性能和降解性能。
本发明的目的是通过以下技术方案实现的。
本发明的活性氧响应性的可降解聚氨酯材料,包括聚酯二醇软段和饱和脂肪族二异氰酸酯及活性氧响应性小分子二胺组成的硬段。
所述的活性氧响应性小分子二胺为酮缩硫醇二胺,其合成路线如下:
Figure BDA0002023376860000021
进一步的,所述的聚酯二醇为聚ε-己内酯二醇(PCL)或聚富马酸丙二醇酯(PPF)。
更进一步的,所述的聚ε-己内酯二醇(PCL)的数均分子量为2000。
更进一步的,所述的聚富马酸丙二醇酯的数均分子量为1000。
进一步的,所述的饱和脂肪族二异氰酸酯为六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)或4,4’-二环己基甲烷二异氰酸酯(HMDI)中的一种。
进一步的,所述的活性氧响应性的可降解聚氨酯材料是以聚ε-己内酯二醇或聚富马酸丙二醇酯为大分子二元醇,以饱和脂肪族二异氰酸酯为原料,以活性氧响应性小分子二胺为扩链剂,采用二步扩链法制备得到。
进一步的,所述的活性氧响应性的可降解聚氨酯材料的方法,包括以下步骤:
1)将聚酯二醇加入到干燥的容器中,减压除去残余的水分,然后加入无水N,N-二甲基甲酰胺溶剂溶解,再加入二异氰酸酯及催化剂二月桂酸二丁基锡,在氮气保护下65-75℃反应3-4h,得到异氰酸酯基团封端的预聚物;其中二异氰酸酯中异氰酸酯基团的物质的量与聚酯二醇中羟基的物质的量之比为2:1,二月桂酸二丁基锡的物质的量为聚酯二醇的羟基的物质的量的0.2%;
2)在步骤1)制备的异氰酸酯基团封端的预聚物中加入活性氧响应性小分子二胺的稀释液,其中所述的活性氧响应性小分子二胺的稀释液是将活性氧响应性小分子二胺用无水N,N-二甲基甲酰胺溶剂按照10%g/mL的浓度稀释后获得;然后于70℃扩链反应至少7h,得到聚氨酯溶液,活性氧响应性小分子二胺的物质的量与聚酯二醇的物质的量相同,且均为二异氰酸酯物质的量的一半;
3)在步骤2)制备的聚氨酯溶液中加入无水乙醇并保持在70℃封端1h;
4)将经步骤3)处理后的聚氨酯溶液倒入无水乙醇中沉淀,离心、收集,将收集的聚氨酯固体再次溶于N,N-二甲基甲酰胺中,并再次倒入无水乙醇中沉淀,反复数次,最后将所得的聚氨酯固体从无水乙醇中转移到超纯水中,待乙醇除尽后,冷冻干燥,得到活性氧响应性的聚氨酯材料。
进一步的,所述的活性氧响应性的可降解聚氨酯材料能够用于加工成薄膜或支架材料,应用于生物医药及组织工程领域,用于骨修复和心肌再生。
与现有的医用聚氨酯相比,本发明制备的活性氧响应性的可降解聚氨酯材料具有以下优点:
1)本发明中,通过引入ROS响应性的扩链剂,为聚氨酯材料提供了体内组织环境响应性断裂的位点。
2)本发明中,以低聚物聚酯二醇作为软段,制备的聚氨酯材料具有聚酯二醇的可降解性和力学性能。
3)本发明中,可以通过改变软硬段比例,影响ROS响应性扩链剂的接入量,可相应的调控聚氨酯材料的降解速率;也可通过对配方进行设计,制备符合所需降解速率要求的聚氨酯材料。
4)本发明中,以饱和脂肪族二异氰酸酯作为硬段,使制得的聚氨酯材料的降解产物无致癌等毒副作用。
5)本发明中,得到的活性氧响应性的可降解聚氨酯材料为线性聚氨酯,能够再次溶解并加工成薄膜或多孔支架材料。
附图说明
图1为酮缩硫醇小分子二胺的分子式及1H NMR(CDCl3)谱图;
图2为实施例1中该ROS响应性聚氨酯材料的合成线路图;
图3为实施例2中该ROS响应性聚氨酯材料的合成线路图;
图4为实施例1中该ROS响应性聚氨酯材料的1H NMR(DMSO)谱图;
图5为实施例2中该ROS响应性聚氨酯材料的1H NMR(DMSO)谱图。
具体实施方式
以下结合实例进一步说明本发明的技术方案,但这些实例并不用来限制本发明。本发明的活性氧响应性的可降解聚氨酯材料的合成路线如图2,3。
实施例1
活性氧响应性的可降解聚氨酯材料(PCL/HDI 2:1),包括软段和硬段,所述的软段是数均分子量为2000的聚ε-己内酯二醇,所述的硬段是脂肪族二异氰酸酯HDI以及ROS响应性酮缩硫醇二胺扩链剂。
具有如下结构
Figure BDA0002023376860000041
其制备包括以下步骤:
取数均分子量为2000的PCL 2.0213g加入到干燥的三口烧瓶中,计算得到该PCL的羟基的摩尔数为2.0213mmol,110℃减压蒸馏1h,除去残余的水分,通入氮气。降温到70℃后,加入20mL无水N,N-二甲基甲酰胺溶剂进行溶解,加入0.3320g HDI,0.004mmol催化剂二月桂酸二丁基锡,在氮气保护下于70℃反应3h。取0.192g酮缩硫醇二胺小分子,溶于2mL无水N,N-二甲基甲酰胺溶剂中,并逐滴加入到上述溶液中,并在70℃下扩链反应7h。加入0.3g无水乙醇反应1h进行封端。反应完毕后,将得到聚氨酯溶液倒入无水乙醇中进行沉淀,离心、收集,将收集的聚氨酯固体再次溶于N,N-二甲基甲酰胺中,并再次倒入无水乙醇中沉淀,反复3次。最终用超纯水反复洗涤,置换出聚氨酯中的无水乙醇,冷冻干燥24h,得到聚氨酯固体,测得聚合物的数均分子量为52.1kDa。将聚氨酯固体溶于氘代二甲亚砜(DMSO)中检测材料的核磁共振氢谱1H-NMR(附图4),通过对分子结构中各种质子氢的归属,其中化学位移δ=1.6ppm是聚氨酯结构中酮缩硫醇上甲基CH3质子氢的特征峰,δ=1.25和2.93ppm为聚氨酯HDI链段结构中CH2质子氢的特征峰,δ=2.27和3.96ppm为聚氨酯中PCL链段中-CHCH 2CO-和-CH2CH 2O-质子氢的特征峰,测试结果表明成功合成了ROS响应性PCL聚氨酯材料。
将制得的聚氨酯溶于六氟异丙醇中,浇入到聚四氟模具中,空气氛围下常温挥发48h,后于40℃真空干燥24h除去残余溶剂,得到聚氨酯薄膜。为考察本发明制备的聚氨酯的降解性能,进行了体外降解实验,降解条件为PBS缓冲液和1mmol/L双氧水溶液,将5mm×5mm的聚氨酯薄膜放入10mL菌种中,加入5mL溶液,37℃恒温水浴中震荡,14天后取出样品,用蒸馏水洗涤3次,冷冻干燥24h。将聚合物溶于N,N-二甲基甲酰胺中,通过凝胶渗透色谱(GPC)测定降解前后的分子量,浸泡在PBS中聚氨酯的数均分子量为48.5kDa,在1mmol/L双氧水溶液降解14天后,聚氨酯的数均分子量为12.8kDa。
为考察本发明制备的聚氨酯材料对细胞的毒性,将聚氨酯材料剪成1mm×1mm碎片,并把材料浸泡在培养基中(10mg/mL),37℃条件下浸泡24h,将得到的浸提液用0.22.μm的微孔滤膜过滤灭菌。将内皮细胞以每孔5×103的密度接种于96孔的细胞培养板中,用正常的培养基培养24h,然后换成聚氨酯材料的浸提液继续进行细胞培养,培养1,2,4天后,用cck8法进行细胞活性的检测,细胞的存活率均高于85%,表明聚氨酯材料对细胞的毒性可以忽略。
实施例2
活性氧响应性的可降解聚氨酯材料(PPF/HDI 2:1),包括软段和硬段,所述的软段是分子量为1000的聚富马酸丙二醇酯PPF,所述的硬段是脂肪族二异氰酸酯HDI以及ROS响应性酮缩硫醇二胺扩链剂。
具有如下结构:
Figure BDA0002023376860000061
其制备包括以下步骤:
取数均分子量为1000的PPF 2.0368g加入到干燥的三口烧瓶中,计算得到PPF的羟基摩尔数为3.54mmol,110℃减压蒸馏1h,除去残余的水分,通入氮气。降温到70℃后,加入20mL无水N,N-二甲基甲酰胺溶剂进行溶解,加入0.5950g HDI,0.007mmol催化剂二月桂酸二丁基锡,在氮气保护下于70℃反应3h。取0.3430g酮缩硫醇二胺小分子,溶于3.5mL无水N,N-二甲基甲酰胺中,并逐滴加入到上述溶液中,并在70℃下扩链反应7h。加入0.5g无水乙醇反应1h进行封端。反应完毕后,将得到聚氨酯溶液倒入无水乙醇中进行沉淀,离心、收集,将收集的聚氨酯固体再次溶于N,N-二甲基甲酰胺中,并再次倒入无水乙醇中沉淀,反复3次。最终用超纯水反复洗涤,置换出聚氨酯中的无水乙醇,冷冻干燥24h,得到聚氨酯固体,测得聚合物的数均分子量为38.2kDa。将聚氨酯固体溶于氘代二甲亚砜(DMSO)中检测材料的核磁共振氢谱1H-NMR(附图5),通过对分子结构中各种质子氢的归属,其中化学位移δ=1.6ppm是聚氨酯结构中酮缩硫醇上甲基CH3质子氢的特征峰,δ=1.25和2.93ppm为聚氨酯HDI链段结构中CH2质子氢的特征峰,δ=6.73ppm为聚氨酯中PPF链段中双键上质子氢的特征峰,测试结果表明成功合成了ROS响应性PPF聚氨酯材料。
所得的聚氨酯浸泡在PBS溶液中14天后,数均分子量为36.8kDa,在1mmol/L双氧水溶液中降解14天后,聚氨酯的数均分子量的9.3kDa。且材料浸提液的细胞的存活率高于85%,表明聚氨酯材料对细胞的毒性可以忽略。

Claims (4)

1.一种活性氧响应性的可降解聚氨酯材料的制备方法,其特征在于,所述可降解聚氨酯材料包括聚酯二醇软段和由饱和脂肪族二异氰酸酯及活性氧响应性小分子二胺组成的硬段;所述的活性氧响应性小分子二胺为酮缩硫醇二胺,所述的聚酯二醇为聚ε-己内酯二醇或聚富马酸丙二醇酯;制备方法包括以下步骤:
1)将聚酯二醇加入到干燥容器中,减压除去残余的水分,然后加入无水N,N-二甲基甲酰胺溶剂溶解,再加入二异氰酸酯及催化剂二月桂酸二丁基锡,在氮气保护下65-75℃反应3-4h,得到异氰酸酯基团封端的预聚物;其中二异氰酸酯中异氰酸酯基团与聚酯二醇中羟基的摩尔比为2:1,二月桂酸二丁基锡的物质的量是聚酯二醇的羟基的物质的量的0.2 %;
2)在步骤1)制备的异氰酸酯基团封端的预聚物中加入活性氧响应性小分子二胺的稀释液,其中,所述的活性氧响应性小分子二胺的稀释液是将活性氧响应性小分子二胺按10%g/mL用无水N,N-二甲基甲酰胺溶剂进行稀释获得;然后于70℃扩链反应至少7h,得到聚氨酯溶液,活性氧响应性小分子二胺的物质的量与聚酯二醇的物质的量相同,且均为二异氰酸酯物质的量的一半;
3)在步骤2)制备的聚氨酯溶液中加入无水乙醇并保持在70℃封端1h;
4)将经步骤3)处理后的聚氨酯溶液倒入无水乙醇中沉淀,离心、收集,将收集的聚氨酯固体再次溶于N,N-二甲基甲酰胺中,并再次倒入无水乙醇中沉淀,反复数次,最后将所得的聚氨酯固体从无水乙醇中转移到超纯水中,待乙醇除尽后,冷冻干燥,得到活性氧响应性的可降解聚氨酯材料。
2.根据权利要求1所述的活性氧响应性的可降解聚氨酯材料的制备方法,其特征在于,所述的聚ε-己内酯二醇的数均分子量为2000。
3.根据权利要求1所述的活性氧响应性的可降解聚氨酯材料的制备方法,其特征在于,所述的聚富马酸丙二醇酯的数均分子量为1000。
4.根据权利要求1所述的活性氧响应性的可降解聚氨酯材料的制备方法,其特征在于,所述的饱和脂肪族二异氰酸酯为六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯 或4,4’-二环己基甲烷二异氰酸酯中的一种。
CN201910286276.3A 2019-04-10 2019-04-10 一种活性氧响应性的可降解聚氨酯材料及其制备方法 Active CN109988280B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910286276.3A CN109988280B (zh) 2019-04-10 2019-04-10 一种活性氧响应性的可降解聚氨酯材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910286276.3A CN109988280B (zh) 2019-04-10 2019-04-10 一种活性氧响应性的可降解聚氨酯材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109988280A CN109988280A (zh) 2019-07-09
CN109988280B true CN109988280B (zh) 2020-07-14

Family

ID=67133030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910286276.3A Active CN109988280B (zh) 2019-04-10 2019-04-10 一种活性氧响应性的可降解聚氨酯材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109988280B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110885455B (zh) * 2019-12-05 2021-05-07 浙江大学 一种活性氧响应水凝胶的制备及应用
CN110922559A (zh) * 2019-12-12 2020-03-27 山东一诺威聚氨酯股份有限公司 可降解医用级薄膜用热塑性聚氨酯弹性体材料及其制备方法
CN111909343B (zh) * 2020-08-11 2022-04-08 丽水学院 一种弹性聚氨酯抗菌材料及其制备方法
CN113425897A (zh) * 2021-06-25 2021-09-24 浙江大学 用于心肌梗死修复的活性氧响应性可降解聚氨酯心脏补片及制备方法
CN113797386B (zh) * 2021-09-13 2022-05-10 浙江大学 一种负载盐酸多西环素的导电水凝胶/活性氧响应性聚氨酯复合膜及其制备方法
CN113813243B (zh) * 2021-09-16 2022-05-10 浙江大学 一种具有活性氧响应的载药聚合物纳米粒子的制备方法及应用
CN113845643B (zh) * 2021-09-17 2023-03-28 浙江大学 一种具有活性氧响应性和抗粘连双功能的形状记忆聚氨酯材料
CN113813445A (zh) * 2021-10-08 2021-12-21 苏州大学 一种丝素蛋白复合多孔支架及其制备方法
CN114146226A (zh) * 2021-11-30 2022-03-08 浙江大学 一种骨髓间充质干细胞/可降解水凝胶复合材料及其制备方法和用途
CN114917405B (zh) * 2022-05-19 2023-09-29 浙江大学滨江研究院 一种可控活性氧响应凝胶填充多孔支架及其制备方法
CN115068680A (zh) * 2022-05-30 2022-09-20 浙江大学 一种具有自适应性的促组织再生材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654508A (zh) * 2009-09-25 2010-02-24 北京理工大学 一种可降解无毒医用聚氨酯材料及其制备方法
CN104356345A (zh) * 2014-12-01 2015-02-18 四川大学 具有荧光性的接枝可降解嵌段聚氨酯、骨修复材料及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1166715C (zh) * 2002-08-23 2004-09-15 清华大学 一种可生物降解聚氨酯弹性体的合成
CN102335435B (zh) * 2011-08-12 2013-12-18 四川大学 多功能聚氨酯药物载体及其制备和应用
CN103897133B (zh) * 2012-12-27 2017-12-29 深圳先进技术研究院 聚氨酯材料及其制备方法
CN104387553B (zh) * 2014-11-20 2017-06-13 浙江大学 一种生物可降解不饱和聚氨酯材料及其制备方法
CN105601550B (zh) * 2015-12-25 2020-06-16 四川大学 具有活性基团的刺激敏感多功能多异氰酸酯
CN105601549B (zh) * 2015-12-25 2020-06-16 四川大学 刺激敏感型二异氰酸酯

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654508A (zh) * 2009-09-25 2010-02-24 北京理工大学 一种可降解无毒医用聚氨酯材料及其制备方法
CN104356345A (zh) * 2014-12-01 2015-02-18 四川大学 具有荧光性的接枝可降解嵌段聚氨酯、骨修复材料及制备方法

Also Published As

Publication number Publication date
CN109988280A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
CN109988280B (zh) 一种活性氧响应性的可降解聚氨酯材料及其制备方法
Dang et al. Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties
Mondal et al. Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications
CN104387553B (zh) 一种生物可降解不饱和聚氨酯材料及其制备方法
Yeganeh et al. Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol)
Guelcher et al. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders
Oprea Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure
Zhang et al. Synthesis, biodegradability, and biocompatibility of lysine diisocyanate–glucose polymers
Park et al. Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility
US20040092695A1 (en) Biodegradable polyurethane elastomer and preparation process thereof
Shahrousvand et al. Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (ε-caprolactone diol)-based polyurethanes
Han et al. Synthesis and characterization of biodegradable polyurethane based on poly (ε-caprolactone) and L-lysine ethyl ester diisocyanate
CN112940218B (zh) 可降解的电活性聚氨酯材料及其制备方法和应用
CN113845643B (zh) 一种具有活性氧响应性和抗粘连双功能的形状记忆聚氨酯材料
Jia et al. Influence of well-defined hard segment length on the properties of medical segmented polyesterurethanes based on poly (ε-caprolactone-co-L-lactide) and aliphatic urethane diisocyanates
Zimmermann et al. The formation of poly (ester–urea) networks in the absence of isocyanate monomers
Rafiemanzelat et al. Synthesis of new poly (ether–urethane–urea) s based on amino acid cyclopeptide and PEG: study of their environmental degradation
EP4180441A1 (en) Alkylene-oxide-added polyol composition, polyurethane using same, and hot-melt adhesive comprising same
CN115572366B (zh) 耐压温敏型热塑性聚乳酸基聚氨酯弹性体及其制法与应用
Liu et al. Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization
Shokrolahi et al. Simple and versatile method for the one‐pot synthesis of segmented poly (urethane urea) s via in situ‐formed AB‐type macromonomers
CN114539505A (zh) 一种氨基酸改性水性聚氨酯丙烯酸酯及其制备方法
Sarkar et al. Synthesis and characterization of gelatin based polyester urethane scaffold
Sarkar et al. Synthesis, characterization, and cytotoxicity analysis of a biodegradable polyurethane
Nor et al. Palm kernel oil-based polyurethane film: Biocompatibility and antibacterial activity studies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant