CN109980758B - 无线充电系统的软启动方法 - Google Patents

无线充电系统的软启动方法 Download PDF

Info

Publication number
CN109980758B
CN109980758B CN201910263257.9A CN201910263257A CN109980758B CN 109980758 B CN109980758 B CN 109980758B CN 201910263257 A CN201910263257 A CN 201910263257A CN 109980758 B CN109980758 B CN 109980758B
Authority
CN
China
Prior art keywords
current
primary
phase shift
steady state
steady
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910263257.9A
Other languages
English (en)
Other versions
CN109980758A (zh
Inventor
钟文兴
李豪
徐德鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910263257.9A priority Critical patent/CN109980758B/zh
Publication of CN109980758A publication Critical patent/CN109980758A/zh
Application granted granted Critical
Publication of CN109980758B publication Critical patent/CN109980758B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种无线充电系统软启动方法,该方法是通过移相来调节逆变器输出电压,将系统启动过程分为三个阶段:一、在原边电流达到其稳态值之前,逆变器以最大移相角180°输出,实现快速启动;二、在原边电流达到其稳态值峰值时开始调制,调节移相角以抵消由副边电流引起的原边感应电压,可以直接进入稳态;三、在副边电流上升到其稳态值后保持逆变器移相角不变,以保证输出电压不变。采用本发明的方法可以有效的使原边电流迅速增大至稳态电流后保持不变,并使副边快速达到稳态,用时从现有方法的秒级可降至毫秒级,整个过程实现过电流抑制目的。

Description

无线充电系统的软启动方法
技术领域
本发明属于无线充电技术领域,涉及一种软启动方法。
背景技术
随着电动汽车的普及,无线充电技术凭借着其安全、灵活、方便等优势正受到越来越多的关注。常用的电动汽车无线充电拓扑如图1所示,原副边均采用SS补偿网络结构。在系统开通过程中,由于暂态过程的存在,可能会有过电压、过电流现象的出现,如图2所示,对电路正常工作造成隐患。传统的做法是尽可能地延长启动时间来实现软启动,实际操作中往往需要秒级以上,然而这对于某些需要快速启动的场合是不够的。本文提出了一种应用于此SS补偿拓扑的能够快速软启动的控制方法,使得系统快速进入稳态,且无过电压与过电流现象产生。
发明内容
本发明的目的在于针对现有技术的不足,提供一种可实现快速进入稳态的无线充电系统软启动方法。
为了简化互相耦合的多阶电路,将原副边分别表示成包含受控源的二阶电路,如图3所示。采用基波分析法,在原边等效电路中,包含逆变器输出电压v1、副边电流i2在原边引起的感应电压Mdi2/dt;在副边等效电路中,包含原边电流i2在副边引起的感应电压Mdi1/dt以及整流器前的等效电压v2
对于原边电路,逆变器输出侧方波电压基波分量v1幅值V1满足
Figure BDA0002015975980000011
其中,Vs为无线充电系统输入侧直流电压,α为移相角。
整流器侧等效电压v2幅值V2
Figure BDA0002015975980000012
其中VO为输出直流电压。
调节方式如下:
1.开始阶段,将移相角α调至180°,原边电流i1快速上升直至达到稳态峰值。
2.原边电流i1上升到稳态峰值后,实时调节移相角α改变逆变器输出电压v1以跟随感应电压Mdi2/dt,使得原边电流i1直接进入稳态,无过电流现象。
3.根据原边稳态电流在副边部分引起的感应电压Mdi1/dt以及整流器侧等效电压v2,计算副边电流i2及其包络线的函数表达式。副边电流i2自然增大到稳态,无过电流现象。
理论推导
下面首先对原边电路进行理论推导,可得出原边电流i1上升到稳态峰值后即可直接进入稳态的条件;其次对副边电路进行推导,以得到计算副边电流i2及其包络线的方法。
1)原边调制
根据原边电路等效部分,如图3(1)所示,列出含电感电流、电容电压初始值的电路微分方程:
Figure BDA0002015975980000021
Figure BDA0002015975980000022
Figure BDA0002015975980000023
其中,L1、R1、C1分别是原边电感值、等效串联电阻值、谐振电容值;Usm为原边等效电压稳态值峰值,
Figure BDA0002015975980000028
为等效电压稳态时的相位;I0、U0分别是电感电流、电容电压初始值。
对于电动汽车无线充电系统,参数通常满足
Figure BDA0002015975980000024
系统工作于欠阻尼状态,故可解得电容两端电压vC1
Figure BDA0002015975980000025
其中
Figure BDA0002015975980000026
工作于谐振状态,ω0为谐振频率,Ucm1为原边稳态电容电压值峰值,
Figure BDA0002015975980000027
为原边稳态电容电压初始相位角,K1、K2为与系统参数有关的常量
Figure BDA0002015975980000031
Figure BDA0002015975980000032
可见,电容电压包含暂态分量与稳态分量两部分,若选取
Figure BDA0002015975980000033
则有
Figure BDA0002015975980000034
即电容两端电压vC1无暂态过程,系统直接进入稳态,vC1幅值相位如图4所示,t=0表示调制开始时刻。
系统工作于谐振状态,故有
Figure BDA0002015975980000035
因而可以得到
Figure BDA0002015975980000036
所以原边最终的调制目标为式(13),实际所需波形如图5所示,t=0表示调制开始时刻,满足(13)要求即可直接进入稳态,接下来需计算i2
Figure BDA0002015975980000037
2)副边调制
根据副边电路等效部分,假设i1、v2为常量,电路初始值为0,则副边电路启动过程为
Figure BDA0002015975980000038
则有
Figure BDA0002015975980000039
其中,L2、R2、C2分别是副边电感值、等效串联电阻值、谐振电容值,Ucm2为副边稳态电容电压值峰值,又有ωα≈ω0=ω,求得
Figure BDA0002015975980000041
其中
Figure BDA0002015975980000042
Figure BDA0002015975980000043
下面简化式(16),由于电动汽车无线充电系统参数通常满足
Figure BDA0002015975980000044
Figure BDA0002015975980000045
因此可以得到式(16)的简化表达式i2simple(t)
Figure BDA0002015975980000046
可见,i2(t)包络线表达式i2blx(t)为
Figure BDA0002015975980000047
接下来计算调制所需要的α(t)表达式,
Figure BDA0002015975980000048
Figure BDA0002015975980000049
Figure BDA00020159759800000410
其中,I1max为原边电流稳态值峰值,由于电动汽车无线充电系统参数通常满足
Figure BDA00020159759800000411
因此可以得到α(t)的简化表达式
Figure BDA00020159759800000412
Figure BDA00020159759800000413
综上,原边控制信号波形如图6所示,ugs1-ugs4分别是逆变器四个mos开关管的驱动信号,v1为逆变器输出电压基波分量,i1为原边电流,α为移相角,α0为调制开始之后的初始移相角。
为验证式(16)、(19)、(20)副边电流i2计算及简化表达式的正确性,代入L2=490uH、C2=7.2nF、M=40uH、R2=1Ω、I1max=22.5A、f0=84.73kHz、VO=368V、RL=58Ω,画出各理论曲线,如图7所示,可以看到i2(t)与其简化表达式i2simple(t)曲线基本重合,包络线i2blx(t)满足要求,证明简化合理。
本发明的有益效果是:
采用本发明的方法可以有效的使原边电流迅速增大至稳态电流后保持不变,并使副边快速达到稳态,启动时间从现有方法的秒级可降至毫秒级,整个过程实现过电流抑制目的。
附图说明
图1无线充电系统SS补偿拓扑结构;
图2开通过程过电流现象;
图3等效电路:(1)原边等效电路(2)副边等效电路;
图4电容电压vC1波形;
图5原边控制电压电流波形;
图6原边控制信号波形;
图7副边电流i2(t)、简化曲线i2simple(t)及其包络线i2blx(t);
图8移相角α定义;
图9 3.7kW实验平台;
图10移相控制下α变化过程;
图11移相控制下原副边电流波形;
图12移相控制下逆变器输出电压与电流同相;
图13开关键控调制下α变化过程(软启动);
图14开关键控调制下原副边电流波形(软启动);
图15开关键控调制下α变化过程(非软启动);
图16开关键控调制下原副边电流波形(非软启动);
具体实施方式
下面以具体实例解释说明本发明的技术方案:
仿真验证
通过改变移相角α来调节逆变器输出电压v1,为实现快速软启动,系统启动过程分为三个阶段:一、在原边电流达到其稳态值之前,逆变器以最大移相角180°输出,实现原边电流快速增大;二、在原边电流达到其稳态值峰值时开始调制,调节移相角以跟随由副边电流引起的原边感应电压,确保i1直接进入稳态;三、在副边电流上升到其稳态值后保持逆变器移相角不变,以保证输出电压不变。
为验证整个调制方式,系统框图如图1,移相角α定义如图8所示,为开关管信号ugs2滞后于ugs1的相位。根据实际实验平台选取参数如表1所示,其中所搭建的实验平台如图9所示,上下线圈尺寸均为35*35cm,间距为15cm,线圈采用利兹线绕制,上下侧均加一铝板起屏蔽磁场作用。
表1
L<sub>1</sub>/uH L<sub>2</sub>/uH C<sub>1</sub>/nF C<sub>2</sub>/nF R<sub>1</sub>/Ω
490 490 7.2 7.2 1
R<sub>2</sub>/Ω M/uH f<sub>0</sub>/kHz V<sub>O</sub>/V V<sub>s</sub>/V
1 40 84.73 370 400
下面通过移相控制和开关键控调制(参见Maximum Energy EfficiencyOperation of Series-Series Resonant Wireless Power Transfer Systems Using On-Off Keying Modulation文章)两个案例来进行验证。
1.移相控制
当原边电流上升到稳态值峰值时开始调制,移相角α按指定函数增大,最后维持在系统稳定所需要的移相角值。
假设原边稳态电流峰值I1max=22.5A,副边电流稳态峰值I2max=10A,负载电阻RL=58Ω,根据式(20)计算可以得到i2(t)的包络线表达式i2blx(t),
i2blx(t)≈10(1-e-1020t) (26)
从而解得α(t)表达式,
Figure BDA0002015975980000061
整体实现过程分别如图10-12所示,依次是α变化过程、原副边电流波形、逆变器输出电压与电流波形。可见,原边电流迅速增大至稳态电流后保持不变;副边在3ms处左右达到稳态;原副边电流幅值最后分别稳定在22.5A、10A。
2.开关键控调制
开关键控调制有开通、关断过程,为加快副边电流上升速度,将原边电流设定为略大于稳态值(电流上升速度与电流最大值之间存在折衷),移相角α增大到180°以后无法继续增大,限制在180°,后续电流会出现轻微震荡。
假设原边电流幅值设置在I1max=27.6A,副边电流幅值为I2max=119A(由于移相角α最大到180°,负载电阻RL=58Ω,因此实际最大值远远低于119A),根据式(20)计算可以得到i2(t)的包络线表达式i2blx(t),
i2blx(t)≈119(1-e-1020t) (28)
从而解得α(t)表达式,
Figure BDA0002015975980000071
α变化过程如图13所示,起初α=180°以快速启动,达到设定值I1max=27.6A以后开始调制,跟随副边感应到原边的电压以保持原边电流不变;当α达到180°以后保持不变。原副边电流波形如图14所示,当α增大到180°调制结束,之后原副边电流会出现轻微震荡,最终I1max=30A,I2max=29A,整个过程也实现了过电流抑制目的。
作为对比例子:现仍采用开关键控调制,不采用软启动方法,直接以α=180°调制。在相同电路参数下,α变化过程及原副边电流波形分别如图15、16所示,可以看到,原边电流i1最大值为43A,超出采用软启动方法原边电流最大值的43%;副边电流最大值为39A,超过采用软启动方法副边电流最大值的34%。过电流现象严重,并且原副边电流震荡明显,影响能量传输。

Claims (2)

1.无线充电系统软启动方法,其特征在于,该方法适用于SS补偿拓扑,是通过移相来调节逆变器输出电压,将系统启动过程分为三个阶段:
一、在原边电流达到其稳态值之前,逆变器以最大移相角180°输出,实现快速启动;
二、在原边电流达到其稳态值峰值时开始调制,调节移相角以抵消由副边电流引起的原边感应电压,可以直接进入稳态;
三、在副边电流上升到其稳态值后保持逆变器移相角不变,以保证输出电压不变。
2.根据权利要求1所述的无线充电系统软启动方法,其特征在于,在阶段二中,逆变器移相角α(t)按如下公式进行调节:
Figure FDA0002678665880000011
其中,Vs为无线充电系统输入侧直流电压,I1max为原边电流稳态值峰值,R1为原边部分等效串联电阻,ω为系统工作频率,M为原副边线圈之间的互感,i2blx(t)为副边电流包络线表达式,为:
Figure FDA0002678665880000012
其中,L2、R2、C2分别是副边电感值、等效串联电阻值、谐振电容值,Ucm2为副边稳态电容电压值峰值。
CN201910263257.9A 2019-04-02 2019-04-02 无线充电系统的软启动方法 Active CN109980758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910263257.9A CN109980758B (zh) 2019-04-02 2019-04-02 无线充电系统的软启动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910263257.9A CN109980758B (zh) 2019-04-02 2019-04-02 无线充电系统的软启动方法

Publications (2)

Publication Number Publication Date
CN109980758A CN109980758A (zh) 2019-07-05
CN109980758B true CN109980758B (zh) 2021-03-23

Family

ID=67082530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910263257.9A Active CN109980758B (zh) 2019-04-02 2019-04-02 无线充电系统的软启动方法

Country Status (1)

Country Link
CN (1) CN109980758B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740505B (zh) * 2020-07-03 2022-02-08 浙江大学 一种仅通过原边移相控制实现pfc的方法
CN111884497B (zh) * 2020-07-06 2021-12-17 华中科技大学 用于双有源桥直流变换器的快速软启动控制方法及系统
CN112865340B (zh) * 2021-04-26 2021-07-23 中国人民解放军海军工程大学 一种无线充电系统的互感参数辨识方法及装置
CN113179022B (zh) * 2021-05-08 2022-08-30 清华大学 一种双有源桥变换器无源软启动方法、系统、介质及设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789637A (zh) * 2010-02-26 2010-07-28 南京博兰得电子科技有限公司 感应耦合式电能传输装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169131A1 (en) * 2010-12-29 2012-07-05 Choudhary Vijay N Phase shift power transfer
CN105914831B (zh) * 2016-05-20 2018-08-10 西安交通大学 基于ss拓扑的磁耦合谐振无线电能传输系统参数设计方法
CN108544935B (zh) * 2018-03-20 2020-06-30 清华大学 一种电动汽车双向无线充电系统传输功率控制方法
CN108512273B (zh) * 2018-04-12 2020-11-10 西安交通大学 基于变频移相控制的ss谐振无线电能传输系统参数设计方法
KR101935570B1 (ko) * 2018-06-08 2019-01-07 (주)그린파워 전기차용 비접촉 급전장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789637A (zh) * 2010-02-26 2010-07-28 南京博兰得电子科技有限公司 感应耦合式电能传输装置

Also Published As

Publication number Publication date
CN109980758A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN109980758B (zh) 无线充电系统的软启动方法
Chen et al. A switching hybrid LCC-S compensation topology for constant current/voltage EV wireless charging
CN109617190B (zh) 基于恒流-恒压复合拓扑的可抗偏移电池无线充电系统
US6370050B1 (en) Isolated and soft-switched power converter
EP3403321B1 (en) System and method for operating a dc to dc power converter
CN109888933B (zh) 一种原边多模块高频并联的无线电能传输系统
US11518246B2 (en) Electric drive system, powertrain, and electric vehicle
CN110875635B (zh) 一种用于提升电动汽车无线充电互操作性的发射线圈阵列控制方法
CN111030313A (zh) 无线电能传输系统e类逆变器zvs工作的参数设计方法
CN104753354A (zh) 车辆用功率转换装置以及控制其的方法
Liu et al. A closed-loop control strategy of maximum efficiency point tracking for wireless power charging system
KR101937013B1 (ko) 역률 개선 컨버터
Qahouq et al. Investigation and simulation model results of high density wireless power harvesting and transfer method
CN114825663A (zh) 一种sp型双输出单独可调无线电能传输系统及其控制方法
Tsai et al. Switching strategy comparison of SP compensated inductive power transfer system
Nguyen et al. An overview of power circuit topologies for inductive power transfer systems
CN112994264A (zh) 无线电能传输系统
Vulfovich et al. Relation Between Operation Frequency Range and Coupling Coefficient Variations in WPT Under Subresonant Frequency Control
Atraqchi et al. A comparative study of resonant frequency calculation based on leakage-inductance and self-inductance for cet system
Cimen et al. Development of a modular inductive power transfer system with a reactive power correction for EV application
CN117614287B (zh) 一种通过调整参数设计实现高增益利用率的cllc电路
Wu et al. Inductive power transfer system with constant current and constant voltage outputs for battery charging based on double‐channel T‐circuit
CN115313881B (zh) 一种变流器故障保护装置
Purwadi et al. Study and design high-frequency resonant inductive power transfer for application of wireless charging electric vehicles
Li et al. Small-signal Model of LCC Compensated IPT System with Phase Shift Modulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant