CN109972089A - 一种超厚含氢类金刚石涂层的制备方法 - Google Patents

一种超厚含氢类金刚石涂层的制备方法 Download PDF

Info

Publication number
CN109972089A
CN109972089A CN201711452179.4A CN201711452179A CN109972089A CN 109972089 A CN109972089 A CN 109972089A CN 201711452179 A CN201711452179 A CN 201711452179A CN 109972089 A CN109972089 A CN 109972089A
Authority
CN
China
Prior art keywords
coating
diamond
minutes
passed
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711452179.4A
Other languages
English (en)
Inventor
杨发展
沈丽如
颜复秀
许泽金
唐德礼
金凡亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhonghe Tongchuang Chengdu Technology Co ltd
Original Assignee
Chengdu Co Creation Material Surface Technology Co Ltd
Southwestern Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Co Creation Material Surface Technology Co Ltd, Southwestern Institute of Physics filed Critical Chengdu Co Creation Material Surface Technology Co Ltd
Priority to CN201711452179.4A priority Critical patent/CN109972089A/zh
Publication of CN109972089A publication Critical patent/CN109972089A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于低温等离子体材料表面处理技术,具体为一种超厚含氢类金刚石涂层的制备方法,工件表面清洗除气之后,再进行等离子体清洗,依次沉积金属中间层、金属碳化物中间层和类金刚石涂层,类金刚石涂层分18层依次沉积,沉积方式为磁控溅射,金属磁控靶材为钛、铬、钨和钼金属靶材,通过本方法制备的类金刚石涂层致密、摩擦系数低、耐腐蚀性能优异、膜基结合强度高,厚度大于100μm,适合高精度抛光等光学元件部件。

Description

一种超厚含氢类金刚石涂层的制备方法
技术领域
本发明属于低温等离子体材料表面处理技术领域,具体涉及一种含氢类金刚石涂层的制备方法。
背景技术
随着空间观测和遥感技术的飞速发展,高质量空间光学系统在侦察、遥感、探灾、气象、天文观测等军事应用和民用领域中得到了广泛应用,同时人们对空间光学系统的性能要求也越来越高。反射镜作为空间光学系统的关键部件,必须满足质轻、高比刚度和热稳定性能,特别是要具有良好的光学质量,其品质对其系统性能起着举足轻重的作用。反射镜材料的发展随着要求的不断更新,目前国内外多集中于反射镜用碳纤维复合材料的研究。但国内起步较晚,与国外发达国家相比,研究以及生产方面都还处于相对落后的局面。特别是针对碳纤维复合材料在高光度、高平整度上,针对材料本身,还不能达到更高光学的要求。因此通过改变碳纤维材料表面的致密性和平整度来提高光学性能成为了一条科学、经济且可行的重要途径。
根据反射镜材料在军民两用领域的需求和特点,通过科学筛选后得到,如果能够在碳纤维复合材料反射镜表面沉积足够厚的类金刚石涂层,然后再进行精密的光学抛光,可以有效改善反射镜的光学性能。因为类金刚石涂层具有高硬度、耐磨损、低摩擦系数、化学惰性、高弹性模量、电绝缘性、导热性、生物相容性和光学特性等特性,可被广泛的应用于机械、化工、声学、电子、光学和生物医学等领域。但类金刚石涂层由于高应力的作用,很难沉积特别厚的涂层,这往往限制了其进一步的广泛应用。因此,如何降低和消除应力,成为了类金刚石涂层制备的研究热点和难点问题之一。
目前,沉积类金刚石涂层的工艺多集中于物理气相沉积方式,主要包括磁控溅射、磁过滤弧沉积等方式,但这些方式很难沉积厚的类金刚石涂层(大于10μm),且沉积速率较低,难以满足特殊工况下的工件表面的要求。
发明内容
本发明的目的是提供一种超厚含氢类金刚石涂层的制备方法,能够降低沉积过程中的应力,满足特殊工况下的工件表面的要求。
本发明的技术方案如下:
一种超厚含氢类金刚石涂层的制备方法,该方法包括如下步骤:
1)工件表面清洗;
2)真空烘烤除气;
工件放置在真空室中,在真空度达到1.0×10-2Pa的环境下,对工件烘烤除气;
3)等离子体清洗;
4)沉积金属中间层;
5)沉积金属碳化物中间层;
6)沉积类金刚石涂层;
分18层依次沉积,真空室内通入氢气、乙炔、氩气混合气体作为工作气体;
7)工件冷却后取出工件。
所述的步骤4)具体为:真空室通入氩气,维持工作真空度为5.0×10-1~6.0×10- 1Pa,金属磁控溅射靶功率为8.0~9.6KW,脉冲偏压为700~800V,占空比为70%~80%,直流电压100~120V,沉积时间8-12分钟。
所述的步骤5)具体为:真空室中通入工作气体,维持工作真空度为6.0×10-1~8.0×10-1Pa,金属磁控溅射靶功率为5.0~6.6kW,脉冲偏压为300~500V,占空比为20%~25%,直流电压120~150V,镀膜时间10-15分钟。
所述的步骤6)具体为:
S1真空室内通入氢气、乙炔、氩气为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为2500~2800V,占空比为10%~15%,沉积时间30分钟,在工件表面沉积类金刚石涂层a;
S2真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间690分钟,在类金刚石涂层a表面沉积类金刚石涂层b;
S3真空室内通入氢气、乙炔、氩气比例为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间330分钟,在类金刚石涂层b表面沉积类金刚石涂层c;
S4真空室内通入氢气、乙炔、氩气比例为32:10:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层c表面沉积类金刚石涂层d;
S5真空室内通入氢气、乙炔、氩气比例为32:12:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间240分钟,在类金刚石涂层d表面沉积类金刚石涂层e;
S6真空室内通入氢气、乙炔、氩气比例为32:16:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间160分钟,在类金刚石涂层e表面沉积类金刚石涂层f;
S7真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层f表面沉积类金刚石涂层g;
S8真空室内通入氢气、乙炔、氩气比例为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间320分钟,在类金刚石涂层g表面沉积类金刚石涂层h;
S9真空室内通入氢气、乙炔、氩气比例为32:10:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间400分钟,在类金刚石涂层h表面沉积类金刚石涂层i;
S10真空室内通入氢气、乙炔、氩气比例为32:12:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层i表面沉积类金刚石涂层j;
S11真空室内通入氢气、乙炔、氩气比例为32:16:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层j表面沉积类金刚石涂层k;
S12真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间400分钟,在类金刚石涂层k表面沉积类金刚石涂层l;
S13真空室内通入氢气、乙炔、氩气比例为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层l表面沉积类金刚石涂层m;
S14真空室内通入氢气、乙炔、氩气比例为32:10:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间400分钟,在类金刚石涂层m表面沉积类金刚石涂层n;
S15真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间200分钟,在类金刚石涂层n表面沉积类金刚石涂层o;
S16真空室内通入氢气、乙炔、氩气为16:4:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层o表面沉积类金刚石涂层p;
S17真空室内通入氢气、乙炔、氩气为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间200分钟,在类金刚石涂层p表面沉积类金刚石涂层q;
S18真空室内通入氢气、乙炔、氩气为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间200分钟,在类金刚石涂层q表面沉积类金刚石涂层r。
所述的步骤3)具体为:真空室中通入氩气,维持工作真空度为5.0×10-1~6.0×10-1Pa,霍尔离子源放电功率为1850~2000W,脉冲辉光放电电压800-1000V,时间为25分钟。
所述的步骤1)具体为:将工件放入超声波清洗装置中,酒精超声波清洗15分钟,之后去离子水超声波清洗15分钟,再酒精超声波清洗15分钟,最后采用氮气吹干。
所述的步骤4)、5)、6)中沉积方式为磁控溅射。
所述的磁控溅射中的金属磁控靶材为钛、铬、钨或钼。
本发明的显著效果如下:通过本方法制备的类金刚石涂层致密、摩擦系数低、耐腐蚀性能优异、膜基结合强度高,厚度大于100μm,适合高精度抛光等光学元件部件。
附图说明
图1为超厚含氢类金刚石涂层的制备方法流程图。
具体实施方式
下面通过附图及具体实施方式对本发明作进一步说明。
如图1所示,一种超厚类金刚石涂层及其制备方法的制备过程。
(1)表面清洗
将工件放入超声波清洗装置中,酒精超声波清洗15分钟→去离子水超声波清洗15分钟→酒精超声波清洗15分钟→氮气吹干。
(2)真空烘烤除气
当真空度达到1.0×10-2Pa时,真空烘烤除气装置开始加热,加热温度为300~400℃,并保温480分钟。
(3)等离子体清洗
真空室中通入氩气,维持工作真空度为5.0×10-1~6.0×10-1Pa,霍尔离子源放电功率为1850~2000W,脉冲辉光放电电压800-1000V,时间为25分钟。
(4)沉积金属中间层
真空室通入氩气,维持工作真空度为5.0×10-1~6.0×10-1Pa,金属磁控溅射靶功率为8.0~9.6KW,脉冲偏压为700~800V,占空比为70%~80%,直流电压100~120V,沉积时间8-12分钟。
(5)沉积金属碳化物中间层
真空室中通入工作气体(氩气和乙炔),维持工作真空度为6.0×10-1~8.0×10- 1Pa,金属磁控溅射靶功率为5.0~6.6kW,脉冲偏压为300~500V,占空比为20%~25%,直流电压120~150V,镀膜时间10-15分钟。
(6)沉积不同组成和结构的类金刚石涂层
沉积不同组成和结构的类金刚石涂层,其过程分为18个阶段。其具体步骤如下:
S1真空室内通入氢气、乙炔、氩气为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为2500~2800V,占空比为10%~15%,沉积时间30分钟,在工件表面沉积类金刚石涂层a;
S2真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间690分钟,在类金刚石涂层a表面沉积类金刚石涂层b;
S3真空室内通入氢气、乙炔、氩气比例为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间330分钟,在类金刚石涂层b表面沉积类金刚石涂层c;
S4真空室内通入氢气、乙炔、氩气比例为32:10:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层c表面沉积类金刚石涂层d;
S5真空室内通入氢气、乙炔、氩气比例为32:12:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间240分钟,在类金刚石涂层d表面沉积类金刚石涂层e;
S6真空室内通入氢气、乙炔、氩气比例为32:16:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间160分钟,在类金刚石涂层e表面沉积类金刚石涂层f;
S7真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层f表面沉积类金刚石涂层g;
S8真空室内通入氢气、乙炔、氩气比例为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间320分钟,在类金刚石涂层g表面沉积类金刚石涂层h;
S9真空室内通入氢气、乙炔、氩气比例为32:10:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间400分钟,在类金刚石涂层h表面沉积类金刚石涂层i;
S10真空室内通入氢气、乙炔、氩气比例为32:12:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层i表面沉积类金刚石涂层j;
S11真空室内通入氢气、乙炔、氩气比例为32:16:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层j表面沉积类金刚石涂层k;
S12真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间400分钟,在类金刚石涂层k表面沉积类金刚石涂层l;
S13真空室内通入氢气、乙炔、氩气比例为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层l表面沉积类金刚石涂层m;
S14真空室内通入氢气、乙炔、氩气比例为32:10:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间400分钟,在类金刚石涂层m表面沉积类金刚石涂层n;
S15真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间200分钟,在类金刚石涂层n表面沉积类金刚石涂层o;
S16真空室内通入氢气、乙炔、氩气为16:4:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层o表面沉积类金刚石涂层p;
S17真空室内通入氢气、乙炔、氩气为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间200分钟,在类金刚石涂层p表面沉积类金刚石涂层q;
S18真空室内通入氢气、乙炔、氩气为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间200分钟,在类金刚石涂层q表面沉积类金刚石涂层r;
(7)工件缓慢冷却后取出工件
镀膜工艺结束后,保持真空室高真空状态或者通入适量氩气,待真空室温度缓慢冷却至70℃后将工件取出。
所述的磁控溅射技术包括直流磁控溅射技术、中频磁控溅射技术和射频磁控溅射技术;所述的金属磁控靶材包括钛、铬、钨和钼金属靶材。
具体实施例
以尺寸为Φ100mm×20mm的碳纤维复合材料为基体(称为工件),在其表面沉积含氢类金刚石涂层为实施例,具体制备过程为:
(1)将工件放入超声波清洗槽内,先用酒精超声波清洗15分钟,再用去离子水超声波清洗15分钟,再用酒精超声波清洗脱水15分钟,最终用氮气吹干。
(2)当真空度达到1.0×10-2Pa时,真空烘烤除气装置开始加热,加热温度为300℃,并保温480分钟。
(3)真空室中通入氩气,维持工作真空度为5.5×10-1Pa,霍尔离子源放电功率为1900W,脉冲辉光放电电压800V,时间为25分钟,对工件进行等离子体清洗。
(4)真空室通入氩气,维持工作真空度为5.5×10-1Pa,金属磁控溅射靶功率为8.0KW,脉冲偏压为800V,占空比为70%,直流电压100V,时间8分钟,沉积金属中间层。
(5)真空室中通入氩气和乙炔比例为5:1的混合气体,维持工作真空度为6.0×10- 1Pa,金属磁控溅射靶功率为5.0kW,脉冲偏压为300V,占空比为25%,直流电压120V,镀膜时间10分钟,沉积金属碳化物中间层。
(6)沉积不同组成和结构的类金刚石涂层,其过程分为18个阶段。其具体步骤如下:
S1真空室内通入氢气:乙炔:氩气为16:3:4的混合气体,维持工作真空度为12Pa,调节脉冲偏压为2800V,占空比为12%,沉积时间30分钟,在工件表面沉积类金刚石涂层a;
S2真空室内通入氢气:乙炔:氩气为16:3:4的混合气体,维持工作真空度为12Pa,调节脉冲偏压为4800V,占空比为12%,沉积时间690分钟,在工件表面沉积类金刚石涂层b;
S3真空室内通入氢气:乙炔:氩气为16:4:3的混合气体,维持工作真空度为12Pa,调节脉冲偏压为4800V,占空比为12%,沉积时间330分钟,在工件表面沉积类金刚石涂层c;
S4真空室内通入氢气:乙炔:氩气为32:10:5的混合气体,维持工作真空度为12Pa,调节脉冲偏压为4800V,占空比为12%,沉积时间300分钟,在工件表面沉积类金刚石涂层d;
S5真空室内通入氢气:乙炔:氩气为32:12:5的混合气体,维持工作真空度为12Pa,调节脉冲偏压为4800V,占空比为12%,沉积时间240分钟,在工件表面沉积类金刚石涂层e;
S6真空室内通入氢气:乙炔:氩气为32:16:5的混合气体,维持工作真空度为12Pa,调节脉冲偏压为4800V,占空比为12%,沉积时间160分钟,在工件表面沉积类金刚石涂层f;
S7真空室内通入氢气:乙炔:氩气为16:3:4的混合气体,维持工作真空度为12Pa,调节脉冲偏压为3200V,占空比为12%,沉积时间300分钟,在工件表面沉积类金刚石涂层g;
S8真空室内通入氢气:乙炔:氩气为16:4:3的混合气体,维持工作真空度为12Pa,调节脉冲偏压为3200V,占空比为12%,沉积时间320分钟,在工件表面沉积类金刚石涂层h;
S9真空室内通入氢气:乙炔:氩气为32:10:5的混合气体,维持工作真空度为12Pa,调节脉冲偏压为3200V,占空比为12%,沉积时间400分钟,在工件表面沉积类金刚石涂层i;
S10真空室内通入氢气:乙炔:氩气为32:12:5的混合气体,维持工作真空度为12Pa,调节脉冲偏压为3200V,占空比为12%,沉积时间300分钟,在工件表面沉积类金刚石涂层j;
S11真空室内通入氢气:乙炔:氩气为32:16:5的混合气体,维持工作真空度为12Pa,调节脉冲偏压为3200V,占空比为12%,沉积时间300分钟,在工件表面沉积类金刚石涂层k;
S12真空室内通入氢气:乙炔:氩气为16:3:4的混合气体,维持工作真空度为14Pa,调节脉冲偏压为4200V,占空比为10%,沉积时间400分钟,在工件表面沉积类金刚石涂层l;
S13真空室内通入氢气:乙炔:氩气为16:4:3的混合气体,维持工作真空度为14Pa,调节脉冲偏压为4200V,占空比为10%,沉积时间300分钟,在工件表面沉积类金刚石涂层m;
S14真空室内通入氢气:乙炔:氩气为32:10:5的混合气体,维持工作真空度为14Pa,调节脉冲偏压为4200V,占空比为10%,沉积时间400分钟,在工件表面沉积类金刚石涂层n;
S15真空室内通入氢气:乙炔:氩气为16:3:4的混合气体,维持工作真空度为10Pa,调节脉冲偏压为3200V,占空比为15%,沉积时间200分钟,在工件表面沉积类金刚石涂层o;
S16真空室内通入氢气:乙炔:氩气为16:4:4的混合气体,维持工作真空度为10Pa,调节脉冲偏压为3200V,占空比为15%,沉积时间300分钟,在工件表面沉积类金刚石涂层p;
S17真空室内通入氢气:乙炔:氩气为16:3:4的混合气体,维持工作真空度为12Pa,调节脉冲偏压为4800V,占空比为10%,沉积时间200分钟,在工件表面沉积类金刚石涂层q;
S18真空室内通入氢气:乙炔:氩气为16:4:3的混合气体,维持工作真空度为12Pa,调节脉冲偏压为4800V,占空比为10%,沉积时间200分钟,在工件表面沉积类金刚石涂层r;
(7)工件缓慢冷却后取出工件
镀膜工艺结束后,保持真空室高真空状态或者通入适量氩气,待真空室温度缓慢冷却至70℃后将工件取出。
对上述实施例的碳纤维复合材料工件进行检测分析,通过组织、结构和成分分析,该涂层呈现典型的类金刚石Raman光谱、SP3键含量高(49%)、摩擦系数低(≈0.1),粘附力试验(ASTM B571-2003)合格、厚度为112μm,满足反射镜高光学的相关技术要求。

Claims (8)

1.一种超厚含氢类金刚石涂层的制备方法,其特征在于,该方法包括如下步骤:
1)工件表面清洗;
2)真空烘烤除气;
工件放置在真空室中,在真空度达到1.0×10-2Pa的环境下,对工件烘烤除气;
3)等离子体清洗;
4)沉积金属中间层;
5)沉积金属碳化物中间层;
6)沉积类金刚石涂层;
分18层依次沉积,真空室内通入氢气、乙炔、氩气混合气体作为工作气体;
7)工件冷却后取出工件。
2.如权利要求1所述的一种超厚含氢类金刚石涂层的制备方法,其特征在于,所述的步骤4)具体为:真空室通入氩气,维持工作真空度为5.0×10-1~6.0×10-1Pa,金属磁控溅射靶功率为8.0~9.6KW,脉冲偏压为700~800V,占空比为70%~80%,直流电压100~120V,沉积时间8-12分钟。
3.如权利要求1所述的一种超厚含氢类金刚石涂层的制备方法,其特征在于,所述的步骤5)具体为:真空室中通入工作气体,维持工作真空度为6.0×10-1~8.0×10-1Pa,金属磁控溅射靶功率为5.0~6.6kW,脉冲偏压为300~500V,占空比为20%~25%,直流电压120~150V,镀膜时间10-15分钟。
4.如权利要求1所述的一种超厚含氢类金刚石涂层的制备方法,其特征在于,所述的步骤6)具体为:
S1真空室内通入氢气、乙炔、氩气为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为2500~2800V,占空比为10%~15%,沉积时间30分钟,在工件表面沉积类金刚石涂层a;
S2真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间690分钟,在类金刚石涂层a表面沉积类金刚石涂层b;
S3真空室内通入氢气、乙炔、氩气比例为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间330分钟,在类金刚石涂层b表面沉积类金刚石涂层c;
S4真空室内通入氢气、乙炔、氩气比例为32:10:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层c表面沉积类金刚石涂层d;
S5真空室内通入氢气、乙炔、氩气比例为32:12:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间240分钟,在类金刚石涂层d表面沉积类金刚石涂层e;
S6真空室内通入氢气、乙炔、氩气比例为32:16:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4800~6000V,占空比为10%~15%,沉积时间160分钟,在类金刚石涂层e表面沉积类金刚石涂层f;
S7真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层f表面沉积类金刚石涂层g;
S8真空室内通入氢气、乙炔、氩气比例为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间320分钟,在类金刚石涂层g表面沉积类金刚石涂层h;
S9真空室内通入氢气、乙炔、氩气比例为32:10:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间400分钟,在类金刚石涂层h表面沉积类金刚石涂层i;
S10真空室内通入氢气、乙炔、氩气比例为32:12:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层i表面沉积类金刚石涂层j;
S11真空室内通入氢气、乙炔、氩气比例为32:16:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层j表面沉积类金刚石涂层k;
S12真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间400分钟,在类金刚石涂层k表面沉积类金刚石涂层l;
S13真空室内通入氢气、乙炔、氩气比例为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层l表面沉积类金刚石涂层m;
S14真空室内通入氢气、乙炔、氩气比例为32:10:5的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间400分钟,在类金刚石涂层m表面沉积类金刚石涂层n;
S15真空室内通入氢气、乙炔、氩气比例为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间200分钟,在类金刚石涂层n表面沉积类金刚石涂层o;
S16真空室内通入氢气、乙炔、氩气为16:4:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为3000~3800V,占空比为10%~15%,沉积时间300分钟,在类金刚石涂层o表面沉积类金刚石涂层p;
S17真空室内通入氢气、乙炔、氩气为16:3:4的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间200分钟,在类金刚石涂层p表面沉积类金刚石涂层q;
S18真空室内通入氢气、乙炔、氩气为16:4:3的混合气体,维持工作真空度为9~16Pa,调节脉冲偏压为4200~4800V,占空比为10%~15%,沉积时间200分钟,在类金刚石涂层q表面沉积类金刚石涂层r。
5.如权利要求1所述的一种超厚含氢类金刚石涂层的制备方法,其特征在于,所述的步骤3)具体为:真空室中通入氩气,维持工作真空度为5.0×10-1~6.0×10-1Pa,霍尔离子源放电功率为1850~2000W,脉冲辉光放电电压800-1000V,时间为25分钟。
6.如权利要求1所述的一种超厚含氢类金刚石涂层的制备方法,其特征在于,所述的步骤1具体为:将工件放入超声波清洗装置中,酒精超声波清洗15分钟,之后去离子水超声波清洗15分钟,再酒精超声波清洗15分钟,最后采用氮气吹干。
7.如权利要求1~7任意一项所述的一种超厚含氢类金刚石涂层的制备方法,其特征在于:所述的步骤4)、5)、6)中沉积方式为磁控溅射。
8.如权利要求1~7任意一项所述的一种超厚含氢类金刚石涂层的制备方法,其特征在于:所述的磁控溅射中的金属磁控靶材为钛、铬、钨或钼。
CN201711452179.4A 2017-12-28 2017-12-28 一种超厚含氢类金刚石涂层的制备方法 Pending CN109972089A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711452179.4A CN109972089A (zh) 2017-12-28 2017-12-28 一种超厚含氢类金刚石涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711452179.4A CN109972089A (zh) 2017-12-28 2017-12-28 一种超厚含氢类金刚石涂层的制备方法

Publications (1)

Publication Number Publication Date
CN109972089A true CN109972089A (zh) 2019-07-05

Family

ID=67072016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711452179.4A Pending CN109972089A (zh) 2017-12-28 2017-12-28 一种超厚含氢类金刚石涂层的制备方法

Country Status (1)

Country Link
CN (1) CN109972089A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846661A (zh) * 2019-12-04 2020-02-28 广东省新材料研究所 一种铍铜瓶盖模具的表面涂层及其制备方法
CN110923650A (zh) * 2019-12-04 2020-03-27 北京大学深圳研究生院 一种dlc涂层及其制备方法
CN112859142A (zh) * 2021-01-25 2021-05-28 核工业西南物理研究院 一种管壁中子灵敏层制备方法及正比计数管
CN116590706A (zh) * 2023-05-17 2023-08-15 东莞市普拉提纳米科技有限公司 一种切削铝合金用多层结构刀具涂层及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171758A (ja) * 2001-12-06 2003-06-20 Denso Corp ダイヤモンドライクカーボン硬質多層膜成形体およびその製造方法
CN103160796A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 在钢铁表面制备类金刚石薄膜的方法
CN103510053A (zh) * 2012-06-29 2014-01-15 陈伟 金属表面镀制类金刚石薄膜的方法
JP2014053130A (ja) * 2012-09-06 2014-03-20 Nariyasu Machida 電気デバイス
CN104630708A (zh) * 2015-03-06 2015-05-20 重庆大学 一种类金刚石厚膜及其制备方法及一种工件
CN105483644A (zh) * 2016-01-15 2016-04-13 中国科学院深圳先进技术研究院 多层金刚石涂层及其制备方法、涂层工具
CN106756880A (zh) * 2015-11-24 2017-05-31 中国科学院深圳先进技术研究院 一种金刚石/类金刚石多层复合涂层及其制备方法
JP2017106065A (ja) * 2015-12-08 2017-06-15 Dowaサーモテック株式会社 基材とdlc層との間に形成される中間層およびその成膜方法
CN107022745A (zh) * 2017-04-28 2017-08-08 星弧涂层新材料科技(苏州)股份有限公司 基于类金刚石薄膜的增厚型复合薄膜及其镀膜方法
CN107287571A (zh) * 2017-07-17 2017-10-24 维达力实业(深圳)有限公司 类金刚石薄膜

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171758A (ja) * 2001-12-06 2003-06-20 Denso Corp ダイヤモンドライクカーボン硬質多層膜成形体およびその製造方法
CN103160796A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 在钢铁表面制备类金刚石薄膜的方法
CN103510053A (zh) * 2012-06-29 2014-01-15 陈伟 金属表面镀制类金刚石薄膜的方法
JP2014053130A (ja) * 2012-09-06 2014-03-20 Nariyasu Machida 電気デバイス
CN104630708A (zh) * 2015-03-06 2015-05-20 重庆大学 一种类金刚石厚膜及其制备方法及一种工件
CN106756880A (zh) * 2015-11-24 2017-05-31 中国科学院深圳先进技术研究院 一种金刚石/类金刚石多层复合涂层及其制备方法
JP2017106065A (ja) * 2015-12-08 2017-06-15 Dowaサーモテック株式会社 基材とdlc層との間に形成される中間層およびその成膜方法
CN105483644A (zh) * 2016-01-15 2016-04-13 中国科学院深圳先进技术研究院 多层金刚石涂层及其制备方法、涂层工具
CN107022745A (zh) * 2017-04-28 2017-08-08 星弧涂层新材料科技(苏州)股份有限公司 基于类金刚石薄膜的增厚型复合薄膜及其镀膜方法
CN107287571A (zh) * 2017-07-17 2017-10-24 维达力实业(深圳)有限公司 类金刚石薄膜

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张伟等: ""类金刚石多层膜在不同环境下的摩擦学行为"", 《第六届全国表面工程学术会议》 *
张永宏: "《现代薄膜材料与技术》", 31 August 2016, 西北工业大学出版社 *
王军军等: ""超厚类金刚石涂层的可控制备及其性能"", 《第十一届全国摩擦学大学论文集》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846661A (zh) * 2019-12-04 2020-02-28 广东省新材料研究所 一种铍铜瓶盖模具的表面涂层及其制备方法
CN110923650A (zh) * 2019-12-04 2020-03-27 北京大学深圳研究生院 一种dlc涂层及其制备方法
CN112859142A (zh) * 2021-01-25 2021-05-28 核工业西南物理研究院 一种管壁中子灵敏层制备方法及正比计数管
CN116590706A (zh) * 2023-05-17 2023-08-15 东莞市普拉提纳米科技有限公司 一种切削铝合金用多层结构刀具涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN109972089A (zh) 一种超厚含氢类金刚石涂层的制备方法
US6740393B1 (en) DLC coating system and process and apparatus for making coating system
EP2057661B1 (en) Apparatus for the modification of surfaces
JP6329742B2 (ja) リモートアーク放電プラズマアシスト処理
CN100467664C (zh) 一种类金刚石碳膜制造方法和用其制造的带包覆膜的部件
CN108396295B (zh) 曲面磁控溅射阴极、闭合磁场涂层磁控溅射设备及其应用方法
CN103212729B (zh) 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
Ferreira et al. Hard and dense diamond like carbon coatings deposited by deep oscillations magnetron sputtering
CN102011102B (zh) 高界面强度类金刚石薄膜材料的常温沉积设备及其方法
RU2360032C1 (ru) Способ получения износостойких сверхтвердых покрытий
CN104213076A (zh) Pvd与hipims制备超硬dlc涂层方法及设备
CN109735804B (zh) 一种金属碳化合物涂层及其制备方法
CN103374697A (zh) 类金刚石膜层的表面处理方法及制品
CN108118308A (zh) 一种类金刚石薄膜的制备方法
Sohbatzadeh et al. Characterization of diamond-like carbon thin film synthesized by RF atmospheric pressure plasma Ar/CH4 jet
JP2004518026A (ja) 基板をセラミックコーティングするための装置
CN105441871A (zh) 一种pvd与hipims工业化制备超硬dlc碳涂层方法及装置
Makówka et al. Modification of magnetron sputter deposition of nc-WC/aC (: H) coatings with an additional RF discharge
Huang et al. Wear-resistant multilayered diamond-like carbon coating prepared by pulse biased arc ion plating
Hofer-Roblyek et al. Linking erosion and sputter performance of a rotatable Mo target to microstructure and properties of the deposited thin films
CN102719788A (zh) 一种等离子全方位离子沉积设备
CN102994964A (zh) 一种金属硫化物掺杂类金刚石复合薄膜的制备方法
WO2008013469A1 (fr) Procédé d'application à plasma d'ions de revêtements de film à composants multiples et installation correspondante
CN105200383A (zh) 一种磁控溅射制备超硬超光滑四面体碳薄膜的装置与方法
KR101695590B1 (ko) 티타늄금속기판 위에 다이아몬드 코팅층이 형성된 수처리용 구조재 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: No.5, Huangjing Road, Southwest Airport, Shuangliu, Chengdu, Sichuan 610041

Applicant after: SOUTHWESTERN INSTITUTE OF PHYSICS

Applicant after: Zhonghe Tongchuang (Chengdu) Technology Co.,Ltd.

Address before: No.5, Huangjing Road, Southwest Airport, Shuangliu, Chengdu, Sichuan 610041

Applicant before: SOUTHWESTERN INSTITUTE OF PHYSICS

Applicant before: CHENGDU TONGCHUANG MATERIAL SURFACE TECHNOLOGY CO.,LTD.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220913

Address after: No. 219, section 4, xihanggang Avenue, Shuangliu Southwest Airport Economic Development Zone, Chengdu, Sichuan 610207

Applicant after: Zhonghe Tongchuang (Chengdu) Technology Co.,Ltd.

Address before: No.5, Huangjing Road, Southwest Airport, Shuangliu, Chengdu, Sichuan 610041

Applicant before: SOUTHWESTERN INSTITUTE OF PHYSICS

Applicant before: Zhonghe Tongchuang (Chengdu) Technology Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190705