CN112940218B - 可降解的电活性聚氨酯材料及其制备方法和应用 - Google Patents

可降解的电活性聚氨酯材料及其制备方法和应用 Download PDF

Info

Publication number
CN112940218B
CN112940218B CN202110153362.4A CN202110153362A CN112940218B CN 112940218 B CN112940218 B CN 112940218B CN 202110153362 A CN202110153362 A CN 202110153362A CN 112940218 B CN112940218 B CN 112940218B
Authority
CN
China
Prior art keywords
electroactive
degradable
diol
polyurethane material
hydroxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110153362.4A
Other languages
English (en)
Other versions
CN112940218A (zh
Inventor
左奕
方威
李玉宝
李吉东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202110153362.4A priority Critical patent/CN112940218B/zh
Publication of CN112940218A publication Critical patent/CN112940218A/zh
Application granted granted Critical
Publication of CN112940218B publication Critical patent/CN112940218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6614Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6618Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6648Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6651Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/20Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/32Materials or treatment for tissue regeneration for nerve reconstruction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明属于生物化学领域,具体涉及一种可降解的电活性聚氨酯材料及其制备方法和应用。本发明提供了一种可降解的电活性聚氨酯材料,其结构式如式Ⅰ所示。上述可降解的电活性聚氨酯材料,是由低聚物二醇作为软段,脂肪族二异氰酸酯作为硬段,苯胺低聚体和双氨基的氨基酸为扩链剂,在有机溶剂中通过预聚体法合成。本发明提供的新型可降解的电活性聚氨酯,不仅是一类可降解的电活性材料,同时具有良好的加工性能,可采取浇注成膜、静电纺丝和3D打印等等成型方式,将在神经、心肌、骨、皮肤等等组织工程、生物医学和智能穿戴等领域中具有广泛的潜在运用前景。
Figure DDA0002933332710000011

Description

可降解的电活性聚氨酯材料及其制备方法和应用
技术领域
本发明属于生物化学智能材料领域,具体涉及一种可降解的电活性聚氨酯材料及其制备方法和应用。
背景技术
近年来,PANI(Polyaniline,聚苯胺)、PPy(Polypyrrole,聚吡咯)和PTH(Polythiophene,聚噻吩)等导电聚合物用作组织工程支架的研究吸引大量研究者的注意。研究证明,这类导电聚合物具有良好的生物相容性、能促进细胞尤其是电响应敏感细胞(如神经、肌肉和成骨等等细胞)的黏附、增殖和分化。
Hsiao1等人将聚苯胺和PLGA(Polylactic-co-glycolic acid,聚乳酸-羟基乙酸共聚物)共混,通过静电纺丝制备出取向的PANI/PLGA导电纤维膜,作为同步协调心肌细胞搏动的电活性支架;经掺杂后,电纺丝纤维可转变为带正电荷的导电形式,从而吸引带负电荷的黏附蛋白(如纤维连接蛋白和层粘连蛋白),增强细胞黏附。在孵育过程中,粘附的心肌细胞相互联系并形成单独的细胞簇,每个细胞簇内的细胞沿纤维网主轴方向伸长并取向排列;每个簇内的所有心肌细胞都同步搏动,这意味着细胞间的偶联已经充分发育。Lee2等人在PLGA电纺纤维结构上原位聚合形成一层PPy涂层,与非涂层PLGA相比,PPy-PLGA电纺结构能促进PC12(pheochromocytoma 12,大鼠嗜铬细胞瘤12)细胞和海马神经元的生长和分化;随后在电刺激实验中,与无规结构PPy-PLGA纤维膜相比,取向结构PPy-PLGA纤维膜上的细胞有更长的神经突和更多的神经轴突,这表明电刺激和纤维结构对神经细胞生长和分化有着协同促进效应。尽管上述聚苯胺、聚吡咯等这类传统的导电高分子作为体外组织工程支架研究方面取得良好的结果,但是这类导电材料一旦合成之后难溶、难熔,且不易生物降解。难溶、难熔会造成材料加工存在一定的困难,不能降解是组织工程应用的最大限制之一。这类导电聚合物长时间在体内留存可能引发炎症反应,需要进行第二次手术除去。
为了解决难溶、难熔、不易生物降解的问题,将苯胺、吡咯和噻吩的低聚体引入到可降解的聚合物中,使得材料获得一定的导电活性,同时保留其可降解性,这种策略的提出为电活性材料在组织工程支架方面的运用拓宽了道路。苯胺低聚体具有易合成、易加工特性,同时具有和聚苯胺相似的电活性,而且在体内苯胺低聚体可被肾脏吸收并清除。在专利CN1887854A、CN101570582A和CN102702514A中就是将苯胺低聚体接枝到聚合物上或者与其他单体共聚形成共聚物,使其成为可降解的电活性支架材料。但是这类材料的弹性性能差,难以适应软组织的力学性能相匹配,所以开发出具有和软组织相似的力学能力的可降解电活性支架材料仍然是一种挑战。
PU(Polyurethane,聚氨酯)是主链上含有重复氨基甲酸酯键(-NHCOO-)的一类高分子的总称。因其优越的物理化学性能、可灵活调控性能及良好的生物相容性,被广泛用于生物医用领域。调节PU的硬段和软段的比例可以轻松的调节其力学性能,使其和所运用组织的力学性能相匹配。具有电活性的聚氨酯报道一般是无机电活性物质(如石墨烯、碳纳米管和石墨等等)和无电活性聚氨酯共混所形成的。如专利CN110256704A,将未改性的纳米碳材料均匀分散在聚氨酯溶液中,赋予聚氨酯复合膜良好的导电性,但是也无法解决材料降解的问题,使得这类材料难以拓展应用于组织工程领域。将苯胺低聚体引入到聚氨酯主链上的电活性聚氨酯在相关研究中已有报道,但是通过氨基酸来调节聚氨酯的电活性和降解性能的研究未有报道。
发明内容
本发明提供了一种可降解的电活性聚氨酯材料,其结构式如式Ⅰ所示:
Figure BDA0002933332690000021
其中,R为
Figure BDA0002933332690000022
C1~8烷基、C1~8环烷基或
Figure BDA0002933332690000023
中的至少一种;
R1为软段,选自端羟基线性聚己内酯二醇、端羟基线性聚乳酸二醇、端羟基线性聚乙交酯二醇、端羟基线性聚乳酸-羟基乙酸共聚物二醇、端羟基线性聚乙二醇、端羟基线性聚四亚甲基乙二醇、端羟基线性PCL-PEG-PCL二醇、端羟基线性PCL-PTMO-PCL二醇、端羟基线性PLA-PTMO-PLA二醇或端羟基线性PLA-PEG-PLA二醇中的至少一种;
R2
Figure BDA0002933332690000024
R3、R4独立地为-H或C1~8烷基;
n=3、4、5或8;x=4~25;y=4~30;z=4~25;m=1~6;p=2~18。
作为本发明的优选方案,R为
Figure BDA0002933332690000025
或C1~8烷基。
优选的,R1为端羟基线性聚己内酯二醇片段、端羟基线性聚乙二醇片段或端羟基线性PCL-PEG-PCL二醇片段中的至少一种。
上述可降解的电活性聚氨酯材料,是由低聚物二醇作为软段,脂肪族二异氰酸酯作为硬段,苯胺低聚体和含双氨基的氨基酸为扩链剂,在有机溶剂中通过预聚体法合成。
上述可降解的电活性聚氨酯材料中,所述低聚物二醇的分子量为500~4000。所述的低聚物二醇为PCL(聚己内酯二醇)、PLA(聚乳酸二醇)、PGA(聚乙交酯二醇)、PLGA(聚乳酸-羟基乙酸共聚物二醇)、PEG(聚醚二醇选自聚乙二醇)、PTMO(聚四亚甲基乙二醇)、PCL-PEG-PCL二醇、PCL-PTMO-PCL二醇、PLA-PTMO-PLA二醇或PLA-PEG-PLA二醇。优选的,所述的低聚物二醇为PCL、PEG或PCL-PEG-PCL二醇。
Figure BDA0002933332690000031
(PEG,s=10~80)
上述可降解的电活性聚氨酯材料中,所述的脂肪族二异氰酸酯为IPDI(异佛尔酮二异氰酸酯)、赖氨酸二异氰酸酯、1,6-己二异氰酸酯或1,4-丁二异氰酸酯中的至少一种。优选的,所述的脂肪族二异氰酸酯为IPDI或赖氨酸二异氰酸酯。
上述可降解的电活性聚氨酯材料中,所述的苯胺低聚体为氨基封端的苯胺三聚体、四聚体、五聚体或八聚体中的至少一种。优选的,所述的苯胺低聚体为氨基封端的苯胺三聚体。
上述可降解的电活性聚氨酯材料中,氨基酸可生物降解,含双氨基的氨基酸既可以为聚氨酯带来可降解性的功能,又能够充当聚氨酯的扩链剂。
进一步的,常见的含双氨基的氨基酸为赖氨酸、谷氨酰胺或天冬酰胺。
Figure BDA0002933332690000032
(赖氨酸)
Figure BDA0002933332690000033
(谷氨酰胺)
Figure BDA0002933332690000034
(天冬酰胺)
本发明还提供了上述可降解的电活性聚氨酯材料的制备方法,其合成路线如下:
Figure BDA0002933332690000035
上述可降解的电活性聚氨酯材料的制备方法,包括以下步骤:
a、将充分干燥脱水的低聚物二醇和脂肪族二异氰酸酯溶于有机溶剂中,在催化剂和惰性气体保护下,于50~150℃温度下预聚1~24h;
b、将上述所得的预聚产物温度控制至10~80℃,然后加入含有机溶剂溶解的双氨基的氨基酸进行第一次扩链反应,反应时间为1~12h;
c、将第一次扩链的产物温度控制至40~100℃,在加入有机溶剂溶解的苯胺低聚体,进行再次扩链,反应1~6h;
d、将再次扩链的产物缓慢倒入溶剂中沉降,然后收集并干燥,得到可降解的电活性聚氨酯材料。
作为本发明的优选方案,当步骤a所述的脂肪族二异氰酸酯为赖氨酸二异氰酸酯时,省略步骤b,直接进行步骤c的反应,即只需与苯胺低聚体进行一次扩链反应。其具体步骤为:
a、将充分干燥脱水的低聚物二醇和脂肪族二异氰酸酯溶于有机溶剂中,在催化剂和惰性气体保护下,于50~150℃温度下预聚1~24h;
c1、将预聚产物温度控制至40~100℃,在加入有机溶剂溶解的苯胺低聚体,进行扩链,反应1~6h;
d、将扩链的产物缓慢倒入溶剂中沉降,然后收集并干燥,得到可降解的电活性聚氨酯材料。
上述可降解的电活性聚氨酯材料的制备方法中,步骤a所述脂肪族二异氰酸酯与低聚物二醇的摩尔比为3.5:1~2:1。
上述可降解的电活性聚氨酯材料的制备方法中,步骤a所述的催化剂为有机金属类催化剂有机锡类和有机铋类。包括辛酸亚锡和二月桂酸二丁基锡等有机锡类,异辛酸铋、新葵酸铋和环烷酸铋等有机铋类。所述催化剂的质量为低聚物二醇和脂肪族二异氰酸酯总质量的0.05~0.2wt%。
上述可降解的电活性聚氨酯材料的制备方法中,步骤b、c所述含双氨基的氨基酸和氨基封端的苯胺低聚体的总量与脂肪族二异氰酸酯的摩尔比为1:3.5~1:2。
上述可降解的电活性聚氨酯材料的制备方法中,步骤c所述苯胺低聚体与含双氨基的氨基酸的摩尔比为0:10~10:0。
上述可降解的电活性聚氨酯材料的制备方法中,步骤a、b、c所述的有机溶剂为二甲基亚砜、N,N-二甲基甲酰胺、N-甲基甲酰胺或N-甲基吡咯烷酮中的至少一种。步骤c1所述的有机溶剂为二甲基亚砜、N,N-二甲基甲酰胺、N-甲基甲酰胺或N-甲基吡咯烷酮中的至少一种。
上述可降解的电活性聚氨酯材料的制备方法中,步骤d所述溶剂水、乙醇、甲醇、异丙醇、乙二醇或丙三醇。
作为本发明的优选方案,上述可降解的电活性聚氨酯材料的制备方法中,步骤a所述二元异氰酸酯与低聚物二醇的摩尔比为3.5:1~2:1。
优选地,上述可降解的电活性聚氨酯材料的制备方法中,为了降低材料生物毒性,步骤a所述聚氨酯反应催化剂选自异辛酸铋、新葵酸铋和环烷酸铋等有机铋类。
优选的,上述可降解的电活性聚氨酯材料的制备方法中,步骤a所述预聚的温度为65~100℃,预聚时间为2~8h。
进一步地,上述可降解的电活性聚氨酯材料的制备方法中,步骤b为了防止高活性胺类扩链爆聚,所述第一次扩链反应的温度为20~60℃,反应时间为1~6h。
进一步地,上述可降解的电活性聚氨酯材料的制备方法中,为了合成出可将降解的电活性聚氨酯具有良好的溶解性以便后续加工成型,步骤c所述苯胺低聚体与含双氨基的氨基酸的摩尔比为0.1:10~5:5。
进一步地,上述可降解的电活性聚氨酯材料的制备方法中,步骤c所述再次扩链反应的温度为50~80℃,反应时间为1~4h。步骤c1所述扩链反应的温度为50~80℃,反应时间为1~4h。
进一步地,上述可降解的电活性聚氨酯材料的制备方法中,步骤c、c1所述有机溶剂为二甲基亚砜和N-甲基甲酰胺的混合溶液,其体积比为0.5:1~2:1。
本发明还提供了上述可降解的电活性聚氨酯材料在制备多孔支架方面的用途。
本发明还提供了上述的可降解的电活性聚氨酯材料可采取浇注成膜、静电纺丝和3D打印等等成型方式,在神经、心肌、骨或皮肤组织工程、生物医学和智能穿戴等领域中的应用。
本发明的有益效果在于:本发明提供的新型可降解的电活性聚氨酯不仅是一类可降解的电活性材料,同时具有良好的加工性能,可采取浇注成膜、静电纺丝和3D打印等等成型方式,将在神经、心肌、骨、皮肤等组织工程、生物医学和智能穿戴等领域中具有广泛的潜在运用前景。
附图说明
图1实施例1和2制备的可降解的电活性聚氨酯材料的红外图。
图2实施例1制备的可降解的电活性聚氨酯材料PUAT5的核磁图
图3可降解的电活性聚氨酯材料的电活性表征:(A)紫外吸收光谱(B)循环伏安曲线图。
图4可降解的电活性聚氨酯材料的形貌结构图:(A)PUAT5浇注膜结构图,(B)PUAT2.5浇注膜结构图,(C)PUAT5静电纺丝纤维膜结构图,(D)PUAT2.5静电纺丝纤维膜结构图。
图5大鼠坐骨神经雪旺细胞(SCs)HE染色图:分别为空白样、PUAT5静电纺丝在与细胞共培养第一天和第三天后的结果。
图6实施例1和2制备的可降解电活性聚氨酯的拉伸力学测试图。
图7实施例1制得的PUAT5静电纺丝膜辐照灭菌之后与大鼠坐骨神经雪旺细胞共培养的HE染色图。
具体实施方式
本发明提供的可降解的电活性聚氨酯,是将氨基封端的苯胺低聚体作为一种聚氨酯扩链剂,赋予聚氨酯电活性功能;选择含双氨基团的氨基酸作为扩链剂,使用混合高极性溶剂使其充分扩链;氨基酸的引入不仅可以提高聚氨酯的降解性,同时氨基酸上自带的羧基基团,对聚氨酯中苯胺低聚体片段起到掺杂作用,有效提高材料的导电性,使得合成的聚氨酯成为一类自掺杂的新型电活性材料。
本发明可降解的电活性聚氨酯材料的制备方法,包括以下步骤:
a、将充分干燥脱水的低聚物二醇和脂肪族二异氰酸酯溶于有机溶剂中,在催化剂和惰性气体保护下,于50~150℃温度下预聚1~24h;所述脂肪族二异氰酸酯与低聚物二醇的摩尔比为3.5:1~2:1;所述的催化剂为有机金属类催化剂有机锡类和有机铋类;所述催化剂的质量为低聚物二醇和脂肪族二异氰酸酯总质量的0.05~0.2wt%;
b、将上述所得的预聚产物温度控制至10~80℃,然后加入含有机溶剂溶解的双氨基的氨基酸进行第一次扩链反应,反应时间为1~12h;
c、将第一次扩链的产物控制至40~100℃,在加入有机溶剂溶解的苯胺低聚体,进行再次扩链,反应1~6h;所述苯胺低聚体与含双氨基的氨基酸的摩尔比为0:10~10:0;所述含双氨基的氨基酸和氨基封端的苯胺低聚体的总量与脂肪族二异氰酸酯的摩尔比为1:3.5~1:2;
d、将再次扩链的产物缓慢倒入溶剂中沉降,然后收集并干燥,得到可降解的电活性聚氨酯材料。
作为本发明的优选方案,当步骤a所述的脂肪族二异氰酸酯为赖氨酸二异氰酸酯时,省略步骤b,直接进行步骤c的反应,即只需与苯胺低聚体进行一次扩链反应。
上述可降解的电活性聚氨酯材料的制备方法中,步骤a所述的催化剂为辛酸亚锡和二月桂酸二丁基锡等有机锡类,异辛酸铋、新葵酸铋和环烷酸铋等有机铋类。
上述可降解的电活性聚氨酯材料的制备方法中,步骤a、b、c所述的有机溶剂为二甲基亚砜、N,N-二甲基甲酰胺、N-甲基甲酰胺或N-甲基吡咯烷酮中的至少一种。
上述可降解的电活性聚氨酯材料的制备方法中,步骤d所述溶剂水、乙醇、甲醇、异丙醇、乙二醇或丙三醇。
作为本发明的优选方案,上述可降解的电活性聚氨酯材料的制备方法中,步骤a所述二元异氰酸酯与低聚物二醇的摩尔比为3:1~2:1。
优选地,上述可降解的电活性聚氨酯材料的制备方法中,为了降低材料生物毒性,步骤a所述聚氨酯反应催化剂选自异辛酸铋、新葵酸铋和环烷酸铋等有机铋类。
优选的,上述可降解的电活性聚氨酯材料的制备方法中,步骤a所述预聚的温度为65~100℃,预聚时间为2~8h。
