CN109970451B - 一种SiBCN复合陶瓷粉末及其制备方法 - Google Patents

一种SiBCN复合陶瓷粉末及其制备方法 Download PDF

Info

Publication number
CN109970451B
CN109970451B CN201910248231.7A CN201910248231A CN109970451B CN 109970451 B CN109970451 B CN 109970451B CN 201910248231 A CN201910248231 A CN 201910248231A CN 109970451 B CN109970451 B CN 109970451B
Authority
CN
China
Prior art keywords
composite ceramic
ceramic powder
sibcn
sibcn composite
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910248231.7A
Other languages
English (en)
Other versions
CN109970451A (zh
Inventor
员文杰
张聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201910248231.7A priority Critical patent/CN109970451B/zh
Publication of CN109970451A publication Critical patent/CN109970451A/zh
Application granted granted Critical
Publication of CN109970451B publication Critical patent/CN109970451B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种SiBCN复合陶瓷粉末及其制备方法。其技术方案是:按Si∶B的摩尔比为0.1~1∶1,将碳化硼与硅粉混合,得到硼硅混合物;再按C∶B的摩尔比为0.5~1∶1,将碳源材料加入到硼硅混合物中,混合,压制成坯体;然后将所述坯体置入气氛炉内,在氮气气氛中,以3~5℃/min的升温速率加热至1500℃~1700℃,保温2~8h,随炉自然冷却至室温,取出烧制后的坯体,碾磨,制得SiBCN复合陶瓷粉末。本发明具有工艺简单、成本低、环境友好和组分可控的特点,所制备的SiBCN复合陶瓷粉末具有良好的热稳定性和组织稳定性。

Description

一种SiBCN复合陶瓷粉末及其制备方法
技术领域
本发明属于复合陶瓷粉末技术领域。具体涉及一种SiBCN复合陶瓷粉末及其制备方法。
背景技术
SiCN陶瓷材料在高温稳定性、断裂韧性、高温抗蠕变等方面都优于二元组成的SiC和Si3N4陶瓷材料,但SiCN陶瓷材料氧化行为与二元组成的SiC和Si3N4陶瓷材料相似,主要是在1100~1200℃条件下SiCN陶瓷材料表面形成氧化层阻止其进一步被氧化,故SiCN陶瓷材料的抗氧化性能并未明显优于二元组成的SiC和Si3N4陶瓷材料。引入硼元素制造出SiBCN陶瓷材料,能明显提高Si-C-N体系的高温稳定性,SiBCN陶瓷材料高温分解温度高达2000℃。由于SiBCN陶瓷材料具有优异的耐高温(2000℃以上)、抗氧化、抗蠕变、高强度和高模量的性能,在高温结构陶瓷材料和连续纤维增强陶瓷基复合材料(CFCC)等方面具有很高的使用价值。
目前,SiBCN陶瓷材料的制作方法主要有机先驱体法和机械合金化法。有机先驱体法原料中含有不易保存的聚硅硼物等硼源有机物,且对反应过程中的实验条件和仪器要求高、操作较为复杂、实验所需有机试剂价格昂贵,导致整体制作成本高,同时较低的产量导致难以大规模生产;机械合金化法制作的产物纯度和组织均匀性较低,整体耗时较长,此外机械合金化法中B元素与N元素以BN形式加入,其产物组分可调节程度低。
发明内容
本发明旨在克服现有技术的缺陷,目的在于提供一种工艺简单、成本较低、环境友好和组分可控的SiBCN复合陶瓷粉末的制备方法,用该方法制备的SiBCN复合陶瓷粉末具有良好的热稳定性和组织稳定性。
为实现上述目的,本发明所采用的技术方案是:按Si∶B的摩尔比为0.1~1∶1,将碳化硼与硅粉混合,得到硼硅混合物;再按C∶B的摩尔比为0.5~1∶1,将碳源材料加入到硼硅混合物中,混合,压制成坯体;然后将所述坯体置入气氛炉内,在氮气气氛中,以3~5℃/min的升温速率加热至1500℃~1700℃,保温2~8h,随炉自然冷却至室温,取出烧制后的坯体,碾磨,制得SiBCN复合陶瓷粉末。
所述碳化硼的粒度小于3μm,纯度大于99%。
所述硅粉的粒度小于65μm,纯度大于97%。
所述碳源材料为淀粉、葡萄糖和纤维素中的一种;其中:淀粉和葡萄糖的残碳率为18%~23%,纤维素的残碳率为15~20%;所述碳源材料的粒度小于9.4μm。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
本发明采用的碳化硼、硅粉和碳源材料易获取和易储存,成本较低;反应过程无污染物产生,环境友好。所制备的SiBCN复合陶瓷粉末对生产环境及生产设备无特殊要求,工艺简单;同时可根据需求改变碳化硼、硅粉和碳源材料的配比,对产物组分进行调节,组分可控。本发明制备的SiBCN复合陶瓷粉末经过高温加热和保温,生成的主要物相β-SiC/SiCN、α-SiC、BN、B4C没有变化,具有良好的热稳定性。
本发明制备的SiBCN复合陶瓷粉末的主要反应过程为碳源材料热解产生无定形碳,碳化硼在氮气中氮化形成氮化硼,硅在形成的氮化硼表面进行碳化,形成SiC纳米晶体分散在非晶BN(C)基体中的结构;形成的BN(C)相能够保持非晶态至1600℃,具有良好的组织稳定性。
因此,本发明具有工艺简单、成本低、环境友好和组分可控的特点,所制备的SiBCN复合陶瓷粉末具有良好的热稳定性和组织稳定性。
附图说明
图1是本发明制备的一种SiBCN复合陶瓷粉末的XRD图;
图2是图1所示的SiBCN复合陶瓷粉末的TEM图;
图3是图2中点5的EDS图;
图4是图2中点6的EDS图。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
本具体实施方式中:
所述碳化硼的粒度小于3μm,纯度大于99%。
所述硅粉的粒度小于65μm,纯度大于97%。
所述碳源材料的粒度小于9.4μm;其中:淀粉和葡萄糖的残碳率为18%~23%,纤维素的残碳率为15~20%。
实施例中不再赘述。
实施例1
一种SiBCN复合陶瓷粉末及其制备方法。本实施例所述制备方法是:
按Si∶B的摩尔比为0.1~0.4∶1,将碳化硼与硅粉混合,得到硼硅混合物;再按C∶B的摩尔比为0.5~0.7∶1,将碳源材料加入到硼硅混合物中,混合,压制成坯体;然后将所述坯体置入气氛炉内,在氮气气氛中,以3~5℃/min的升温速率加热至1500℃~1600℃,保温2~8h,随炉自然冷却至室温,取出烧制后的坯体,碾磨,制得SiBCN复合陶瓷粉末。
所述碳源材料为淀粉、葡萄糖和纤维素。
本实施例所制备的SiBCN复合陶瓷粉末的物相组成为β-SiC/SiCN、α-SiC、BN和B4C。
实施例2
一种SiBCN复合陶瓷粉末及其制备方法。本实施例所述制备方法是:
按Si∶B的摩尔比为0.1~0.4∶1,将碳化硼与硅粉混合,得到硼硅混合物;再按C∶B的摩尔比为0.7~1∶1,将碳源材料加入到硼硅混合物中,混合,压制成坯体;然后将所述坯体置入气氛炉内,在氮气气氛中,以3~5℃/min的升温速率加热至1500℃~1600℃,保温2~8h,随炉自然冷却至室温,取出烧制后的坯体,碾磨,制得SiBCN复合陶瓷粉末。
所述碳源材料为淀粉、葡萄糖和纤维素。
本实施例所制备的SiBCN复合陶瓷粉末的物相组成为β-SiC/SiCN、α-SiC、BN和B4C。
实施例3
一种SiBCN复合陶瓷粉末及其制备方法。本实施例所述制备方法是:
按Si∶B的摩尔比为0.4~0.7∶1,将碳化硼与硅粉混合,得到硼硅混合物;再按C∶B的摩尔比为0.5~0.7∶1,将碳源材料加入到硼硅混合物中,混合,压制成坯体;然后将所述坯体置入气氛炉内,在氮气气氛中,以3~5℃/min的升温速率加热至1550℃~1650℃,保温2~8h,随炉自然冷却至室温,取出烧制后的坯体,碾磨,制得SiBCN复合陶瓷粉末。
所述碳源材料为淀粉、葡萄糖和纤维素。
本实施例所制备的SiBCN复合陶瓷粉末的物相组成为β-SiC/SiCN、α-SiC、BN、B4C和Si。
实施例4
一种SiBCN复合陶瓷粉末及其制备方法。本实施例所述制备方法是:
按Si∶B的摩尔比为0.4~0.7∶1,将碳化硼与硅粉混合,得到硼硅混合物;再按C∶B的摩尔比为0.7~1∶1,将碳源材料加入到硼硅混合物中,混合,压制成坯体;然后将所述坯体置入气氛炉内,在氮气气氛中,以3~5℃/min的升温速率加热至1550℃~1650℃,保温2~8h,随炉自然冷却至室温,取出烧制后的坯体,碾磨,制得SiBCN复合陶瓷粉末。
所述碳源材料为淀粉、葡萄糖和纤维素。
本实施例所制备的SiBCN复合陶瓷粉末的物相组成为β-SiC/SiCN、α-SiC、BN和B4C。
实施例5
一种SiBCN复合陶瓷粉末及其制备方法。本实施例所述制备方法是:
按Si∶B的摩尔比为0.7~1∶1,将碳化硼与硅粉混合,得到硼硅混合物;再按C∶B的摩尔比为0.5~0.7∶1,将碳源材料加入到硼硅混合物中,混合,压制成坯体;然后将所述坯体置入气氛炉内,在氮气气氛中,以3~5℃/min的升温速率加热至1600℃~1700℃,保温2~8h,随炉自然冷却至室温,取出烧制后的坯体,碾磨,制得SiBCN复合陶瓷粉末。
所述碳源材料为淀粉、葡萄糖和纤维素。
本实施例所制备的SiBCN复合陶瓷粉末的物相组成为β-SiC/SiCN、α-SiC、BN、B4C和Si。
实施例6
一种SiBCN复合陶瓷粉末及其制备方法。本实施例所述制备方法是:
按Si∶B的摩尔比为0.7~1∶1,将碳化硼与硅粉混合,得到硼硅混合物;再按C∶B的摩尔比为0.7~1∶1,将碳源材料加入到硼硅混合物中,混合,压制成坯体;然后将所述坯体置入气氛炉内,在氮气气氛中,以3~5℃/min的升温速率加热至1600℃~1700℃,保温2~8h,随炉自然冷却至室温,取出烧制后的坯体,碾磨,制得SiBCN复合陶瓷粉末。
所述碳源材料为淀粉、葡萄糖和纤维素。
本实施例所制备的SiBCN复合陶瓷粉末的物相组成为β-SiC/SiCN、α-SiC、BN、B4C和Si。
本具体实施方式与现有技术相比具有如下积极效果:
本具体实施方式采用的碳化硼、硅粉和碳源材料易获取和易储存,成本较低;反应过程无污染物产生,环境友好。所制备的SiBCN复合陶瓷粉末对生产环境及生产设备无特殊要求,工艺简单;同时可根据需求改变碳化硼、硅粉和碳源材料的配比,对产物组分进行调节,组分可控。本具体实施方式制备的SiBCN复合陶瓷粉末经过高温加热和保温,生成的主要物相β-SiC/SiCN、α-SiC、BN、B4C没有变化,具有良好的热稳定性。
本具体实施方式制备的SiBCN复合陶瓷粉末的主要反应过程为碳源材料热解产生无定形碳,碳化硼在氮气中氮化形成氮化硼,硅在形成的氮化硼表面进行碳化,形成SiC纳米晶体分散在非晶BN(C)基体中的结构;形成的BN(C)相能够保持非晶态至1600℃,具有良好的组织稳定性。
本具体实施方式合成的SiBCN复合陶瓷粉末如附图所示:图1是实施例1制备的一种SiBCN复合陶瓷粉末的XRD图;图2是图1所示的SiBCN复合陶瓷粉末的TEM图;图3是图2中点5的EDS图;图4是图2中点6的EDS图。从图1可以看出,主要物相为β-SiC/SiCN、α-SiC、BN和B4C。合成的复合陶瓷粉末中SiC物相由原料中硅粉与淀粉热解后的碳反应,生成的SiC氮化后形成SiCN物相,而B4C则在氮化后形成BN物相;从图2可以看出,合成的SiBCN复合陶瓷粉末具有点状晶体分布于基体的结构;从图3可以看出,标记为点5处的硅含量较低,相对的B、N含量较高,此处应为BN基体,其表面附着微量SiC;从图4可以看出,标记为点6处没有B元素,此处是SiC晶体或SiCN晶体。由图2~图4可知,SiC纳米晶粒分布于湍层结构BN(C)相基体中,拥有此结构的SiBCN复合陶瓷粉末具有良好的高温稳定性。
因此,本具体实施方式具有工艺简单、成本低、环境友好和组分可控的特点,所制备的SiBCN复合陶瓷粉末具有良好的热稳定性和组织稳定性。

Claims (4)

1.一种SiBCN复合陶瓷粉末的制备方法,其特征在于所述制备方法是:按Si∶B的摩尔比为0.1~1∶1,将碳化硼与硅粉混合,得到硼硅混合物;再按C∶B的摩尔比为0.5~1∶1,将碳源材料加入到硼硅混合物中,混合,压制成坯体;然后将所述坯体置入气氛炉内,在氮气气氛中,以3~5℃/min的升温速率加热至1500℃~1700℃,保温2~8h,随炉自然冷却至室温,取出烧制后的坯体,碾磨,制得SiBCN复合陶瓷粉末;
所述碳源材料为淀粉、葡萄糖和纤维素中的一种;其中:淀粉和葡萄糖的残碳率为8~23%,纤维素的残碳率为15~20%;所述碳源材料的粒度小于9.4μm。
2.根据权利要求1所述的SiBCN复合陶瓷粉末的制备方法,其特征在于所述碳化硼的粒度小于3μm,纯度大于99%。
3.根据权利要求1所述的SiBCN复合陶瓷粉末的制备方法,其特征在于所述硅粉的粒度小于65μm,纯度大于97%。
4.一种SiBCN复合陶瓷粉末,其特征在于所述SiBCN复合陶瓷粉末是根据权利要求1~3项中任一项所述SiBCN复合陶瓷粉末的制备方法所制备的SiBCN复合陶瓷粉末。
CN201910248231.7A 2019-03-29 2019-03-29 一种SiBCN复合陶瓷粉末及其制备方法 Active CN109970451B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910248231.7A CN109970451B (zh) 2019-03-29 2019-03-29 一种SiBCN复合陶瓷粉末及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910248231.7A CN109970451B (zh) 2019-03-29 2019-03-29 一种SiBCN复合陶瓷粉末及其制备方法

Publications (2)

Publication Number Publication Date
CN109970451A CN109970451A (zh) 2019-07-05
CN109970451B true CN109970451B (zh) 2022-03-15

Family

ID=67081622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910248231.7A Active CN109970451B (zh) 2019-03-29 2019-03-29 一种SiBCN复合陶瓷粉末及其制备方法

Country Status (1)

Country Link
CN (1) CN109970451B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112624769B (zh) * 2020-12-22 2022-02-08 中国科学院上海硅酸盐研究所 一种多孔SiBCN/Si3N4复合陶瓷及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073321A (zh) * 2013-01-21 2013-05-01 北京科技大学 一种可用于高温材料的Si-B-C-N材料及制备方法
CN105218829A (zh) * 2015-09-09 2016-01-06 西北工业大学 一种含SiBCN可热聚合陶瓷先驱体的制备方法
CN106518075A (zh) * 2016-11-16 2017-03-22 哈尔滨工业大学 一种片层状BN(C)晶粒增韧的Si‑B‑C‑N陶瓷的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073321A (zh) * 2013-01-21 2013-05-01 北京科技大学 一种可用于高温材料的Si-B-C-N材料及制备方法
CN105218829A (zh) * 2015-09-09 2016-01-06 西北工业大学 一种含SiBCN可热聚合陶瓷先驱体的制备方法
CN106518075A (zh) * 2016-11-16 2017-03-22 哈尔滨工业大学 一种片层状BN(C)晶粒增韧的Si‑B‑C‑N陶瓷的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Metastable Si-B-C-N ceramics and their matrix composites developed by inorganic route based on mechanical alloying: Fabrication, microstructures, properties and their relevant basic scientific issues";Dechang Jia等;《PROGRESS IN MATERIALS SCIENCE》;20181031;第98卷;第1-67页 *
"Reaction mechanism and microstructure development of strain tolerant in situ SiC-BN composites";Zhang GJ 等;《ACTA MATERIALIA》;20010608;第49卷(第1期);第77-82页 *
"碳氮化法制备晶态SiCN的研究";瞿玲;《中国优秀硕士学位论文全文数据库(电子期刊)》;20181015(第10期);第B015-55页 *

Also Published As

Publication number Publication date
CN109970451A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
US11180419B2 (en) Method for preparation of dense HfC(Si)—HfB2 composite ceramic
Flores et al. Ceramic fibers based on SiC and SiCN systems: current research, development, and commercial status
CN101215173B (zh) 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法
CN111454061B (zh) 一种聚碳硅烷不熔化预处理及其裂解转化三维陶瓷方法
CN107675260B (zh) 一种AlN-SiC固溶体晶须及其制备方法
CN110627507B (zh) 一种低温碳化硅陶瓷及其制备方法和应用
CN104140537A (zh) 一种杂化液态前驱体、制备方法及采用该前驱体制备ZrC-SiC超高温陶瓷及其复合材料的方法
Hirata et al. Synthesis of β-Si3N4 particles from α-Si3N4 particles
CN109970451B (zh) 一种SiBCN复合陶瓷粉末及其制备方法
CN107226910B (zh) 一种以8-羟基喹啉铝为铝源制备聚铝碳硅烷先驱体的方法及其应用
Li et al. In-situ fabrication of lightweight SiC (Al, rGO) bulk ceramics derived from silicon oxycarbide for aerospace components
Li et al. The effect of the crystallization of oxidation-derived SiO2 on the properties of porous Si3N4–SiO2 ceramics synthesized by oxidation
CN109133986B (zh) 一种基于发泡法的AlN-SiC多孔复合陶瓷及其制备方法
CN105367058A (zh) 真空反应烧结高韧性碳化硅陶瓷的方法
Li et al. Effects of aggregate/matrix‐phase ratio on the in‐situ synthesis of SiC whiskers and properties of reaction‐bonded SiC
Xi et al. Effect of nitrogen pressure on preparation of β-Si3N4 whiskers
Ghanem et al. Paper derived SiC–Si3N4 ceramics for high temperature applications
CN108315837B (zh) 一种硼掺杂碳化硅纤维及其制备方法
JPH0662286B2 (ja) 炭化珪素の製造方法
CN110642625A (zh) 一种新型三元复合粉体及其制备方法和应用
Sun et al. Synthesis and microstructure evolution of β‐Sialon fibers/barium aluminosilicate (BAS) glass‐ceramic matrix composite with enhanced mechanical properties
CN114014665B (zh) 一种ZrC耐高温陶瓷先驱体的制备方法
JP2001058880A (ja) 炭化ケイ素長繊維強化セラミックス基複合材料
Krishnan et al. Single‐Step Synthesis of Chemically Cross‐Linked Polysilastyrene and Its Conversion to β‐Silicon Carbide
CN110550957B (zh) 一种原位合成氮化硅/硼化锆复相陶瓷及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant