CN109929227B - 一种可降解的芹菜纤维复合材料及其制备方法 - Google Patents
一种可降解的芹菜纤维复合材料及其制备方法 Download PDFInfo
- Publication number
- CN109929227B CN109929227B CN201910266311.5A CN201910266311A CN109929227B CN 109929227 B CN109929227 B CN 109929227B CN 201910266311 A CN201910266311 A CN 201910266311A CN 109929227 B CN109929227 B CN 109929227B
- Authority
- CN
- China
- Prior art keywords
- degradable
- celery
- composite material
- celery fiber
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 title claims abstract description 139
- 235000010591 Appio Nutrition 0.000 title claims abstract description 139
- 239000000835 fiber Substances 0.000 title claims abstract description 126
- 239000002131 composite material Substances 0.000 title claims abstract description 91
- 238000002360 preparation method Methods 0.000 title claims abstract description 62
- 244000101724 Apium graveolens Dulce Group Species 0.000 title 1
- 240000007087 Apium graveolens Species 0.000 claims abstract description 138
- 229920000728 polyester Polymers 0.000 claims abstract description 53
- 238000002156 mixing Methods 0.000 claims abstract description 38
- 238000012545 processing Methods 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 230000000379 polymerizing effect Effects 0.000 claims abstract description 7
- 238000000465 moulding Methods 0.000 claims abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 72
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 24
- 239000007853 buffer solution Substances 0.000 claims description 24
- 238000003756 stirring Methods 0.000 claims description 23
- 108010029541 Laccase Proteins 0.000 claims description 20
- 229920001661 Chitosan Polymers 0.000 claims description 18
- 239000011259 mixed solution Substances 0.000 claims description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 15
- 230000002378 acidificating effect Effects 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 10
- 238000000748 compression moulding Methods 0.000 claims description 8
- 230000006196 deacetylation Effects 0.000 claims description 6
- 238000003381 deacetylation reaction Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- -1 polybutylene succinate Polymers 0.000 claims description 6
- 229920002961 polybutylene succinate Polymers 0.000 claims description 6
- 239000004631 polybutylene succinate Substances 0.000 claims description 6
- 238000001125 extrusion Methods 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 3
- 244000169997 Schnittsellerie Species 0.000 claims description 2
- 235000013559 Schnittsellerie Nutrition 0.000 claims description 2
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 2
- 229920001610 polycaprolactone Polymers 0.000 claims description 2
- 239000004632 polycaprolactone Substances 0.000 claims description 2
- 239000004626 polylactic acid Substances 0.000 claims description 2
- 238000005452 bending Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- ZMKVBUOZONDYBW-UHFFFAOYSA-N 1,6-dioxecane-2,5-dione Chemical compound O=C1CCC(=O)OCCCCO1 ZMKVBUOZONDYBW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229920000229 biodegradable polyester Polymers 0.000 description 1
- 239000004622 biodegradable polyester Substances 0.000 description 1
- 229920006167 biodegradable resin Polymers 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种可降解的芹菜纤维复合材料及其制备方法,它属于可降解复合材料领域。本发明要解决的技术问题为对可降解聚酯进行改性。本发明制备改性芹菜纤维,聚合可降解聚酯,将制备的改性芹菜纤维和聚合的可降解聚酯,按照一定重量份数混合均匀后,加入混炼机中进行混炼,反应结束后,得到复合材料进行加工成型,得到一种可降解的芹菜纤维复合材料。本发明拉伸屈服强度最高能够达到48MPa,伸长率最高达到500%,悬臂梁缺口冲击强度最高能够达到4.9kJ/m2,弯曲强度最高能够达到40MPa,弯曲模量最高能够达到560MPa,力学性能比单纯PBS的力学性能有明显提高。
Description
技术领域
本发明属于可降解复合材料领域;具体涉及一种可降解的芹菜纤维复合材料及其制备方法。
背景技术
在全球资源日益紧张和环保意识的日益提高的今天,由塑料引发的环境问题以及可持续利用问题日益受到关注,生物降解聚酯可被自然界微生物降解和良好的使用性能而备受关注。但是相较传统塑料,使用性能需进一步加强,同时价格偏高,进一步限制了可降解聚酯的使用范围。聚丁二酸丁二醇酯(PBS,polybutylene succinate)属于全生物降解树脂,降解产物为水和二氧化碳,与通用乙烯材料具有相似的力学性能和物理性能,但是相对分子质量低,熔融指数高,力学性能较差。选择增强材料和对可降解聚酯进行改性是目前推进可降解聚酯进一步应用的主要方向。
发明内容
本发明的目的是提供一种可降解的芹菜纤维复合材料及其制备方法。
本发明通过以下技术方案实现:
一种可降解的芹菜纤维复合材料的制备方法,包括如下步骤:
步骤1、制备改性芹菜纤维;
步骤2、聚合可降解聚酯;
步骤3、混炼:将步骤1制备的改性芹菜纤维和步骤2聚合的可降解聚酯,按照一定重量份数混合均匀后,加入混炼机中进行混炼,反应结束后,得到复合材料,待用;
步骤4、加工成型:将步骤3制得的复合材料进行加工成型,得到一种可降解的芹菜纤维复合材料。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,步骤1中芹菜纤维的制备方法为将芹菜切段,然后加入到NaOH和Na2SO3的混合溶液中,在一定温度下搅拌处理一段时间后,过滤,烘干,得到改性后的芹菜纤维。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,步骤1中芹菜纤维的大小为2~3cm,所述的NaOH和Na2SO3的混合溶液中NaOH的质量分数为3~5wt%,Na2SO3的质量分数为2~4wt%,芹菜与NaOH和Na2SO3的混合溶液的料液比为100:200~500g/ml;步骤1中处理温度为60~80℃,处理时间为30~50min,搅拌转速为100~300r/min,过滤尺寸为60~120目,90~100℃下烘干,得到改性后的芹菜纤维。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中在酸性缓冲液中加入一定质量的漆酶,然后按照顺序加入一定质量的壳聚糖、氯仿、可降解聚酯,搅拌一定时间后,得到聚合的可降解聚酯。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中酸性缓冲液为醋酸缓冲溶液,酸性缓冲液的PH为3.5~5.6,加入漆酶后溶液中漆酶的活性为50000~90000U/L,加入的壳聚糖的质量分数为2~3wt%,加入的氯仿的质量分数为12~18wt%,加入的可降解聚酯的质量分数为50~60wt%,搅拌时间30~40min。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中壳聚糖的聚乙酰度>90%,可降解聚酯为聚乳酸、聚己内酯、聚丁二酸丁二醇酯中的一种。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,步骤3中加入的步骤1制备的改性芹菜纤维的重量份数为5~15份,步骤2聚合的聚合可降解聚酯的重量份数为95~105份,混炼温度为100~120℃,混炼时间为10~15min。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,步骤4中加工成型包括模压成型、注射挤压成型、平压成型、辊压成型中的一种。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,一种可降解的芹菜纤维复合材料,其特征在于:改性芹菜纤维的尺寸为60~120目。
本发明的有益效果如下:
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,芹菜纤维属于天然植物纤维,可降解,来源广,价格低廉而作为增强材料同时具有较高的弹性模量和拉伸强度,且具备其它任何增强材料无法比拟的生物降解性和可再生性能,进一步提高可降解聚酯的力学性能,扩大可降解聚酯的利用范围以及复合材料的类型。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,漆酶是一种含铜的氧化还原酶,在一定的条件下可以氧化羟基和羰基,发生氧化还原反应,与其他化合物形成接枝,PBS本身含有大量的羰基,可以发生氧化还原反应,因此在PBS中加入漆酶,可以增加PBS链的长度,增加分子量,同时可以增加PBS的韧性。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法,将芹菜纤维改性之后与可降解聚酯材料发生接枝反应,加工成型。芹菜纤维/可降解聚酯复合材料,合理利用芹菜纤维,变废为宝,同时增强了可降解聚酯的力学性能。
本发明所述的一种可降解的芹菜纤维复合材料的制备方法制备的一种可降解的芹菜纤维复合材料,拉伸屈服强度最高能够达到48MPa,伸长率最高达到500%,悬臂梁缺口冲击强度最高能够达到4.9kJ/m2,弯曲强度最高能够达到40MPa,弯曲模量最高能够达到560MPa,力学性能比单纯PBS的力学性能有明显提高。
具体实施方式
具体实施方式一:
一种可降解的芹菜纤维复合材料的制备方法,包括如下步骤:
步骤1、制备改性芹菜纤维;
步骤2、聚合可降解聚酯;
步骤3、混炼:将步骤1制备的改性芹菜纤维和步骤2聚合的可降解聚酯,按照一定重量份数混合均匀后,加入混炼机中进行混炼,反应结束后,得到复合材料,待用;
步骤4、加工成型:将步骤3制得的复合材料进行加工成型,得到一种可降解的芹菜纤维复合材料。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤1中芹菜纤维的制备方法为将芹菜切段,然后加入到NaOH和Na2SO3的混合溶液中,在一定温度下搅拌处理一段时间后,过滤,烘干,得到改性后的芹菜纤维。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤1中芹菜纤维的大小为2~3cm,所述的NaOH和Na2SO3的混合溶液中NaOH的质量分数为3wt%,Na2SO3的质量分数为2wt%,芹菜与NaOH和Na2SO3的混合溶液的料液比为100:300g/ml;步骤1中处理温度为80℃,处理时间为30min,搅拌转速为100r/min,过滤尺寸为60目,100℃下烘干,得到改性后的芹菜纤维。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中在酸性缓冲液中加入一定质量的漆酶,然后按照顺序加入一定质量的壳聚糖、氯仿、可降解聚酯,搅拌一定时间后,得到聚合的可降解聚酯。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中酸性缓冲液为醋酸缓冲溶液,酸性缓冲液的PH为3.5,加入漆酶后溶液中漆酶的活性为50000U/L,加入的壳聚糖的质量分数为2wt%,加入的氯仿的质量分数为15wt%,加入的可降解聚酯的质量分数为50wt%,搅拌时间30min。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中壳聚糖的聚乙酰度为90%,可降解聚酯为聚丁二酸丁二醇酯。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤3中加入的步骤1制备的改性芹菜纤维的重量份数为5份,步骤2聚合的聚合可降解聚酯的重量份数为100份,混炼温度为100℃,混炼时间为10min。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤4中加工成型为辊压成型。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法制备的一种可降解的芹菜纤维复合材料,改性芹菜纤维的尺寸为60目。
具体实施方式二:
一种可降解的芹菜纤维复合材料的制备方法,包括如下步骤:
步骤1、制备改性芹菜纤维;
步骤2、聚合可降解聚酯;
步骤3、混炼:将步骤1制备的改性芹菜纤维和步骤2聚合的可降解聚酯,按照一定重量份数混合均匀后,加入混炼机中进行混炼,反应结束后,得到复合材料,待用;
步骤4、加工成型:将步骤3制得的复合材料进行加工成型,得到一种可降解的芹菜纤维复合材料。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤1中芹菜纤维的制备方法为将芹菜切段,然后加入到NaOH和Na2SO3的混合溶液中,在一定温度下搅拌处理一段时间后,过滤,烘干,得到改性后的芹菜纤维。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤1中芹菜纤维的大小为2~3cm,所述的NaOH和Na2SO3的混合溶液中NaOH的质量分数为2wt%,Na2SO3的质量分数为3wt%,芹菜与NaOH和Na2SO3的混合溶液的料液比为100:200g/ml;步骤1中处理温度为60℃,处理时间为50min,搅拌转速为300r/min,过滤尺寸为80目,90℃下烘干,得到改性后的芹菜纤维。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中在酸性缓冲液中加入一定质量的漆酶,然后按照顺序加入一定质量的壳聚糖、氯仿、可降解聚酯,搅拌一定时间后,得到聚合的可降解聚酯。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中酸性缓冲液为醋酸缓冲溶液,酸性缓冲液的PH为4.5,加入漆酶后溶液中漆酶的活性为90000U/L,加入的壳聚糖的质量分数为3wt%,加入的氯仿的质量分数为15wt%,加入的可降解聚酯的质量分数为50wt%,搅拌时间40min。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中壳聚糖的聚乙酰度为92%,可降解聚酯为聚丁二酸丁二醇酯。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤3中加入的步骤1制备的改性芹菜纤维的重量份数为10份,步骤2聚合的聚合可降解聚酯的重量份数为100份,混炼温度为110℃,混炼时间为15min。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤4中加工成型为辊压成型。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法制备的一种可降解的芹菜纤维复合材料,改性芹菜纤维的尺寸为80目。
具体实施方式三:
一种可降解的芹菜纤维复合材料的制备方法,包括如下步骤:
步骤1、制备改性芹菜纤维;
步骤2、聚合可降解聚酯;
步骤3、混炼:将步骤1制备的改性芹菜纤维和步骤2聚合的可降解聚酯,按照一定重量份数混合均匀后,加入混炼机中进行混炼,反应结束后,得到复合材料,待用;
步骤4、加工成型:将步骤3制得的复合材料进行加工成型,得到一种可降解的芹菜纤维复合材料。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤1中芹菜纤维的制备方法为将芹菜切段,然后加入到NaOH和Na2SO3的混合溶液中,在一定温度下搅拌处理一段时间后,过滤,烘干,得到改性后的芹菜纤维。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤1中芹菜纤维的大小为2~3cm,所述的NaOH和Na2SO3的混合溶液中NaOH的质量分数为5wt%,Na2SO3的质量分数为4wt%,芹菜与NaOH和Na2SO3的混合溶液的料液比为100:500g/ml;步骤1中处理温度为60℃,处理时间为50min,搅拌转速为200r/min,过滤尺寸为100目,90℃下烘干,得到改性后的芹菜纤维。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中在酸性缓冲液中加入一定质量的漆酶,然后按照顺序加入一定质量的壳聚糖、氯仿、可降解聚酯,搅拌一定时间后,得到聚合的可降解聚酯。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中酸性缓冲液为醋酸缓冲溶液,酸性缓冲液的PH为5.5,加入漆酶后溶液中漆酶的活性为70000U/L,加入的壳聚糖的质量分数为2wt%,加入的氯仿的质量分数为15wt%,加入的可降解聚酯的质量分数为50wt%,搅拌时间35min。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中壳聚糖的聚乙酰度为93%,可降解聚酯为聚丁二酸丁二醇酯。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤3中加入的步骤1制备的改性芹菜纤维的重量份数为15份,步骤2聚合的聚合可降解聚酯的重量份数为100份,混炼温度为120℃,混炼时间为10min。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤4中加工成型包括模压成型、注射挤压成型、平压成型、辊压成型中的一种。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法制备的一种可降解的芹菜纤维复合材料,改性芹菜纤维的尺寸为100目。
具体实施方式四:
一种可降解的芹菜纤维复合材料的制备方法,包括如下步骤:
步骤1、制备改性芹菜纤维;
步骤2、聚合可降解聚酯;
步骤3、混炼:将步骤1制备的改性芹菜纤维和步骤2聚合的可降解聚酯,按照一定重量份数混合均匀后,加入混炼机中进行混炼,反应结束后,得到复合材料,待用;
步骤4、加工成型:将步骤3制得的复合材料进行加工成型,得到一种可降解的芹菜纤维复合材料。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤1中芹菜纤维的制备方法为将芹菜切段,然后加入到NaOH和Na2SO3的混合溶液中,在一定温度下搅拌处理一段时间后,过滤,烘干,得到改性后的芹菜纤维。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤1中芹菜纤维的大小为2~3cm,所述的NaOH和Na2SO3的混合溶液中NaOH的质量分数为3wt%,Na2SO3的质量分数为4wt%,芹菜与NaOH和Na2SO3的混合溶液的料液比为100:400g/ml;步骤1中处理温度为70℃,处理时间为40min,搅拌转速为200r/min,过滤尺寸为120目,100℃下烘干,得到改性后的芹菜纤维。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中在酸性缓冲液中加入一定质量的漆酶,然后按照顺序加入一定质量的壳聚糖、氯仿、可降解聚酯,搅拌一定时间后,得到聚合的可降解聚酯。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中酸性缓冲液为醋酸缓冲溶液,酸性缓冲液的PH为5.0,加入漆酶后溶液中漆酶的活性为80000U/L,加入的壳聚糖的质量分数为3wt%,加入的氯仿的质量分数为15wt%,加入的可降解聚酯的质量分数为50wt%,搅拌时间40min。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤2中壳聚糖的聚乙酰度为90%,可降解聚酯为聚丁二酸丁二醇酯。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤3中加入的步骤1制备的改性芹菜纤维的重量份数为13份,步骤2聚合的聚合可降解聚酯的重量份数为100份,混炼温度为120℃,混炼时间为10min。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法,步骤4中加工成型包括模压成型、注射挤压成型、平压成型、辊压成型中的一种。
本实施方式所述的一种可降解的芹菜纤维复合材料的制备方法制备的一种可降解的芹菜纤维复合材料,改性芹菜纤维的尺寸为120目。
根据具体实施方式一至具体实施方式四所述的一种可降解的芹菜纤维复合材料的制备方法制备的一种可降解的芹菜纤维复合材料,性能测试结果如表1所示:
表1性能测试对比表
从表1中能够看出,具体实施方式一至具体实施方式四所述的一种可降解的芹菜纤维复合材料的制备方法制备的一种可降解的芹菜纤维复合材料,拉伸屈服强度最高能够达到48MPa,伸长率最高达到500%,悬臂梁缺口冲击强度最高能够达到4.9kJ/m2,弯曲强度最高能够达到40MPa,弯曲模量最高能够达到560MPa,力学性能比单纯PBS的力学性能有明显提高。
Claims (3)
1.一种可降解的芹菜纤维复合材料的制备方法,其特征在于:包括如下步骤:
步骤1、制备改性芹菜纤维;
步骤2、聚合可降解聚酯;
步骤3、混炼:将步骤1制备的改性芹菜纤维和步骤2聚合的可降解聚酯,按照一定重量份数混合均匀后,加入混炼机中进行混炼,反应结束后,得到复合材料,待用;
步骤4、加工成型:将步骤3制得的复合材料进行加工成型,得到一种可降解的芹菜纤维复合材料;
步骤1中芹菜纤维的制备方法为将芹菜切段,然后加入到NaOH和Na2SO3的混合溶液中,在一定温度下搅拌处理一段时间后,过滤,烘干,得到改性后的芹菜纤维;
步骤1中芹菜纤维的大小为2~3cm,所述的NaOH和Na2SO3的混合溶液中NaOH的质量分数为3~5wt%,Na2SO3的质量分数为2~4wt%,芹菜与NaOH和Na2SO3的混合溶液的料液比为100:200~500g/ml;步骤1中处理温度为60~80℃,处理时间为30~50min,搅拌转速为100~300r/min,过滤尺寸为60~120目,90~100℃下烘干,得到改性后的芹菜纤维;
步骤2中在酸性缓冲液中加入一定质量的漆酶,然后按照顺序加入一定质量的壳聚糖、氯仿、可降解聚酯,搅拌一定时间后,得到聚合的可降解聚酯;
步骤2中酸性缓冲液为醋酸缓冲溶液,酸性缓冲液的PH为3.5~5.6,加入漆酶后溶液中漆酶的活性为50000~90000U/L,加入的壳聚糖的质量分数为2~3wt%,加入的氯仿的质量分数为12~18wt%,加入的可降解聚酯的质量分数为50~60wt%,搅拌时间30~40min;
步骤2中壳聚糖的聚乙酰度>90%,可降解聚酯为聚乳酸、聚己内酯、聚丁二酸丁二醇酯中的一种;
步骤3中加入的步骤1制备的改性芹菜纤维的重量份数为5~15份,步骤2聚合的聚合可降解聚酯的重量份数为95~105份,混炼温度为100~120℃,混炼时间为10~15min。
2.根据权利要求1所述的一种可降解的芹菜纤维复合材料的制备方法,其特征在于:步骤4中加工成型包括模压成型、注射挤压成型、平压成型、辊压成型中的一种。
3.一种权利要求1-2之一所述的一种可降解的芹菜纤维复合材料的制备方法制备的一种可降解的芹菜纤维复合材料,其特征在于:改性芹菜纤维的尺寸为60~120目。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910266311.5A CN109929227B (zh) | 2019-04-03 | 2019-04-03 | 一种可降解的芹菜纤维复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910266311.5A CN109929227B (zh) | 2019-04-03 | 2019-04-03 | 一种可降解的芹菜纤维复合材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109929227A CN109929227A (zh) | 2019-06-25 |
CN109929227B true CN109929227B (zh) | 2021-09-24 |
Family
ID=66989186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910266311.5A Expired - Fee Related CN109929227B (zh) | 2019-04-03 | 2019-04-03 | 一种可降解的芹菜纤维复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109929227B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113045867A (zh) * | 2021-03-15 | 2021-06-29 | 哈尔滨工业大学 | 一种基于改性汉麻纤维的可降解复合材料的制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102665702A (zh) * | 2009-09-22 | 2012-09-12 | 开普敦大学 | 羟基酪醇化合物 |
CN102702544A (zh) * | 2012-05-18 | 2012-10-03 | 江南大学 | 漆酶引发麻纤维接枝酚类单体提高与树脂复合性能的方法 |
CN104448728A (zh) * | 2014-11-18 | 2015-03-25 | 镇江奥立特机械制造有限公司 | 一种秸秆纤维复合材料的制备方法 |
CN105949735B (zh) * | 2016-06-14 | 2018-05-25 | 江门市扬帆实业有限公司 | 一种性能优异的改性木质素聚乳酸塑料 |
-
2019
- 2019-04-03 CN CN201910266311.5A patent/CN109929227B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN109929227A (zh) | 2019-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102850740B (zh) | 丙交酯接枝植物纤维增强聚乳酸复合材料的制备方法 | |
CN104693707B (zh) | 一种聚乳酸/淀粉/麻纤维生物基可降解复合材料及其制备方法 | |
CN105670075B (zh) | 利用预处理农作物秸秆制备聚烯烃木塑复合材料的方法 | |
CN101824211B (zh) | 一种全生物降解高韧性耐热型聚乳酸树脂及其制备方法 | |
CN102618000B (zh) | 农作物秸秆和麻纤维混杂增强聚乳酸复合材料及制备方法 | |
CN102070891B (zh) | 一种木质素填充聚酯型复合材料及其制备方法 | |
CN101538401A (zh) | 耐热型二元纤维/聚乳酸基复合材料及其制备方法 | |
CN110130094A (zh) | 活化植物纤维及其制备方法和在聚乳酸复合材料中的应用 | |
CN109251494B (zh) | 一种天然杜仲胶/纤维素改性聚乳酸复合材料及制备方法 | |
CN101570624B (zh) | 一种生物质基聚乳酸复合材料的制备方法 | |
CN105086328A (zh) | 一种硬质天然纤维增强聚丙烯复合材料及其制备方法 | |
CN113604017B (zh) | 可完全降解的自体纳米纤维增强聚乳酸复合材料及其制备 | |
CN102250457A (zh) | 一种长玻纤增强聚乳酸复合材料及其制备方法 | |
CN109929227B (zh) | 一种可降解的芹菜纤维复合材料及其制备方法 | |
CN105440602A (zh) | 椰壳纤维/聚丁二酸丁二醇酯复合材料及其制备方法 | |
CN1171951C (zh) | 天然植物纤维增强的可完全降解的聚合物复合材料及其制备方法 | |
CN117447822A (zh) | 一种全生物降解复合材料、其制备方法及应用 | |
CN111234484B (zh) | 一种全生物基可降解聚乳酸/淀粉复合材料及其制备方法 | |
CN113831604A (zh) | 一种高强高韧热塑性淀粉材料及其制备方法 | |
CN111890593A (zh) | 一种改性汉麻秆芯/聚乙烯复合颗粒母料的制备方法 | |
CN111719333A (zh) | 一种竹粉淋膜纸 | |
CN101831165A (zh) | 全降解聚碳酸亚丙酯/碱木素复合片材材料及其制备方法 | |
CN111534062A (zh) | 一种高性能pla/麻纤维复合材料及其制备方法 | |
CN112961475A (zh) | 一种生物可降解塑料及其制备方法 | |
CN110003676B (zh) | 一种纳米硼酸镁/木质素复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210924 |
|
CF01 | Termination of patent right due to non-payment of annual fee |