进一步地,上述可降解的电活性聚氨酯材料的制备方法中,步骤b为了防止高活性胺类扩链爆聚,所述第一次扩链反应的温度为20~60℃,反应时间为1~6h。
进一步地,上述可降解的电活性聚氨酯材料的制备方法中,步骤b所述含双氨基的氨基酸为赖氨酸时,先取赖氨酸溶解于适量的N-甲基甲酰胺溶液中,然后向其中加入一定体积的二甲基亚砜以配成赖氨酸溶液。
进一步地,上述可降解的电活性聚氨酯材料的制备方法中,为了合成出可将降解的电活性聚氨酯具有良好的溶解性以便后续加工成型,步骤c所述苯胺低聚体与含双氨基的氨基酸的摩尔比为0.1:10~5:5。
进一步地,上述可降解的电活性聚氨酯材料的制备方法中,步骤c所述再次扩链反应的温度为50~80℃,反应时间为1~4h。
进一步地,上述可降解的电活性聚氨酯材料的制备方法中,步骤c所述有机溶剂为二甲基亚砜和N-甲基甲酰胺的混合溶液,其体积比为0.5:1~2:1。
以下通过实施例对本发明进行更详细的说明。
实施例1
取一只三颈瓶夹置于油浴锅中,油浴锅温度设置为75℃,将充分脱水干燥聚己内酯二醇(PCL,分子量为2000)放入三颈瓶中,待熔化之后然后滴加IPDI,聚己内酯二醇与IPDI的摩尔比为1:2.5,并加入原料质量分数0.1wt%的催化剂异辛酸铋,在通氮气保护的条件下预聚反应4h并伴有机械搅拌。待预聚结束油浴降温至45℃,将赖氨酸溶液加入进行第一次扩链反应2h。最后升温至55℃,加入三聚体进行再次扩链反应4h,扩链反应中一直伴随着机械搅拌。赖氨酸与氨基封端的苯胺三聚体的摩尔比为1:1,扩链剂总量(赖氨酸与氨基封端的苯胺三聚体的总量),与IPDI的摩尔比为1:2.5。将反应产物一边缓慢倾倒入装有水的聚四氟乙烯杯中并一边用玻璃棒进行搅拌,将沉降的反应产物过滤收集,最后在90℃的真空烘箱中干燥一天。得到可降解的电活性聚氨酯材料PUAT5。
实施例2
取一只三颈瓶夹置于油浴锅中,油浴锅温度设置为65℃,将充分脱水干燥聚己内酯二醇(PCL,分子量为2000)放入三颈瓶中,待熔化之后然后滴加IPDI,聚己内酯二醇与IPDI的摩尔比为1:3,并加入原料质量分数0.2wt%的催化剂异辛酸铋,在通氮气保护的条件下预聚反应8h并伴有机械搅拌。待预聚结束油浴降温至50℃,将赖氨酸溶液加入进行第一次扩链反应3h。最后升温至55℃,加入氨基封端的苯胺三聚体进行再次扩链反应3h,扩链反应中一直伴随着机械搅拌。赖氨酸与氨基封端的苯胺三聚体的摩尔比为3:1,扩链剂总量(赖氨酸与氨基封端的苯胺三聚体的总量)与IPDI的摩尔比为1:3。将反应产物一边缓慢倾倒入装有水的聚四氟乙烯杯中并一边用玻璃棒进行搅拌,将沉降的反应产物过滤收集,最后在100℃的真空烘箱中干燥一天。得到可降解的电活性聚氨酯材料PUAT2.5。
实施例1和2的反应式均可表示为:
Figure BDA0002933332690000081
x=4~25;y=4~30;z=4~25;p=2~18。
图1是实施例1和2合成可降解的电活性聚氨酯的红外图,合成之后在水中沉降,然后在烘箱中干燥,将块状的聚氨酯做全反射红外,结果如图所示。在波数为1500cm-1处是苯胺三聚体苯环的特征峰,波数1585cm-1处是赖氨酸羧基中C=O的特征峰,波数3368cm-1处是脲基的特征峰,暗示着氨基封端的苯胺三聚体和含双氨基的赖氨酸在聚氨酯合成中成功的扩链,并成功的合成聚氨酯。
图2是可降解电活性聚氨酯(PUAT5)的氢谱核磁图,将干燥的少量PUAT5溶解在氘代-DMSO中做600MHz氢谱核磁,其结果如图所示。氢谱同时具有PCL片段(3.99ppm(e,2H,-CH2O-),3.82ppm(f,2H,-CH2O-at the end of PCL),3.62ppm(a,2H,-CH2-from EG),2.24ppm(b,2H,-CH2-),1.57ppm(c,2*2H,2*-CH2-),1.31ppm(d,2H,-CH2-)),IPDI片段(0.96-0.98ppm(s x y,CH3)),赖氨酸片段(2.65-2.78ppm(h i j,-CH2-))和AT片段(在6.91-7.33附近有微弱的峰位)的峰,说明成功地合成了预期产物。
表1 可降解电活性聚氨酯的分子量测试
Figure BDA0002933332690000082
Figure BDA0002933332690000091
取少量上述合成的可降解电活性聚氨酯溶解在色谱级别的N,N-二甲基甲酰胺中,通过GPC测得合成聚氨酯的数均和多分散性等等关键数据,从表1数据中我们可以看到,合成的聚氨酯分子量呈现良好的正态分布,说明成功地合成了本发明可降解电活性聚氨酯。
实施例3
取一只三颈瓶夹置于油浴锅中,油浴锅温度设置为85℃,将充分脱水干燥聚己内酯二醇(PCL,分子量为4000)放入三颈瓶中,待熔化之后然后滴加IPDI,聚己内酯二醇与IPDI的摩尔比为1:3.5,并加入原料质量分数0.15wt%的催化剂环烷酸铋,在通氮气保护的条件下预聚反应5h并伴有机械搅拌。待预聚结束油浴降温至65℃,将赖氨酸溶液加入进行第一次扩链反应4h。最后调节温度至60℃,加入氨基封端的苯胺五聚体进行再次扩链反应4h,扩链反应中一直伴随着机械搅拌。赖氨酸与氨基封端的苯胺五聚体的摩尔比为2:1,扩链剂总量(赖氨酸与氨基封端的苯胺五聚体的总量)与IPDI的摩尔比为1:3.5。将反应产物一边缓慢倾倒入装有甲醇的聚四氟乙烯杯中并一边用玻璃棒进行搅拌,将沉降的反应产物过滤收集,最后在50℃的真空烘箱中干燥一天,得到可降解的电活性聚氨酯材料。
实施例4
取一只三颈瓶夹置于油浴锅中,油浴锅温度设置为100℃,将充分脱水干燥聚乙二醇(PEG,分子量为2000)放入三颈瓶中,待熔化之后然后滴加赖氨酸二异氰酸酯,聚乙二醇与赖氨酸二异氰酸酯的摩尔比为1:2,并加入原料质量分数0.075wt%的催化剂新葵酸铋,在通氮气保护的条件下预聚反应3h并伴有机械搅拌。待预聚结束油浴降温至55℃,加入氨基封端的苯胺三聚体反应5h,扩链反应中一直伴随着机械搅拌。氨基封端的苯胺三聚体与赖氨酸二异氰酸酯的摩尔比为1:2。将反应产物一边缓慢倾倒入装有水的聚四氟乙烯杯中并一边用玻璃棒进行搅拌,将沉降的反应产物过滤收集,最后在70℃的真空烘箱中干燥一天,得到可降解的电活性聚氨酯材料。
实施例5
取一只三颈瓶夹置于油浴锅中,油浴锅温度设置为90℃,将充分脱水干燥PCL-PEG-PCL二醇(分子量为3000)放入三颈瓶中,待熔化之后然后滴加IPDI,PCL-PEG-PCL二醇与IPDI的摩尔比为1:3,并加入原料质量分数0.25wt%的催化剂异辛酸铋,在通氮气保护的条件下预聚反应4.5h并伴有机械搅拌。待预聚结束油浴降温至55℃,将赖氨酸溶液加入进行第一次扩链反应2h。保持温度不变,最后加入氨基封端的苯胺三聚体进行再次扩链反应1h,扩链反应中一直伴随着机械搅拌。赖氨酸与氨基封端的苯胺三聚体的摩尔比为1:1,扩链剂总量(赖氨酸与氨基封端的苯胺三聚体的总量)与IPDI的摩尔比为1:3。将反应产物一边缓慢倾倒入装有甲醇的聚四氟乙烯杯中并一边用玻璃棒进行搅拌,将沉降的反应产物过滤收集,最后在80℃的真空烘箱中干燥一天,得到可降解的电活性聚氨酯材料。
实施例6
取一只三颈瓶夹置于油浴锅中,油浴锅温度设置为85℃,将充分脱水干燥聚己内酯二醇(分子量为1000)放入三颈瓶中,待熔化之后然后滴加赖氨酸二异氰酸酯,聚己内酯二醇与赖氨酸二异氰酸酯的摩尔比为1:3.5,并加入原料质量分数0.15wt%的催化剂新葵酸铋,在通氮气保护的条件下预聚反应6h并伴有机械搅拌。待预聚结束油浴控温至70℃,加入氨基封端的苯胺八聚体反应4h,扩链反应中一直伴随着机械搅拌。氨基封端的苯胺八聚体与赖氨酸二异氰酸酯的摩尔比为1:3.5。将反应产物一边缓慢倾倒入装有水的聚四氟乙烯杯中并一边用玻璃棒进行搅拌,将沉降的反应产物过滤收集,最后在60℃的真空烘箱中干燥一天,得到可降解的电活性聚氨酯材料。
实施例7
取一只三颈瓶夹置于油浴锅中,油浴锅温度设置为55℃,将充分脱水干燥PCL-PEG-PCL二醇(分子量为1000)放入三颈瓶中,待熔化之后然后滴加IPDI,PCL-PEG-PCL二醇与IPDI的摩尔比为1:2.5,并加入原料质量分数0.05wt%的催化剂异辛酸铋,在通氮气保护的条件下预聚反应4h并伴有机械搅拌。待预聚结束油浴降温至45℃,将赖氨酸溶液加入进行第一次扩链反应2h。最后升温至55℃,加入氨基封端的苯胺三聚体进行再次扩链反应4h,扩链反应中一直伴随着机械搅拌。赖氨酸与氨基封端的苯胺三聚体的摩尔比为1:1,扩链剂总量(赖氨酸与氨基封端的苯胺三聚体的总量)与IPDI的摩尔比为1:2.5。将反应产物一边缓慢倾倒入装有水的聚四氟乙烯杯中并一边用玻璃棒进行搅拌,将沉降的反应产物过滤收集,最后在50℃的真空烘箱中干燥一天,得到可降解的电活性聚氨酯材料。
实施例8
取少量的上述实例制备可降解的电活性聚氨酯材料的PUAT2.5和PUAT5溶解在DMF中,用紫外-可见光分光光度计检测其吸收光谱。
图3可降解电活性聚氨酯的电活性的表征:图3(A)是PUAT2.5和PUAT5的紫外-可见光吸收光谱(UV),PUAT2.5和PUAT5在317nm和587nm处表现出相同的特征峰,前者归结于苯环的π-π*跃迁,后者归结于苯环到醌环的激子跃迁,说明合成的聚氨酯具有电活性;图3(B)是PUAT5的循环伏安曲线(CV),随着电压的升高,共聚物中的AT片段发生了两次氧化跃迁,这也证明了聚氨酯具有电活性。
实施例9
凝胶冷冻法制备浇注膜:将实施例1和2合成的可降解的电活性聚氨酯,分别溶解在二甲基亚砜中,配成质量分数为15%的溶液,再平铺在聚四氟乙烯板上,在80℃的烘箱中加热24h,然后转移到冷冻干燥箱中干燥72h。将浇注膜裁取为直径13cm圆片,测试之前测量圆片的厚度,放入综合物理性能测试系统中,选取不同部位平行测试100次,测量圆片的电阻,除去尺寸因素得到材料的电阻率。
表2 可降解电活性聚氨酯的导电率
PUAT2.5 PUAT5
导电率(S/cm) 4.86×10<sup>-7</sup> 2.94×10<sup>-6</sup>
表2是可降解电活性聚氨酯的导电率的测试结果,采用综合物理性能测试系统测试了PUAT2.5和PUAT5的电阻率ρ值,然后采用σ=1/ρ算出聚氨酯的导电率σ,合成的聚氨酯的导电率在于和人体组织相同的范围内(10-8~10-3S/cm)。
实施例10
凝胶冷冻法制备浇注膜:将实施例1和2合成的可降解的电活性聚氨酯,分别溶解在DMSO中,配成质量分数为20%的溶液,再平铺在聚四氟乙烯板上,在60℃的烘箱中加热48h,然后转移到冷冻干燥箱中干燥12h。然后用扫描电镜观测。
静电纺丝制备纤维膜:将实施例1和2合成的可降解的电活性聚氨酯,分别溶解在六氟异丙醇中,配成质量分数为12%的电纺液,在正电压为10.0KV,负电压1.1.5KV,推注速度为0.90mL/h,接收距离为15cm的条件下得到的静电纺丝膜。
图4是可降解电活性聚氨酯两种制备成型方式的形貌图:(A)PUAT5浇注膜结构图,(B)PUAT2.5浇注膜结构图,(C)PUAT5静电纺丝纤维膜结构图,(D)PUAT2.5静电纺丝纤维膜结构图。图4(A)和(B)是凝胶冷冻法制备的浇注膜,从图中可以看到PUAT5具有更加完好的孔结构;图4(C)和(D)是通过静电纺丝制备的纤维膜,可见本发明合成的新型的聚氨酯具有良好的可纺性,纤维结构良好,没有出现串珠结构。
实施例11
将实施例1和2合成的可降解的电活性聚氨酯,分别采用凝胶冷冻法制备浇注膜(同实施例10),然后裁取直径为5cm的膜,浸泡在酶浓度为300U/mL的4.5mLPBS溶液中(酶为脂肪酶,Amano Lipase PS from Burkholdria cepacia,源自洋葱伯克氏菌的天野脂肪酶),在0.5、1、2、3、5和7天时间节点上称重。
图5为可降解电活性聚氨酯的酶促降解图,可见随着AT(苯胺三聚体)含量的增加,其降解速度降低,可见本发明合成的新型聚氨酯具有可降解性。
实施例12
将实施例1和2合成的可降解的电活性聚氨酯,分别采用凝胶冷冻法制备浇注膜(同实施例10),裁成4×50mm的哑铃状,在万能力学测试机上做单向拉伸力学测试。
图6是可降解电活性聚氨酯拉伸力学测试图,其结果如图所示可以看到本发明合成的新型聚氨酯具有良好的断裂伸长率,如PUAT2.5的断裂伸长率高达700%,其弹性模量也在人体软组织的弹性模量范围内。
实施例13
将实施例1制得的PUAT5(按实施例10方法)制得静电纺丝膜裁制成直径为13cm的圆片,辐照灭菌之后与大鼠坐骨神经雪旺细胞(SCs,即从SD大鼠中分离得到的坐骨神经雪旺细胞)共培养,细胞浓度为20000×104/mL,设置没有添加PUAT5静电纺丝膜圆片的大鼠坐骨神经雪旺细胞培养组作为空白组。取培养后第一天和第三天的共培养细胞进行HE染色,结果参见图7。结果表明,与空白对照组相比,PUAT5和细胞共培养之后具有良好的形态,说明合成的可降解电活性聚氨酯具有良好的生物相容性。
参考文献:
1、Hsiao,C.W.;Bai,M.Y.;Chang,Y.;Chung,M.F.;Lee,T.Y.;Wu,C.T.;Maiti,B.;Liao,Z.X.;Li,R.K.;Sung,H.W.,Electrical coupling of isolated cardiomyocyteclusters grown on aligned conductive nanofibrous meshes for theirsynchronized beating.Biomaterials 2013,34,1063-72。
2、Lee,J.Y.;Bashur,C.A.;Goldstein,A.S.;Schmidt,C.E.,Polypyrrole-coatedelectrospun PLGA nanofibers for neural tissue applications.Biomaterials 2009,30,4325-4335。

Claims (15)

1.可降解的电活性聚氨酯材料,其结构式如式Ⅰ所示:
Figure FDA0003846793710000011
其中,R为
Figure FDA0003846793710000012
C1~8烷基和C3~8环烷基中的至少一种;
R1为软段,选自端羟基线性聚己内酯二醇、端羟基线性聚乳酸二醇、端羟基线性聚乙交酯二醇、端羟基线性聚乳酸-羟基乙酸共聚物二醇、端羟基线性聚乙二醇、端羟基线性聚四亚甲基乙二醇、端羟基线性PCL-PEG-PCL二醇、端羟基线性PCL-PTMO-PCL二醇、端羟基线性PLA-PTMO-PLA二醇或端羟基线性PLA-PEG-PLA二醇中的至少一种除去羟基的部分;
R2
Figure FDA0003846793710000013
R3、R4独立地为-H或C1~8烷基;
n=3、4、5或8;x=4~25;y=4~30;z=4~25;m=1~6。
2.根据权利要求1所述的可降解的电活性聚氨酯材料,其特征在于:R为
Figure FDA0003846793710000014
或C1~8烷基。
3.根据权利要求1所述的可降解的电活性聚氨酯材料,其特征在于:R1为端羟基线性聚己内酯二醇、端羟基线性聚乙二醇或端羟基线性PCL-PEG-PCL二醇中的至少一种除去羟基的部分。
4.根据权利要求1所述的可降解的电活性聚氨酯材料,其特征在于:所述的可降解的电活性聚氨酯材料是由低聚物二醇作为软段,脂肪族二异氰酸酯作为硬段,苯胺低聚体和含双氨基的氨基酸为扩链剂,在有机溶剂中通过预聚体法合成。
5.根据权利要求4所述的可降解的电活性聚氨酯材料,其特征在于:所述低聚物二醇的分子量为500~4000;所述的低聚物二醇为聚己内酯二醇、聚乳酸二醇、聚乙交酯二醇、聚乳酸-羟基乙酸共聚物二醇、聚乙二醇、聚四亚甲基乙二醇、PCL-PEG-PCL二醇、PCL-PTMO-PCL二醇、PLA-PTMO-PLA二醇或PLA-PEG-PLA二醇。
6.根据权利要求4所述的可降解的电活性聚氨酯材料,其特征在于:所述的低聚物二醇为PCL、PEG或PCL-PEG-PCL二醇。
7.根据权利要求4所述的可降解的电活性聚氨酯材料,其特征在于:所述的脂肪族二异氰酸酯为异佛尔酮二异氰酸酯、1,6-己二异氰酸酯或1,4-丁二异氰酸酯中的至少一种。
8.根据权利要求4所述的可降解的电活性聚氨酯材料,其特征在于:所述的脂肪族二异氰酸酯为异佛尔酮二异氰酸酯或赖氨酸二异氰酸酯。
9.根据权利要求4所述的可降解的电活性聚氨酯材料,其特征在于:所述的苯胺低聚体为氨基封端的苯胺三聚体、四聚体、五聚体或八聚体中的至少一种。
10.根据权利要求4所述的可降解的电活性聚氨酯材料,其特征在于:所述的苯胺低聚体为氨基封端的苯胺三聚体。
11.据权利要求4所述的可降解的电活性聚氨酯材料,其特征在于:所述含双氨基的氨基酸为谷氨酰胺或天冬酰胺。
12.权利要求1~11任一项所述可降解的电活性聚氨酯材料的制备方法,包括以下步骤:
a、将充分干燥脱水的低聚物二醇和脂肪族二异氰酸酯溶于有机溶剂中,在催化剂和惰性气体保护下,于50~150℃温度下预聚1~24h;
b、将上述所得的预聚产物温度控制至10~80℃,然后加入含有机溶剂溶解的含双氨基的氨基酸进行第一次扩链反应,反应时间为1~12h;
c、将第一次扩链的产物温度控制至40~100℃,在加入有机溶剂溶解的苯胺低聚体,进行再次扩链,反应1~6h;
d、将再次扩链的产物缓慢倒入溶剂中沉降,然后收集并干燥,得到可降解的电活性聚氨酯材料;
步骤a所述脂肪族二异氰酸酯与低聚物二醇的摩尔比为3.5:1~2:1;所述的催化剂为辛酸亚锡、二月桂酸二丁基锡、异辛酸铋、新葵酸铋或环烷酸铋;所述催化剂的质量为低聚物二醇和脂肪族二异氰酸酯总质量的0.05~0.2wt%;
步骤b、c所述含双氨基的氨基酸和苯胺低聚体的总量与脂肪族二异氰酸酯的摩尔比为1:3.5~1:2;
步骤c所述苯胺低聚体与含双氨基的氨基酸的摩尔比为0.1:10~5:5;
步骤a、b、c所述的有机溶剂为二甲基亚砜、N,N-二甲基甲酰胺、N-甲基甲酰胺或N-甲基吡咯烷酮中的至少一种;
步骤d所述溶剂水、乙醇、甲醇、异丙醇、乙二醇或丙三醇。
13.根据权利要求12所述的可降解的电活性聚氨酯材料的制备方法,其特征在于:步骤a所述二元异氰酸酯与低聚物二醇的摩尔比为3.5:1~2:1;所述聚氨酯反应催化剂为异辛酸铋、新癸酸铋或环烷酸铋;所述预聚的温度为65~100℃,预聚时间为2~8h;
步骤b所述第一次扩链反应的温度为40~80℃,反应时间为1~6h;
所述再次扩链反应的温度为50~80℃,反应时间为1~4h;所述有机溶剂为二甲基亚砜和N-甲基甲酰胺的混合溶液,其体积比为0.5:1~2:1。
14.权利要求1~11任一项所述的可降解的电活性聚氨酯材料在制备多孔支架方面的用途。
15.权利要求1~11任一项所述的可降解的电活性聚氨酯材料在神经、心肌、骨或皮肤组织工程、生物医学和智能穿戴领域中的应用。
CN202110153362.4A 2021-02-04 2021-02-04 可降解的电活性聚氨酯材料及其制备方法和应用 Active CN112940218B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110153362.4A CN112940218B (zh) 2021-02-04 2021-02-04 可降解的电活性聚氨酯材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110153362.4A CN112940218B (zh) 2021-02-04 2021-02-04 可降解的电活性聚氨酯材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112940218A CN112940218A (zh) 2021-06-11
CN112940218B true CN112940218B (zh) 2022-11-01

Family

ID=76243706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110153362.4A Active CN112940218B (zh) 2021-02-04 2021-02-04 可降解的电活性聚氨酯材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112940218B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307932B (zh) * 2021-07-14 2023-03-24 四川轻化工大学 聚羟基乙酸基聚氨酯及其制备方法
CN115044013B (zh) * 2022-07-08 2023-12-22 江苏富琪森新材料有限公司 一种生物基空气固化型水性聚氨酯脲树脂及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256511A (ja) * 1993-03-01 1994-09-13 Tomoegawa Paper Co Ltd ポリアニリン誘導体およびその製造方法
EP2418231A1 (de) * 2010-08-09 2012-02-15 Bayer MaterialScience AG Elektromechanischer Wandler, umfassend ein Polyurethanpolymer mit Polycarbonat-Einheiten
CA3005306C (en) * 2015-11-30 2021-08-10 Aleo Bme, Inc. Biodegradable block polyurethane copolymers comprising folic acid and their use in medical devices
CN109843951B (zh) * 2016-10-31 2021-07-30 株式会社Lg化学 凝胶聚合物电解质、包含其的电致变色器件及其制造方法
CN106521684B (zh) * 2016-11-23 2018-11-20 浙江华峰氨纶股份有限公司 一种具有导电性能的智能服用氨纶的制备方法
CN110157351A (zh) * 2019-06-13 2019-08-23 慧迈材料科技(广东)有限公司 一种阻燃耐热导电水性胶黏剂及其应用
CN110563920A (zh) * 2019-09-12 2019-12-13 长春工业大学 一种导电混合异氰酸酯型聚氨酯材料及其制备方法

Also Published As

Publication number Publication date
CN112940218A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
Mi et al. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering
Wu et al. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering
Shrestha et al. Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering
Saudi et al. Design and fabrication of poly (glycerol sebacate)‐based fibers for neural tissue engineering: Synthesis, electrospinning, and characterization
Baheiraei et al. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application
Asefnejad et al. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay
CN112940218B (zh) 可降解的电活性聚氨酯材料及其制备方法和应用
Massoumi et al. Electrically conductive nanofibrous scaffold composed of poly (ethylene glycol)-modified polypyrrole and poly (ε-caprolactone) for tissue engineering applications
Lee et al. Synthesis and Characterization of Polycaprolactone‐Based Polyurethanes for the Fabrication of Elastic Guided Bone Regeneration Membrane
Sarvari et al. Conductive and biodegradable scaffolds based on a five-arm and functionalized star-like polyaniline–polycaprolactone copolymer with ad-glucose core
Prasopthum et al. Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells
Park et al. Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility
CN110117348B (zh) 聚氨酯材料及其制备方法和应用、聚合物材料、3d支架
Shah et al. Electrospinning of L-tyrosine polyurethanes for potential biomedical applications
Fakhrali et al. Biocompatible graphene‐embedded PCL/PGS‐based nanofibrous scaffolds: A potential application for cardiac tissue regeneration
EP3416994B1 (en) Dopant-free conductive bioelastomers
Chen et al. Bioactive 3D porous cobalt-doped alginate/waterborne polyurethane scaffolds with a coral reef-like rough surface for nerve tissue engineering application
Nair et al. Electrospun biodegradable calcium containing poly (ester‐urethane) urea: Synthesis, fabrication, in vitro degradation, and biocompatibility evaluation
Wu et al. Preparation of aligned poly (glycerol sebacate) fibrous membranes for anisotropic tissue engineering
Han et al. Synthesis and characterization of biodegradable polyurethane based on poly (ε-caprolactone) and L-lysine ethyl ester diisocyanate
Sarvari et al. 3D scaffold designing based on conductive/degradable tetrapolymeric nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for bone tissue engineering
Guo et al. Preparation and characterization of poly (pluronic-co-L-lactide) nanofibers for tissue engineering
Jia et al. Influence of well-defined hard segment length on the properties of medical segmented polyesterurethanes based on poly (ε-caprolactone-co-L-lactide) and aliphatic urethane diisocyanates
Li et al. Preparation of mechanically-tough and thermo-responsive polyurethane-poly (ethylene glycol) hydrogels
Zhang et al. Electroactive Composite of FeCl3‐Doped P3HT/PLGA with Adjustable Electrical Conductivity for Potential Application in Neural Tissue Engineering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant