CN109957796A - 太阳能选择性吸收WC-Co复合涂层的制备方法 - Google Patents

太阳能选择性吸收WC-Co复合涂层的制备方法 Download PDF

Info

Publication number
CN109957796A
CN109957796A CN201910288030.XA CN201910288030A CN109957796A CN 109957796 A CN109957796 A CN 109957796A CN 201910288030 A CN201910288030 A CN 201910288030A CN 109957796 A CN109957796 A CN 109957796A
Authority
CN
China
Prior art keywords
coating
metal
composite coating
preparation
nanostructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910288030.XA
Other languages
English (en)
Inventor
陈枭
李承娣
徐顺建
胡瑶
张小伟
简辉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyu University
Original Assignee
Xinyu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyu University filed Critical Xinyu University
Priority to CN201910288030.XA priority Critical patent/CN109957796A/zh
Publication of CN109957796A publication Critical patent/CN109957796A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种太阳能选择性吸收WC‑Co复合涂层的制备方法,包括如下步骤:S1、将纳米结构的WC‑Co金属陶瓷粉末通过冷喷涂制备技术获得纳米结构WC‑Co金属陶瓷涂层,其中,WC陶瓷相颗粒大小控制在100nm~200nm,Co的质量分数在20%~30%之间,WC‑Co冷喷涂层厚度控制在50μm~150μm;S2、在上述WC‑Co金属陶瓷涂层表面采用溶胶‑凝胶法制备Al2O3减反层,Al2O3减反层厚度控制在10μm~50μm。本发明可实现相结构和成分移植,有利于控制粒子间结合,提高层间结合,所制备的复合涂层吸收性能良好,特别适用于工业应用推广。

Description

太阳能选择性吸收WC-Co复合涂层的制备方法
技术领域
本发明涉及复合涂层领域,具体涉及一种太阳能选择性吸收WC-Co复合涂层的制备方法。
背景技术
目前太阳能选择性吸收涂层大多数适用于中低温领域,当温度较高时,涂层将会发生吸收率下降、高温氧化、开裂剥落等现象,最终导致涂层光学性能衰减,因此合理选择涂层材料,采用合适的制备技术制备结构优良的涂层尤其必要。金属-电介质(金属陶瓷)选择性吸收涂层具有结构简单、高温条件下性能稳定、发射率较低等优点,特别适用于太阳能中高温领域的研究。WC-Co涂层是以WC作为陶瓷相,Co过渡金属为粘结相的金属陶瓷,该种金属陶瓷材料将具有潜在光谱选择特性的WC高熔点、良好的物相稳定性(500℃)和抗热震性与过渡族Co金属的良好吸收性及抗氧化性能相结合,有利于提高涂层的光吸收及高温热稳定性。然而,微米结构的WC-Co涂层因表面具有较大的表面粗糙度而使得涂层的光学吸收性能降低,传统的热喷涂技术因高温作用使得喷涂粒子存在分解、相变或氧化行为,以及热喷涂层中热应力较大,从而导致因涂层结构变化引起的吸收率、反射率及热稳定性能明显下降。纳米结构的晶粒尺寸效应可使涂层获得较高的品质因子及良好的热稳定性能。
目前采用的制备技术主要为涂料法、电镀法、电化学法、气相沉积法(PVD, CVD)、磁控溅射法及热喷涂法。涂料法工艺方法和操作简单,将色素材料与粘结剂制成的涂料涂敷在机体上可获得一定的性能涂料涂层,但涂料涂层发射率较大,涂层与基体之间结合较弱,有机粘结剂高温下会产生热分解现象,从而影响涂层的性能与使用寿命。电镀法制备的涂层光学性较好,但涂层的热稳定性和耐蚀性较差,同时镀液对环境会造成污染。电化学法可制备光吸收性能及热稳定性良好的涂层,但该技术投资大,成本高,制备流程较长。气相沉积法可获得具有良好光学性和耐热性的涂层材料,但工艺和操作复杂,投资成本大。磁控溅射法制备的金属陶瓷涂层具有良好的性能,但经过高温退火时,涂层表面会发生相变、开裂及脱落现象,从而导致涂层吸收性能下降。热喷涂法是制备金属陶瓷涂层最为常用的制备技术,但喷涂粒子在喷涂过程中由于高温作用在涂层中易出现杂相或相变现象,尤其不适用于制备纳米结构金属陶瓷涂层,对于沉积纳米WC-Co 涂层存在因碳化物分解产生的W2C、W或三元脆性相,难以实现以纳米WC 硬质颗粒移植至金属Co基体中而提高涂层光学吸收和热稳定性能的效果。
发明内容
为解决上述问题,本发明提供了一种操作工艺简单、成本较低的太阳能选择性吸收WC-Co复合涂层的制备方法,可实现相结构和成分移植,有利于控制粒子间结合,提高层间结合,所制备的复合涂层吸收性能良好,特别适用于工业应用推广。
为实现上述目的,本发明采取的技术方案为:
一种太阳能选择性吸收WC-Co复合涂层的制备方法,包括如下步骤:
S1、将纳米结构的WC-Co金属陶瓷粉末通过冷喷涂制备技术获得纳米结构WC-Co金属陶瓷涂层,其中,WC陶瓷相颗粒大小控制在100nm~200nm,Co的质量分数在20%~30%之间;
S2、在上述WC-Co金属陶瓷涂层表面采用溶胶-凝胶法制备Al2O3减反层,其中溶胶-凝胶法制备Al2O3减反层。所用的化学试剂为:异丙醇铝(分析纯≥99.8%)、丙三醇(分析纯≥99.7%)、浓硝酸(65%-68%浓度)、丙酮(分析纯≥99.7%)和去离子水等。
进一步地,基体材料为纯Al板,喷涂前需对基体材料进行喷砂粗化预处理。
进一步地,所述步骤S1中,喷涂送粉量为100g/min ~150g/min,WC-Co冷喷涂层厚度控制在50μm~150μm。
进一步地,所述步骤S2中,Al2O3减反层厚度控制在10μm ~50μm。
本发明具有以下有益效果:
1)通过冷喷涂技术可以将纳米结构WC-Co金属陶瓷粉末的组织结构原位移植至涂层中,同时可抑制纳米晶粒长大及避免由于高温作用导致出现分解或相变现象。
2)将具有潜在光谱选择特性的WC高熔点、良好的物相稳定性和抗热震性与过渡族Co金属的良好吸收性及抗氧化性能相结合,可提高WC-Co金属陶瓷涂层的光吸收及高温热稳定性。
3)纳米结构WC-Co金属陶瓷中的纳米晶粒尺寸效应可使涂层获得较高的品质因子及良好的热稳定性能。
4)在纳米结构WC-Co金属陶瓷涂层表面采用溶胶-凝胶法沉积获得Al2O3减反层形成复合涂层,可提高涂层的吸收性能。
附图说明
图1为WC-Co金属陶瓷冷喷涂层与粉末XRD图谱。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
原始喷涂粉末选用Co质量分数为20%的纳米结构WC-20Co金属陶瓷粉末,其中金属陶瓷粉末粒径为5μm-30μm,WC陶瓷颗粒尺寸为100nm -200nm;选用纯Al板作为喷涂基体,喷涂前对基体进行喷砂粗化处理;首先采用冷喷涂系统在Al基体表面沉积厚度为100μm左右的WC-20Co金属陶瓷涂层,喷涂气体采用N2,加速气体压力1.8MPa,送粉气压力2.0MPa,喷涂温度550℃,喷涂距离10mm,喷枪移动速度为50mm/s;然后在WC-20Co金属陶瓷涂层表面采用溶胶-凝胶技术沉积获得Al2O3减反层,Al2O3涂层厚度50μm,最终形成纳米结构的WC-20Co/Al2O3复合涂层。经X射线衍射分析表明,WC-20Co涂层的相结构和组织结构与原始喷涂粉末相同,Al2O3减反层的物相结构均为Al2O3相。WC-20Co/Al2O3复合涂层结合强度高,光学吸收及高温热稳定性能良好。
实施例2
原始喷涂粉末选用Co质量分数为23%的纳米结构WC-23Co金属陶瓷粉末,其中金属陶瓷粉末粒径为5μm-30μm,WC陶瓷颗粒尺寸为100nm-200nm;选用纯Al板作为喷涂基体,喷涂前对基体进行喷砂粗化处理;首先采用冷喷涂系统在Al基体表面沉积厚度为100μm左右的WC-23Co金属陶瓷涂层,喷涂气体采用N2,加速气体压力2.0MPa,送粉气压力2.2MPa,喷涂温度450℃,喷涂距离10mm,喷枪移动速度为100mm/s;然后在WC-23Co金属陶瓷涂层表面采用溶胶-凝胶技术沉积获得Al2O3减反层,Al2O3涂层厚度50μm,最终形成纳米结构的WC-23Co/Al2O3复合涂层。经X射线衍射分析表明,WC-23Co涂层的相结构和组织结构与原始喷涂粉末相同,Al2O3减反层的物相结构均为Al2O3相。WC-23Co/Al2O3复合涂层结合强度高,光学吸收及高温热稳定性能良好。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (4)

1.一种太阳能选择性吸收WC-Co复合涂层的制备方法,其特征在于:包括如下步骤:
S1、将纳米结构的WC-Co金属陶瓷粉末通过冷喷涂制备技术获得纳米结构WC-Co金属陶瓷涂层,其中,WC陶瓷相颗粒大小控制在100nm~200nm,Co的质量分数在20%~30%之间;
S2、在上述WC-Co金属陶瓷涂层表面采用溶胶-凝胶法制备Al2O3减反层,其中溶胶-凝胶法制备Al2O3减反层。
2.如权利要求1所述的太阳能选择性吸收WC-Co复合涂层的制备方法,其特征在于:基体材料为纯Al板,喷涂前需对基体材料进行喷砂粗化预处理。
3.如权利要求1所述的太阳能选择性吸收WC-Co复合涂层的制备方法,其特征在于:所述步骤S1中,喷涂送粉量为100g/min ~150g/min,WC-Co冷喷涂层厚度控制在50μm~150μm。
4.如权利要求1所述的太阳能选择性吸收WC-Co复合涂层的制备方法,其特征在于:所述步骤S2中,Al2O3减反层厚度控制在10μm ~50μm。
CN201910288030.XA 2019-04-11 2019-04-11 太阳能选择性吸收WC-Co复合涂层的制备方法 Pending CN109957796A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910288030.XA CN109957796A (zh) 2019-04-11 2019-04-11 太阳能选择性吸收WC-Co复合涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910288030.XA CN109957796A (zh) 2019-04-11 2019-04-11 太阳能选择性吸收WC-Co复合涂层的制备方法

Publications (1)

Publication Number Publication Date
CN109957796A true CN109957796A (zh) 2019-07-02

Family

ID=67025995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910288030.XA Pending CN109957796A (zh) 2019-04-11 2019-04-11 太阳能选择性吸收WC-Co复合涂层的制备方法

Country Status (1)

Country Link
CN (1) CN109957796A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604769A (zh) * 2021-06-30 2021-11-05 厦门金鹭特种合金有限公司 一种防色差的低Co金属陶瓷烧结用隔层

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278267A (zh) * 2014-10-30 2015-01-14 九江学院 一种多尺度金属陶瓷涂层及其制备方法
CN104862571A (zh) * 2015-06-16 2015-08-26 武汉理工大学 多尺度微纳米结构WC-CoCr金属陶瓷复合粉末
CN105316617A (zh) * 2015-12-01 2016-02-10 北京矿冶研究总院 一种微纳米结构碳化钨涂层的制备方法
CN105401115A (zh) * 2015-10-28 2016-03-16 九江学院 一种无分解的WC-Co涂层热喷涂制备方法
CN105755417A (zh) * 2016-03-02 2016-07-13 武汉理工大学 一种太阳能选择性吸收涂层的制备方法
CN105779926A (zh) * 2016-06-02 2016-07-20 太原理工大学 制备用于大气环境下高温太阳能选择性吸收涂层的新工艺
CN106086882A (zh) * 2016-06-15 2016-11-09 中国科学院兰州化学物理研究所 一种碳化钛‑碳化钨紫色太阳能选择性吸收涂层及其制备方法
CN107433255A (zh) * 2017-06-09 2017-12-05 江苏欧钛克复合材料技术有限公司 一种复合辊筒制造中金属与非金属结合的加工方法
CN107709611A (zh) * 2015-06-29 2018-02-16 欧瑞康美科(美国)公司 冷气喷涂方法和组合物
CN107806714A (zh) * 2017-10-12 2018-03-16 湖北工业大学 Co/WC基太阳能选择性吸收涂层的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278267A (zh) * 2014-10-30 2015-01-14 九江学院 一种多尺度金属陶瓷涂层及其制备方法
CN104862571A (zh) * 2015-06-16 2015-08-26 武汉理工大学 多尺度微纳米结构WC-CoCr金属陶瓷复合粉末
CN107709611A (zh) * 2015-06-29 2018-02-16 欧瑞康美科(美国)公司 冷气喷涂方法和组合物
CN105401115A (zh) * 2015-10-28 2016-03-16 九江学院 一种无分解的WC-Co涂层热喷涂制备方法
CN105316617A (zh) * 2015-12-01 2016-02-10 北京矿冶研究总院 一种微纳米结构碳化钨涂层的制备方法
CN105755417A (zh) * 2016-03-02 2016-07-13 武汉理工大学 一种太阳能选择性吸收涂层的制备方法
CN105779926A (zh) * 2016-06-02 2016-07-20 太原理工大学 制备用于大气环境下高温太阳能选择性吸收涂层的新工艺
CN106086882A (zh) * 2016-06-15 2016-11-09 中国科学院兰州化学物理研究所 一种碳化钛‑碳化钨紫色太阳能选择性吸收涂层及其制备方法
CN107433255A (zh) * 2017-06-09 2017-12-05 江苏欧钛克复合材料技术有限公司 一种复合辊筒制造中金属与非金属结合的加工方法
CN107806714A (zh) * 2017-10-12 2018-03-16 湖北工业大学 Co/WC基太阳能选择性吸收涂层的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
李长久 等: "冷喷涂制备纳米结构超硬WC-CO涂层及其结构表征", 《机械工人热加工》 *
王洪涛 等: "冷喷涂WC-Co涂层的组织结构和性能研究", 《材料工程》 *
陈枭 等: "粉末制备工艺对冷喷WC金属陶瓷涂层性能的影响", 《材料热处理学报》 *
雒晓涛: "冷喷涂高性能WC-Co金属陶瓷涂层结构与性能", 《装备制造》 *
颜维 等: "不同微观结构WC-20CrC-7Ni喷涂粉末及涂层性能的研究", 《四川冶金》 *
高培虎 等: "粉末结构对冷喷涂纳米结构WC-Co沉积行为的影响", 《中国表面工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604769A (zh) * 2021-06-30 2021-11-05 厦门金鹭特种合金有限公司 一种防色差的低Co金属陶瓷烧结用隔层

Similar Documents

Publication Publication Date Title
CN102094164B (zh) 一种纳米氧化锆热障涂层及制备方法
JP2010509498A (ja) 金属セラミック複合材の薄層を製造する方法
CN101629287B (zh) 一种镁合金表面处理工艺
CN102167623B (zh) 炭素材料抗氧化涂层及制备方法
CN103398483A (zh) 一种吸收层由含硼化合物构成的太阳能中高温选择性吸收涂层及其制备方法
CN102605402A (zh) 铝合金制品表面耐磨增韧型复合陶瓷层的制备方法
CN101439267B (zh) 一种透氢钯复合膜的制备方法
CN107699840A (zh) 多孔氧化锆热障涂层的制备方法
CN107326330B (zh) 一种具有氧化铝多孔结构缓冲层的内热式一体化蒸发舟
CN106350849B (zh) 铝表面高吸收与低发射太阳光谱的氧化膜电沉积制备方法
Duan et al. Microstructure and optical properties of Co-WC-Al2O3 duplex ceramic metal-dielectric solar selective absorbing coating prepared by high velocity oxy-fuel spraying and sol-gel method
CN105039964A (zh) 镁合金表面抗腐蚀、耐磨损复合涂层及其制备方法
Luo et al. Preparation technologies and performance studies of tritium permeation barriers for future nuclear fusion reactors
CN107814579A (zh) 一种超疏水纳米陶瓷材料及其形成的涂层
CN108330524A (zh) 纳米镍复合二氧化钛纳米管阵列多孔膜及其制备方法
CN113025946A (zh) 一种氧化锆热障涂层的制备方法
WO2017215234A1 (zh) 一种复合耐高温选择性吸收功能膜及其制造方法
CN109957796A (zh) 太阳能选择性吸收WC-Co复合涂层的制备方法
CN102443796B (zh) 一种多孔Fe-Al金属间化合物涂层及其制备方法
CN109825829A (zh) 一种双相碳化物金属陶瓷太阳能选择性吸收复合涂层的制备方法
Xiao et al. Hydrogen permeation barriers and preparation techniques: A review
CN103343379A (zh) 一种T91钢表面复合电镀Ni/CrAl/Y2O3梯度镀层的方法
CN111848222B (zh) 一种在基体材料上形成的梯度环境障涂层及其制备方法
CN107177813B (zh) 一种在M-Al金属间化合物上直接热生长α-Al2O3的方法及应用
CN201915039U (zh) 炭素材料抗氧化涂层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190702