CN109980210B - 一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用 - Google Patents

一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN109980210B
CN109980210B CN201910317698.2A CN201910317698A CN109980210B CN 109980210 B CN109980210 B CN 109980210B CN 201910317698 A CN201910317698 A CN 201910317698A CN 109980210 B CN109980210 B CN 109980210B
Authority
CN
China
Prior art keywords
niobium pentoxide
composite material
doped graphene
dimensional
graphene composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910317698.2A
Other languages
English (en)
Other versions
CN109980210A (zh
Inventor
黄剑锋
王羽偲嘉
李嘉胤
曹丽云
仵婉晨
席乔
罗晓敏
王海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910317698.2A priority Critical patent/CN109980210B/zh
Publication of CN109980210A publication Critical patent/CN109980210A/zh
Application granted granted Critical
Publication of CN109980210B publication Critical patent/CN109980210B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6484Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用,采用水热法以及后续的高温煅烧,制备出均匀的五氧化二铌三维掺杂石墨烯复合材料,石墨烯在水热反应可原位自组装成三维状石墨烯,为比表面积大提供了可能;五氧化二铌与三维石墨烯复合大幅度改善了五氧化二铌的导电性差问题;同时N、S掺杂在石墨烯表面提供了更多的活性位点,细化了五氧化二铌的粒径,利于导电性能的提升;合成方法简单,实验药品便宜易得,成本低廉;所制备的五氧化二铌三维掺杂石墨烯复合材料,可在锂离子电池,锂硫电池,超级电容器以及电催化等领域应用,具有广阔的应用前景。

Description

一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和 应用
技术领域
本发明涉及电池电极材料领域,特别涉及一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用。
背景技术
Nb2O5作为一种嵌入式赝电容材料,其脱嵌锂过程发生在体相中,没有相变的发生,响应时间短,是一种可以实现快充快放的电极材料。Nb2O5由于其安全运行,高速率,稳定的循环性能,已被广泛研究应用。但五氧化二铌的电子导电性非常差,需要将纳米结构的五氧化二铌和碳材料复合,利用碳材料为电子传输提供良好的导电网络,提高其导电性。而石墨烯由于其高电子导电性,大的比表面积,良好的力学性能及化学稳定性,成为碳材料的不二之选。然而,实验和理论证明,纯石墨烯的活性位点不够,不具有选择性,在实际应用中不具备很好的匹配度。研究表明异原子掺杂能有效解决石墨烯的应用问题,引入缺陷以提供活性位点。所以采用N、S共掺杂的三维石墨烯与纳米五氧化二铌复合。
发明内容
本发明目的在于是提供一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用,制备方法安全无毒,成本低廉,操作简便;制备的五氧化二铌三维掺杂石墨烯复合材料,可在锂离子电池、锂硫电池、超级电容器以及电催化等领域应用。
为实现上述目的,本发明采用的技术方案是:
一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用,包括以下步骤:
第一步、三维掺杂石墨烯前驱体溶液的制备:
将氧化石墨烯分散于足量的去离子水中,超声震荡使氧化石墨烯均匀分散开,得到氧化石墨烯分散液,按照氧化石墨烯、三聚氰胺、三聚硫氰酸、氯化铌的质量比为1:(0.1~2):(0.15~2):(1~10)向氧化石墨烯分散液中加入三聚氰胺粉体,搅拌均匀,然后加入三聚硫氰酸的乙醇溶液,搅拌均匀后备用;
第二步、五氧化二铌三维掺杂石墨烯复合材料的制备:
将第一步制备的三维掺杂石墨烯前驱体溶液倒入烧杯中,加入氯化铌搅拌均匀,然后转到聚四氟乙烯衬底的反应釜中,置于均相反应仪中在120~200℃进行水热反应4~36h;将水热产物用水和乙醇反复洗涤抽滤,冷冻干燥,待处理;
第三步、五氧化二铌三维掺杂石墨烯复合材料的后处理:
将第二步所得的五氧化二铌三维掺杂石墨烯复合材料进行热处理,在惰性气体保护下置于管式炉中,以5~10℃/min升温至600~1000℃进行热处理2~6h,热处理后在保护气氛下自然冷却,即得五氧化二铌三维掺杂石墨烯复合材料。
进一步,用于配置氧化石墨烯分散液去离子水与用于配置三聚硫氰酸乙醇溶液的乙醇体积比为(1~4):1。
进一步,所述第一步中两次搅拌温度为70~120℃,每次搅拌时间均为10~60min。
进一步,所述第二步中水热反应时反应釜的的填充比为40~75%。
一种五氧化二铌三维掺杂石墨烯复合材料。
一种五氧化二铌三维掺杂石墨烯复合作为电极材料的应用。
发明的有益效果体现在:
本发明采用水热法以及后续的高温煅烧,绿色安全并且制备出均匀的五氧化二铌三维掺杂石墨烯复合材料,合成方法简单,实验药品便宜易得,成本低廉;石墨烯在水热反应可原位自组装成三维状石墨烯,为比表面积大提供了可能;五氧化二铌与三维石墨烯复合大幅度改善了五氧化二铌的导电性差问题;同时N、S掺杂在石墨烯表面提供了更多的活性位点,细化了五氧化二铌的粒径,利于导电性能的提升。所制备的五氧化二铌三维掺杂石墨烯复合材料,可在锂离子电池,锂硫电池,超级电容器以及电催化等领域应用,具有广阔的应用前景。
附图说明
图1a为实施例2所制备的五氧化二铌三维掺杂石墨烯复合材料的扫描电子显微(SEM)照片一
图1b为实施例2所制备的五氧化二铌三维掺杂石墨烯复合材料的扫描电子显微(SEM)照片二
图2为实施例2所制备的五氧化二铌三维掺杂石墨烯复合材料的X射线衍射(XRD)谱图
具体实施方式
下面结合具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
实施例1
第一步、三维掺杂石墨烯前驱体溶液的制备:
将0.1g氧化石墨烯分散于25ml去离子水中,超声震荡4h,离心取上层清液,使氧化石墨烯均匀分散开,得到氧化石墨烯分散液,加入0.1g三聚氰胺粉体,80℃搅拌至完全溶解,得到A液;另取0.15g三聚硫氰酸溶于25ml乙醇中,后得到B液;将B液缓慢加入A液中,70℃搅拌10min,搅拌均匀后备用。
第二步、五氧化二铌三维掺杂石墨烯复合材料的制备:
将第一步制备的三维掺杂石墨烯前驱体溶液倒入烧杯中,搅拌均匀,加入0.1g氯化铌,搅拌均匀,转到聚四氟乙烯衬底的反应釜中,填充比为45%,置于均相反应仪中进行水热反应120℃/12h;将水热产物用水和乙醇反复洗涤抽滤,冷冻干燥,待处理;
第三步、五氧化二铌三维掺杂石墨烯复合材料的后处理:
将第二步所得的五氧化二铌三维掺杂石墨烯复合材料进行热处理,在氩气保护下置于管式炉中,以5℃/min的升温速率升温到650℃保温2h。
实施例2
第一步、三维掺杂石墨烯前驱体溶液的制备:
将0.15g氧化石墨烯分散于50ml去离子水中,超声震荡4h,离心取上层清液,使氧化石墨烯均匀分散开,加入0.25g三聚氰胺粉体,80℃搅拌至完全溶解,得到A液;另取0.3g三聚硫氰酸溶于25ml乙醇中,后得到B液;将B液缓慢加入A液中,80℃搅拌20min,搅拌均匀后备用。
第二步、五氧化二铌三维掺杂石墨烯复合材料的制备:
将第一步制备的三维掺杂石墨烯前驱体溶液倒入烧杯中,搅拌均匀,加入0.2g氯化铌,搅拌均匀,转到聚四氟乙烯衬底的反应釜中,填充比为65%,置于均相反应仪中进行水热反应150℃/12h;将水热产物用水和乙醇反复洗涤抽滤,冷冻干燥,待处理;
第三步、五氧化二铌三维掺杂石墨烯复合材料的后处理:
将第二步所得的五氧化二铌三维掺杂石墨烯复合材料进行热处理,在氩气保护下置于管式炉中,以5℃/min的升温速率升温到650℃保温2h。
图1a和图1b为本实施例制备样品的SEM照片,用扫描电子显微镜(SEM)进行形貌观察,能明显的看到由纳米级厚度的石墨烯组装成的三维石墨烯,结构疏松,五氧化二铌颗粒细小均匀分布在三维石墨烯上。图2为本实施例制备样品的XRD图。
实施例3
第一步、三维掺杂石墨烯前驱体溶液的制备:
将0.2g氧化石墨烯分散于50ml去离子水中,超声震荡4h,离心取上层清液,使氧化石墨烯均匀分散开,加入0.2g三聚氰胺粉体,80℃搅拌至完全溶解,得到A液;另取0.35g三聚硫氰酸溶于25ml乙醇中,后得到B液;将B液缓慢加入A液中,80℃搅拌30min,搅拌均匀后备用。
第二步、五氧化二铌三维掺杂石墨烯复合材料的制备:
将第一步制备的三维掺杂石墨烯前驱体溶液倒入烧杯中,搅拌均匀,加入0.3g氯化铌,搅拌均匀,转到聚四氟乙烯衬底的反应釜中,填充比为75%,置于均相反应仪中进行水热反应180℃/12h;将水热产物用水和乙醇反复洗涤抽滤,冷冻干燥,待处理;
第三步、五氧化二铌三维掺杂石墨烯复合材料的后处理:
将第二步所得的五氧化二铌三维掺杂石墨烯复合材料进行热处理,在氩气保护下置于管式炉中,以10℃/min的升温速率升温到650℃保温2h。
实施例4
第一步、三维掺杂石墨烯前驱体溶液的制备:
将0.3g氧化石墨烯分散于100ml去离子水中,超声震荡4h,离心取上层清液,使氧化石墨烯均匀分散开,加入0.5g三聚氰胺粉体,80℃搅拌至完全溶解,得到A液;另取0.6g三聚硫氰酸溶于25ml乙醇中,后得到B液;将B液缓慢加入A液中,80℃搅拌30min,搅拌均匀后备用。
第二步、五氧化二铌三维掺杂石墨烯复合材料的制备:
将第一步制备的三维掺杂石墨烯前驱体溶液倒入烧杯中,搅拌均匀,加入0.4g氯化铌,搅拌均匀,转到聚四氟乙烯衬底的反应釜中,填充比为75%,置于均相反应仪中进行水热反应180℃/24h;将水热产物用水和乙醇反复洗涤抽滤,冷冻干燥,待处理;
第三步、五氧化二铌三维掺杂石墨烯复合材料的后处理:
将第二步所得的五氧化二铌三维掺杂石墨烯复合材料进行热处理,在氩气保护下置于管式炉中,以5℃/min的升温速率升温到800℃保温2h。
实施例5
第一步、三维掺杂石墨烯前驱体溶液的制备:
将0.4g氧化石墨烯分散于80ml去离子水中,超声震荡4h,离心取上层清液,使氧化石墨烯均匀分散开,加入0.6g三聚氰胺粉体,80℃搅拌至完全溶解,得到A液;另取0.8g三聚硫氰酸溶于40ml乙醇中,后得到B液;将B液缓慢加入A液中,80℃搅拌30min,搅拌均匀后备用。
第二步、五氧化二铌三维掺杂石墨烯复合材料的制备:
将第一步制备的三维掺杂石墨烯前驱体溶液倒入烧杯中,搅拌均匀,加入0.5g氯化铌,搅拌均匀,转到聚四氟乙烯衬底的反应釜中,填充比为65%,置于均相反应仪中进行水热反应180℃/24h;将水热产物用水和乙醇反复洗涤抽滤,冷冻干燥,待处理;
第三步、五氧化二铌三维掺杂石墨烯复合材料的后处理:
将第二步所得的五氧化二铌三维掺杂石墨烯复合材料进行热处理,在氩气保护下置于管式炉中,以10℃/min的升温速率升温到800℃保温2h。
实施例6
第一步、三维掺杂石墨烯前驱体溶液的制备:
将0.5g氧化石墨烯分散于100ml去离子水中,超声震荡4h,离心取上层清液,使氧化石墨烯均匀分散开,加入0.8g三聚氰胺粉体,80℃搅拌至完全溶解,得到A液;另取0.92g三聚硫氰酸溶于50ml乙醇中,后得到B液;将B液缓慢加入A液中,80℃搅拌30min,搅拌均匀后备用。
第二步、五氧化二铌三维掺杂石墨烯复合材料的制备:
将第一步制备的三维掺杂石墨烯前驱体溶液倒入烧杯中,搅拌均匀,加入0.6g氯化铌,搅拌均匀,转到聚四氟乙烯衬底的反应釜中,填充比为65%,置于均相反应仪中进行水热反应200℃/24h;将水热产物用水和乙醇反复洗涤抽滤,冷冻干燥,待处理;
第三步、五氧化二铌三维掺杂石墨烯复合材料的后处理:
将第二步所得的五氧化二铌三维掺杂石墨烯复合材料进行热处理,在氩气保护下置于管式炉中,以10℃/min的升温速率升温到1000℃保温2h。
实施例7
第一步、三维掺杂石墨烯前驱体溶液的制备:
将0.8g氧化石墨烯分散于100ml去离子水中,超声震荡4h,离心取上层清液,使氧化石墨烯均匀分散开,加入1.6g三聚氰胺粉体,80℃搅拌至完全溶解,得到A液;另取1.54g三聚硫氰酸溶于50ml乙醇中,后得到B液;将B液缓慢加入A液中,70℃搅拌60min,搅拌均匀后备用。
第二步、五氧化二铌三维掺杂石墨烯复合材料的制备:
将第一步制备的三维掺杂石墨烯前驱体溶液倒入烧杯中,搅拌均匀,加入8g氯化铌,搅拌均匀,转到聚四氟乙烯衬底的反应釜中,填充比为40%,置于均相反应仪中进行水热反应200℃/4h;将水热产物用水和乙醇反复洗涤抽滤,冷冻干燥,待处理;
第三步、五氧化二铌三维掺杂石墨烯复合材料的后处理:
将第二步所得的五氧化二铌三维掺杂石墨烯复合材料进行热处理,在氩气保护下置于管式炉中,以8℃/min的升温速率升温到600℃保温6h。
实施例8
第一步、三维掺杂石墨烯前驱体溶液的制备:
将1g氧化石墨烯分散于100ml去离子水中,超声震荡4h,离心取上层清液,使氧化石墨烯均匀分散开,加入0.1g三聚氰胺粉体,120℃搅拌至完全溶解,得到A液;另取0.15g三聚硫氰酸溶于65ml乙醇中,后得到B液;将B液缓慢加入A液中,70℃搅拌60min,搅拌均匀后备用。
第二步、五氧化二铌三维掺杂石墨烯复合材料的制备:
将第一步制备的三维掺杂石墨烯前驱体溶液倒入烧杯中,搅拌均匀,加入3g氯化铌,搅拌均匀,转到聚四氟乙烯衬底的反应釜中,填充比为60%,置于均相反应仪中进行水热反应120℃/36h;将水热产物用水和乙醇反复洗涤抽滤,冷冻干燥,待处理;
第三步、五氧化二铌三维掺杂石墨烯复合材料的后处理:
将第二步所得的五氧化二铌三维掺杂石墨烯复合材料进行热处理,在氩气保护下置于管式炉中,以7℃/min的升温速率升温到800℃保温5h。
最后应该说明的是:以上实施例仅用于说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本权利要求范围当中。

Claims (6)

1.一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用,其特征在于包括以下步骤:
第一步、三维掺杂石墨烯前驱体溶液的制备:
将氧化石墨烯分散于足量的去离子水中,超声震荡使氧化石墨烯均匀分散开,得到氧化石墨烯分散液,按照氧化石墨烯、三聚氰胺、三聚硫氰酸、氯化铌的质量比为1:(0.1~2):(0.15~2):(1~10)向氧化石墨烯分散液中加入三聚氰胺粉体,搅拌均匀,然后加入三聚硫氰酸的乙醇溶液,搅拌均匀后备用;
第二步、五氧化二铌三维掺杂石墨烯复合材料的制备:
将第一步制备的三维掺杂石墨烯前驱体溶液倒入烧杯中,加入氯化铌搅拌均匀,然后转到聚四氟乙烯衬底的反应釜中,置于均相反应仪中在120~200℃进行水热反应4~36h;将水热产物用水和乙醇反复洗涤抽滤,冷冻干燥,待处理;
第三步、五氧化二铌三维掺杂石墨烯复合材料的后处理:
将第二步所得的五氧化二铌三维掺杂石墨烯复合材料进行热处理,在惰性气体保护下置于管式炉中,以5~10℃/min升温至600~1000℃进行热处理2~6h,热处理后在保护气氛下自然冷却,即得五氧化二铌三维掺杂石墨烯复合材料。
2.根据权利要求1所述的方法,其特征在于:用于配置氧化石墨烯分散液去离子水与用于配置三聚硫氰酸乙醇溶液的乙醇体积比为(1~4):1。
3.根据权利要求1所述的方法,其特征在于:所述第一步中两次搅拌温度为70~120℃,每次搅拌时间均为10~60min。
4.根据权利要求1所述的方法,其特征在于:所述第二步中水热反应时反应釜的的填充比为40~75%。
5.一种根据权利要求1~4任一项方法制备的五氧化二铌三维掺杂石墨烯复合材料。
6.一种权利要求5所述五氧化二铌三维掺杂石墨烯复合材料作为电极材料的应用。
CN201910317698.2A 2019-04-19 2019-04-19 一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用 Active CN109980210B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910317698.2A CN109980210B (zh) 2019-04-19 2019-04-19 一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910317698.2A CN109980210B (zh) 2019-04-19 2019-04-19 一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109980210A CN109980210A (zh) 2019-07-05
CN109980210B true CN109980210B (zh) 2021-01-29

Family

ID=67085406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910317698.2A Active CN109980210B (zh) 2019-04-19 2019-04-19 一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109980210B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323429A (zh) * 2019-07-08 2019-10-11 中南大学 五氧化二铌/还原氧化石墨烯复合负极材料的制备方法
CN115332525A (zh) * 2022-08-30 2022-11-11 陕西科技大学 一种Nb2O5/GO/VS2复合材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657698A (zh) * 2013-11-27 2014-03-26 复旦大学 一种高氧还原性能的氮掺石墨烯-五氧化二铌插层复合催化剂的制备方法
CN103691420A (zh) * 2013-12-21 2014-04-02 海安县吉程机械有限公司 一步自组装法制备介孔五氧化二铌/石墨烯复合光催化剂
CN105688965A (zh) * 2016-01-12 2016-06-22 南通职业大学 介孔五氧化二铌/掺氮石墨烯高效复合光催化剂的制备方法
CN107626338A (zh) * 2017-10-11 2018-01-26 南通科技职业学院 硫化钼纳米粒子修饰介孔五氧化二铌/氮掺杂石墨烯复合光催化剂的制备方法
CN108470890A (zh) * 2018-03-15 2018-08-31 陕西科技大学 一种氮硫共掺杂三维石墨烯的制备方法、其制备的产品及该产品的应用
CN108493424A (zh) * 2018-04-11 2018-09-04 中科锂电新能源有限公司 一种氮、磷、硫共掺杂复合碳材料、其制备方法和锂离子电池
CN108493427A (zh) * 2018-04-20 2018-09-04 浙江大学 用于锂离子电池电极材料的微纳米Nb2O5粉体的制备方法
CN108607593A (zh) * 2016-01-26 2018-10-02 苏州大学 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用
CN108840318A (zh) * 2018-06-15 2018-11-20 陕西科技大学 一种蜂窝状多级孔氮硫掺杂三维碳材料及其制备方法
CN109037678A (zh) * 2018-06-15 2018-12-18 陕西科技大学 一种氮硫共掺杂三维石墨烯泡沫电极活性材料的制备方法
CN109019565A (zh) * 2018-06-15 2018-12-18 陕西科技大学 一种三维多孔氮硫掺杂碳纳米片的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411264B2 (en) * 2017-02-27 2019-09-10 Global Graphene Group, Inc. Cathode active material layer for lithium secondary battery and method of manufacturing

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657698A (zh) * 2013-11-27 2014-03-26 复旦大学 一种高氧还原性能的氮掺石墨烯-五氧化二铌插层复合催化剂的制备方法
CN103691420A (zh) * 2013-12-21 2014-04-02 海安县吉程机械有限公司 一步自组装法制备介孔五氧化二铌/石墨烯复合光催化剂
CN105688965A (zh) * 2016-01-12 2016-06-22 南通职业大学 介孔五氧化二铌/掺氮石墨烯高效复合光催化剂的制备方法
CN108607593A (zh) * 2016-01-26 2018-10-02 苏州大学 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用
CN107626338A (zh) * 2017-10-11 2018-01-26 南通科技职业学院 硫化钼纳米粒子修饰介孔五氧化二铌/氮掺杂石墨烯复合光催化剂的制备方法
CN108470890A (zh) * 2018-03-15 2018-08-31 陕西科技大学 一种氮硫共掺杂三维石墨烯的制备方法、其制备的产品及该产品的应用
CN108493424A (zh) * 2018-04-11 2018-09-04 中科锂电新能源有限公司 一种氮、磷、硫共掺杂复合碳材料、其制备方法和锂离子电池
CN108493427A (zh) * 2018-04-20 2018-09-04 浙江大学 用于锂离子电池电极材料的微纳米Nb2O5粉体的制备方法
CN108840318A (zh) * 2018-06-15 2018-11-20 陕西科技大学 一种蜂窝状多级孔氮硫掺杂三维碳材料及其制备方法
CN109037678A (zh) * 2018-06-15 2018-12-18 陕西科技大学 一种氮硫共掺杂三维石墨烯泡沫电极活性材料的制备方法
CN109019565A (zh) * 2018-06-15 2018-12-18 陕西科技大学 一种三维多孔氮硫掺杂碳纳米片的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nb2O5/graphene nanocomposites for electrochemical energy storage;Paulraj Arunkumar;《RSC Advances》;20150729(第5期);59998页实验部分,附图3 *

Also Published As

Publication number Publication date
CN109980210A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
Dang et al. Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage
Yao et al. Synthesis and property of novel MnO2@ polypyrrole coaxial nanotubes as electrode material for supercapacitors
Chen et al. Microwave–hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage
CN108183039B (zh) 碳修饰铌酸钛材料的制备方法、碳修饰铌酸钛材料、锂离子电容器及其负极浆料
Zhao et al. Titanium niobium oxides (TiNb2O7): Design, fabrication and application in energy storage devices
Wang et al. Structure interlacing and pore engineering of Zn2GeO4 nanofibers for achieving high capacity and rate capability as an anode material of lithium ion batteries
CN108288703B (zh) 一种石墨烯包覆掺氟钛酸锂纳米线的制备方法及其应用
KR102423807B1 (ko) 헥사고날 산화몰리브덴 나노 로드의 제조 방법
US20180190980A1 (en) Methods for manufacturing graphene based material
CN109980210B (zh) 一种五氧化二铌三维掺杂石墨烯复合材料及其制备方法和应用
CN105084345A (zh) 一种石墨烯材料粉体及制备方法
CN104299798B (zh) 一种硼原子掺杂改性石墨烯材料、制备方法及应用
TWI221344B (en) Composition of composite polymer electrolyte containing nano-tube and manufacturing method thereof
Luo et al. Polymer-promoted synthesis of porous TiO2 nanofibers decorated with N-doped carbon by mechanical stirring for high-performance Li-ion storage
Mao et al. Recent advances and perspectives of two-dimensional Ti-based electrodes for electrochemical energy storage
CN112786865A (zh) 一种MoS2准量子点/氮硫共掺杂生物质碳复合纳米材料的制备方法和应用
Xiong et al. A universal, facile and ultrafast monomer-tuned strategy to construct multi-dimensional hierarchical polymer structures and applications for lithium-ion batteries
Yu et al. Flexible solid-state supercapacitor with high energy density enabled by N/B/O-codoped porous carbon nanoparticles and imidazolium-based gel polymer electrolyte
CN105590756B (zh) 一种微纳尺度石墨烯/钛酸锂复合负极材料的制备方法
CN106887580B (zh) 一种锂离子电池负极材料及其制备方法
Sheng et al. Niobium‐Based Oxide for Anode Materials for Lithium‐Ion Batteries
Silva et al. Microwave-assisted hydrothermal synthesis and electrochemical characterization of niobium pentoxide/carbon nanotubes composites
CN110627047A (zh) 石墨烯/碳纳米管/二硫化镍复合气凝胶的制备方法
Xu et al. Novel Preoxidation-Assisted Mechanism to Preciously Form and Disperse Bi2O3 Nanodots in Carbon Nanofibers for Ultralong-Life and High-Rate Sodium Storage
Meng et al. Synthesis of carbon-coated LiFePO4 cathode material by one-step microwave-assisted pyrolysis of ionic liquid process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant