CN109917269A - 单个高能粒子离化电荷测试电路 - Google Patents

单个高能粒子离化电荷测试电路 Download PDF

Info

Publication number
CN109917269A
CN109917269A CN201910071020.0A CN201910071020A CN109917269A CN 109917269 A CN109917269 A CN 109917269A CN 201910071020 A CN201910071020 A CN 201910071020A CN 109917269 A CN109917269 A CN 109917269A
Authority
CN
China
Prior art keywords
high energy
energy particle
circuit
module
ionization charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910071020.0A
Other languages
English (en)
Other versions
CN109917269B (zh
Inventor
闫薇薇
曾传滨
高林春
李晓静
倪涛
李多力
罗家俊
韩郑生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201910071020.0A priority Critical patent/CN109917269B/zh
Publication of CN109917269A publication Critical patent/CN109917269A/zh
Application granted granted Critical
Publication of CN109917269B publication Critical patent/CN109917269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种单个高能粒子离化电荷测试电路,包括M个高能粒子捕获模块和M个信号探测模块,所述M个高能粒子捕获模块和所述M个信号探测模块一一对应,M为不小于2的正整数;所述高能粒子捕获模块包括N个并联的场效应晶体管,所述场效应晶体管用于捕获高能粒子,并在捕获到高能粒子时产生流过自身的瞬态电流信号,N为正整数;所述信号探测模块用于探测对应的高能粒子捕获模块产生的瞬态电流信号,并在探测到所述瞬态电流信号时输出测试信号。本发明提供的单个高能粒子离化电荷测试电路,能够测试高能粒子离化电荷云半径及影响范围,为抗辐射加固集成电路的版图拓扑结构设计提供理论指导,提高集成电路的抗辐射能力。

Description

单个高能粒子离化电荷测试电路
技术领域
本发明涉及集成电路技术领域,具体涉及一种单个高能粒子离化电荷测试电路。
背景技术
单粒子效应是空间辐射环境中的单个高能粒子在器件材料中通过直接电离作用或者间接电离作用产生并累积有效电离电荷,被器件敏感节点收集后导致器件工作状态发生变化或者功能失效的现象。当存储器、锁存器或者寄存器中器件发生单粒子效应时,电路单元的逻辑状态发生改变,即发生单粒子翻转。
多位翻转是指单个粒子入射器件造成对应物理地址上多个存储单元发生翻转的情况。随着半导体制造工艺的发展,器件尺寸不断减小,临界电荷不断降低,使得高能粒子垂直入射器件引起的多位翻转比重逐渐增多。对于纳米级器件,多位翻转在单粒子翻转中所占的比重甚至超过了单位翻转。以随机存储器为例,多位翻转抑制了纠错编码的有效性,纠错编码不具备在一个字或者一个字节中纠正多个错误的能力。因此,为了抑制高能粒子垂直入射电路引起的多位翻转,需要对纠错编码等电路进行特殊的版图拓扑设计。然而,在高能粒子入射产生电离电荷的影响不明确的情况下,现有电路版图的拓扑设计是盲目的,并不能最大程度地发挥抗辐射作用,电路很容易发生多位翻转。
发明内容
本发明所要解决的是高能粒子入射产生电离电荷的影响不明确的问题。
本发明通过下述技术方案实现:
一种单个高能粒子离化电荷测试电路,包括M个高能粒子捕获模块和M个信号探测模块,所述M个高能粒子捕获模块和所述M个信号探测模块一一对应,M为不小于2的正整数;
所述高能粒子捕获模块包括N个并联的场效应晶体管,所述场效应晶体管用于捕获高能粒子,并在捕获到高能粒子时产生流过自身的瞬态电流信号,N为正整数;
所述信号探测模块用于探测对应的高能粒子捕获模块产生的瞬态电流信号,并在探测到所述瞬态电流信号时输出测试信号。
可选的,所述场效应晶体管为NMOS管;
每个NMOS管的栅极和每个NMOS管的源极接地,每个NMOS管的漏极相连并作为所述高能粒子捕获模块的输出端。
可选的,所述场效应晶体管为PMOS管;
每个PMOS管的栅极和每个PMOS管的源极连接电源端并作为所述高能粒子捕获模块的输出端,每个PMOS管的漏极接地。
可选的,所述信号探测模块包括T型偏置器;
所述T型偏置器的直流输入端连接电源端,所述T型偏置器的射频输入端连接对应的高能粒子捕获模块的输出端,所述T型偏置器的输出端用于输出所述测试信号。
可选的,所述单个高能粒子离化电荷测试电路还包括M个滤波电路;
每个T型偏置器的直流输入端通过一个滤波电路连接所述电源端。
可选的,所述场效应晶体管为采用绝缘体上硅工艺制备获得的场效应晶体管。
可选的,所述场效应晶体管为采用体硅工艺制备获得的场效应晶体管。
可选的,所述单个高能粒子离化电荷测试电路还包括M个ESD保护电路;
每个信号探测模块通过一个ESD保护电路连接对应的高能粒子捕获模块。
可选的,所述ESD保护电路包括第一放电二极管和第二放电二极管;
所述第一放电二极管的阴极连接电源端,所述第一放电二极管的阳极和所述第二放电二极管的阴极连接对应的高能粒子捕获模块的输出端,所述第二放电二极管的阳极接地。
可选的,所有场效应晶体管呈阵列排布,且每两个相邻场效应晶体管之间的距离均相等。
本发明与现有技术相比,具有如下的优点和有益效果:
本发明提供的单个高能粒子离化电荷测试电路,包括M个高能粒子捕获模块和M个信号探测模块,所述M个高能粒子捕获模块和所述M个信号探测模块一一对应,所述高能粒子捕获模块包括N个并联的场效应晶体管。根据高能粒子入射器件产生单粒子效应的原理,当高能粒子入射时,若某个高能粒子捕获模块位于高能粒子离化电荷云覆盖范围内,则该高能粒子捕获模块中的场效应晶体管发生单粒子效应,形成流过场效应晶体管源漏极的瞬态电流信号;所述瞬态电流信号被对应的信号探测模块探测,由对应的信号探测模块输出测试信号。因此,根据所述测试信号能够推断出发生单粒子效应的场效应晶体管,进而得出高能粒子离化电荷云半径及影响范围。高能粒子离化电荷云半径及影响范围的确定,能够为抗辐射加固集成电路的版图拓扑结构设计提供理论指导,避免由于集成电路器件布局设计不合理造成的多位翻转问题,进而提高集成电路的抗辐射能力。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为高能粒子离化电荷云覆盖多个器件或敏感节点的示意图;
图2为本发明一种实施例的单个高能粒子离化电荷测试电路的电路图;
图3为本发明另一种实施例的单个高能粒子离化电荷测试电路的电路图。
具体实施方式
多位翻转按其生成原因主要分为以下几类:一、粒子入射到外围电路上,生成的单粒子瞬态脉冲经传播可能引起多个存储单元发生翻转;二、高能质子或中子在器件材料内部发生核反应,产生的次级粒子可能同时影响多个存储单元的敏感节点,导致器件发生多位翻转;三、高能粒子倾角入射器件,可能依次穿过多个存储单元的敏感节点并沉积足量电荷,导致器件发生多位翻转;四、高能粒子垂直入射器件,生成的电荷在漂移、扩散及双极效应的作用下可能被多个存储单元敏感节点收集,使器件发生多位翻转;五、当器件尺寸较小时,高能粒子离化电荷云覆盖多个器件或敏感节点,产生多个单粒子瞬态脉冲,进而引起多位翻转,如图1所示。
前三类多位翻转在大尺寸器件中就能发生,并较早得到关注,因此其物理机制和影响因素均已得到广泛研究。第四类翻转发生于体硅工艺器件中,对于微米级大尺寸体硅器件,高能粒子垂直入射器件的情况下,相邻器件收集的电荷量一般小于器件发生翻转所需的临界电荷,因此几乎不发生多位翻转。但随着器件物理尺寸的缩小,体硅中第四类翻转逐渐增多。依据第四类多位翻转机理,可以测试高能粒子入射体硅工艺器件后产生的离化电荷的影响范围,包括电荷在体硅中漂移、扩散等因素的影响。同样的,依据第五类多位翻转机理,在绝缘体上硅工艺中,全介质隔离设计使得高能粒子入射器件产生的电荷不会在器件之间漂移扩散,可以通过监测器件是否发生单粒子效应测试高能粒子入射产生的电荷覆盖范围。因此,本发明根据第四类多位翻转机理及第五类多位翻转机理,提供一种单个高能粒子离化电荷测试电路,通过测试高能粒子离化电荷云半径及影响范围,为抗辐射加固集成电路的版图拓扑结构设计提供理论指导。
所述单个高能粒子离化电荷测试电路包括M个高能粒子捕获模块和M个信号探测模块,所述M个高能粒子捕获模块和所述M个信号探测模块一一对应,即每个高能粒子捕获模块对应一个信号探测模块,M为不小于2的正整数。
具体地,每个高能粒子捕获模块的结构均相同。所述高能粒子捕获模块包括N个并联的场效应晶体管,N为正整数。所述场效应晶体管处于截止状态,用于捕获高能粒子,并在捕获到高能粒子时产生流过自身的瞬态电流信号。所述场效应晶体管可以为NMOS管,也可以为PMOS管。当所述场效应晶体管为NMOS管时,每个NMOS管的栅极和每个NMOS管的源极接地,每个NMOS管的漏极相连并作为所述高能粒子捕获模块的输出端;当所述场效应晶体管为PMOS管时,每个PMOS管的栅极和每个PMOS管的源极连接电源端并作为所述高能粒子捕获模块的输出端,每个PMOS管的漏极接地。在所述单个高能粒子离化电荷测试电路的电路版图中,所述M个高能粒子捕获模块中的所有场效应晶体管呈阵列排布,使得每个场效应晶体管捕获高能粒子的概率相同。进一步,为避免引入不必要的变量,影响测试结果,所有场效应晶体管可以均匀排布,即每两个相邻场效应晶体管之间的距离均相等。
每个信号探测模块的结构均相同。所述信号探测模块用于探测对应的高能粒子捕获模块产生的瞬态电流信号,并在探测到所述瞬态电流信号时输出测试信号。所述测试信号可以由示波器等电子测量仪器监测,即所述信号探测模块的输出端适于连接示波器等电子测量仪器。在本发明实施例中,所述信号探测模块包括T型偏置器。所述T型偏置器的直流输入端连接所述电源端,所述T型偏置器的射频输入端连接对应的高能粒子捕获模块的输出端,所述T型偏置器的输出端用于输出所述测试信号。
进一步,所述单个高能粒子离化电荷测试电路还可以包括M个ESD保护电路,每个信号探测模块通过一个ESD保护电路连接对应的高能粒子捕获模块。所述ESD保护电路可以包括各种形式用以泄放静电放电电流的电路结构,在本说明书实施例中,所述ESD保护电路包括第一放电二极管和第二放电二极管。所述第一放电二极管的阴极连接电源端,所述第一放电二极管的阳极和所述第二放电二极管的阴极连接对应的高能粒子捕获模块的输出端,所述第二放电二极管的阳极接地。通过设置所述ESD保护电路,可以防止测试过程中操作不当或其他因素引入的静电放电电流对器件造成损伤。并且,由于所述ESD保护电路包括所述第一放电二极管和所述第二放电二极管,无论在所述高能粒子捕获模块的输出端引入的是正向的尖峰电压还是负向的尖峰电压,均能够得到泄放。
进一步,所述单个高能粒子离化电荷测试电路还可以包括M个滤波电路,每个T型偏置器的直流输入端通过一个滤波电路连接所述电源端。所述滤波电路包括各种形式用以滤除电源电压中干扰信号的电路结构,通过设置所述滤波电路,可以防止所述电源端的干扰信号对测试结果造成影响。
进一步,所述场效应晶体管可以为采用绝缘体上硅工艺制备获得的场效应晶体管,也可以为采用体硅工艺制备获得的场效应晶体管。当所述场效应晶体管为采用绝缘体上硅工艺制备获得的场效应晶体管时,场效应晶体管之间存在浅沟槽隔离结构,能够实现场效应晶体管之间的完全隔离,所述单个高能粒子离化电荷测试电路用于测试单个高能粒子离化电荷云半径;当所述场效应晶体管为采用体硅工艺制备获得的场效应晶体管时,高能粒子入射硅材料产生的离化电荷可在场效应晶体管之间扩散或漂移,从而使得相邻场效应晶体管之间发生单粒子效应,所述单个高能粒子离化电荷测试电路用于测量高能粒子离化电荷的影响范围。
当高能粒子入射所述M个高能粒子捕获模块时,若某个高能粒子捕获模块位于高能粒子离化电荷云覆盖范围内,则该高能粒子捕获模块中的场效应晶体管发生单粒子效应,形成流过场效应晶体管源漏极的瞬态电流信号。该过程相当于场效应晶体管瞬间导通,与T型偏置器内置电阻分压,场效应晶体管的漏极(即高能粒子捕获模块的输出端)电位发生变化。该电位变化通过T型偏置器内置电容耦合至示波器等电子测量仪器,即通过对应的信号探测模块探测所述瞬态电流信号,由对应的信号探测模块输出测试信号。所述测试信号被示波器等电子测量仪器监测到,就能够推断出发生单粒子效应的场效应晶体管,进而得出高能粒子离化电荷云半径及影响范围。
本发明通过高能粒子入射器件发生单粒子效应的原理,测量高能粒子离化电荷云半径及影响范围,能够为抗辐射加固集成电路的版图拓扑结构设计提供理论指导,避免由于集成电路器件布局设计不合理造成的多位翻转问题,进而提高集成电路的抗辐射能力。需要说明的是,若进行测试时所有场效应晶体管均发生了单粒子效应,不能据此结果准确推断高能粒子离化电荷云半径的大小。此种情况下,需要增加场效应晶体管的数量,或者采用尺寸较大的场效应晶体管,使得高能粒子离化电荷云处于所述M个信号探测模块电路版图布局范围内,即M和N的取值是根据实际情况设置的,只要保证高能粒子离化电荷云处于所述M个信号探测模块电路版图布局范围内即可。
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1
图2是本实施例的单个高能粒子离化电荷测试电路的电路图,所述单个高能粒子离化电荷测试电路包括三个高能粒子捕获模块和三个信号探测模块。所述三个高能粒子捕获模块为:第一高能粒子捕获模块211、第二高能粒子捕获模块212以及第三高能粒子捕获模块213;所述三个信号探测模块为:第一信号探测模块221、第二信号探测模块222以及第三信号探测模块223,所述第一信号探测模块221与所述第一高能粒子捕获模块211对应,所述第二信号探测模块222与所述第二高能粒子捕获模块212对应,所述第三信号探测模块223与所述第三高能粒子捕获模块213对应。
具体地,所述第一高能粒子捕获模块211包括第一NMOS管N1和第二NMOS管N2,所述第一NMOS管N1的栅极、所述第一NMOS管N1的源极、所述第二NMOS管N2的栅极以及所述第二NMOS管N2的源极接地,所述第一NMOS管N1的漏极和所述第二NMOS管N2的漏极连接并作为所述第一高能粒子捕获模块211的输出端;所述第二高能粒子捕获模块212包括第三NMOS管N3和第四NMOS管N4,所述第三NMOS管N3的栅极、所述第三NMOS管N3的源极、所述第四NMOS管N4的栅极以及所述第四NMOS管N4的源极接地,所述第三NMOS管N3的漏极和所述第四NMOS管N4的漏极连接并作为所述第二高能粒子捕获模块212的输出端;所述第第三高能粒子捕获模块213包括第五NMOS管N5和第六NMOS管N6,所述第五NMOS管N5的栅极、所述第五NMOS管N5的源极、所述第六NMOS管N6的栅极以及所述第六NMOS管N6的源极接地,所述第五NMOS管N5的漏极和所述第六NMOS管N6的漏极连接并作为所述第三高能粒子捕获模块213的输出端。在本实施例中,所述第一NMOS管N1、所述第二NMOS管N2、所述第三NMOS管N3、所述第四NMOS管N4、所述第五NMOS管N5以及所述第六NMOS管N6为采用绝缘体上硅工艺制备获得的NMOS管,所述单个高能粒子离化电荷测试电路用于测量单个高能粒子离化电荷云半径。在所述单个高能粒子离化电荷测试电路的电路版图中,所述第一NMOS管N1、所述第二NMOS管N2、所述第三NMOS管N3、所述第四NMOS管N4、所述第五NMOS管N5以及所述第六NMOS管N6可以呈2×3的阵列排布。
在本实施例中,所述第一信号探测模块221包括第一T型偏置器B1,所述第一T型偏置器B1的直流输入端DC连接所述电源端VCC,所述第一T型偏置器B1的射频输入端RF连接所述第一高能粒子捕获模块211的输出端,所述第一T型偏置器B1的输出端OUT作为所述第一信号探测模块221的输出端;所述第二信号探测模块222包括第二T型偏置器B2,所述第二T型偏置器B2的直流输入端DC连接所述电源端VCC,所述第二T型偏置器B2的射频输入端RF连接所述第二高能粒子捕获模块212的输出端,所述第二T型偏置器B2的输出端OUT作为所述第二信号探测模块222的输出端;所述第三信号探测模块223包括第三T型偏置器B3,所述第三T型偏置器B3的直流输入端DC连接所述电源端VCC,所述第三T型偏置器B3的射频输入端RF连接所述第三高能粒子捕获模块213的输出端,所述第三T型偏置器B3的输出端OUT作为所述第三信号探测模块223的输出端。
在本实施例中,所述单个高能粒子离化电荷测试电路还包括第一ESD保护电路231、第二ESD保护电路232以及第三ESD保护电路232。所述第一信号探测模块221通过所述第一ESD保护电路231连接所述第一高能粒子捕获模块211;所述第二信号探测模块222通过所述第二ESD保护电路232连接所述第二高能粒子捕获模块212;所述第三信号探测模块223通过所述第三ESD保护电路233连接所述第三高能粒子捕获模块213。进一步,所述第一ESD保护电路231、所述第二ESD保护电路232以及所述第三ESD保护电路232均包括两个反向串联的二极管。
在本实施例中,所述单个高能粒子离化电荷测试电路还可以包括第一滤波电路、第二滤波电路以及第三滤波电路(图2未示出),所述第一T型偏置器B1的直流输入端DC通过所述第一滤波电路连接所述电源端VCC;所述第二T型偏置器B2的直流输入端DC通过所述第二滤波电路连接所述电源端VCC;所述第三T型偏置器B3的直流输入端DC通过所述第三滤波电路连接所述电源端VCC。
当有高能粒子入射时,高能粒子离化电荷云覆盖范围内的NMOS管将发生单粒子效应。若所述第一NMOS管N1、所述第二NMOS管N2、所述第三NMOS管N3以及所述第四NMOS管N4处于高能粒子离化电荷覆盖范围内,则该四个NMOS管发生单粒子效应,产生单粒子瞬态电流。因此,所述第一高能粒子捕获模块211的输出端和所述第二高能粒子捕获模块212的输出端电位降低,该电位变化被所述第一信号探测模块221和所述第二信号探测模块222探测到,即所述第一高能粒子捕获模块211的输出端电位变化被所述第一T型偏置器B1内置电容耦合至对应的电子测量仪器,所述第二高能粒子捕获模块212的输出端电位变化被所述第二T型偏置器B2内置电容耦合至对应的电子测量仪器。通过电子测量仪器监测到的测量信号,可以推断出发生单粒子效应的器件为所述第一NMOS管N1、所述第二NMOS管N2、所述第三NMOS管N3以及所述第四NMOS管N4,单个高能粒子离化电荷云半径可根据发生单粒子效应器件在电路版图中的布局推断得出。
另外,当所述第一NMOS管N1、所述第二NMOS管N2、所述第三NMOS管N3、所述第四NMOS管N4、所述第五NMOS管N5以及所述第六NMOS管N6为采用体硅工艺制备获得的NMOS管时,高能粒子离化电荷能够在漂移及扩散的作用下影响多个器件,所述单个高能粒子离化电荷测试电路用于测量单个高能粒子离化电荷的影响范围。
实施例2
图3是本实施例的单个高能粒子离化电荷测试电路的电路图,与图2对应的实施例相比,区别在于:所述第一高能粒子捕获模块211包括第一PMOS管P1和第二PMOS管P2,所述第一PMOS管P1的栅极、所述第一PMOS管P1的源极、所述第二PMOS管P2的栅极以及所述第二PMOS管P2的源极连接所述电源端VCC并作为所述第一高能粒子捕获模块211的输出端,所述第一PMOS管P1的漏极和所述第二PMOS管P2的漏极接地;所述第二高能粒子捕获模块212包括第三PMOS管P3和第四PMOS管P4,所述第三PMOS管P3的栅极、所述第三PMOS管P3的源极、所述第四PMOS管P4的栅极以及所述第四PMOS管P4的源极连接所述电源端VCC并作为所述第二高能粒子捕获模块212的输出端,所述第三PMOS管P3的漏极和所述第四PMOS管P4的漏极接地;所述第三高能粒子捕获模块213包括第五PMOS管P5和第六PMOS管P6,所述第五PMOS管P5的栅极、所述第五PMOS管P5的源极、所述第六PMOS管P6的栅极以及所述第六PMOS管P6的源极连接所述电源端VCC并作为所述第三高能粒子捕获模块213的输出端,所述第五PMOS管P5的漏极和所述第六PMOS管P6的漏极接地。
当有高能粒子入射时,高能粒子离化电荷云覆盖范围内的PMOS管将发生单粒子效应。若所述第一PMOS管P1、所述第二PMOS管P2、所述第三PMOS管P3以及所述第四PMOS管P4处于高能粒子离化电荷覆盖范围内,则该四个PMOS管发生单粒子效应,产生单粒子瞬态电流。因此,所述第一高能粒子捕获模块211的输出端和所述第二高能粒子捕获模块212的输出端电位降低,该电位变化被所述第一信号探测模块221和所述第二信号探测模块222探测到,即所述第一高能粒子捕获模块211的输出端电位变化被所述第一T型偏置器B1内置电容耦合至对应的电子测量仪器,所述第二高能粒子捕获模块212的输出端电位变化被所述第二T型偏置器B2内置电容耦合至对应的电子测量仪器。通过电子测量仪器监测到的测量信号,可以推断出发生单粒子效应的器件为所述第一PMOS管P1、所述第二PMOS管P2、所述第三PMOS管P3以及所述第四PMOS管P4,单个高能粒子离化电荷云半径及影响范围可根据发生单粒子效应器件在电路版图中的布局推断得出。
需要说明的是,实施例1中所有场效应晶体管均为NMOS管,实施例2中所有场效应晶体管均为PMOS管。在其他实施例中,还可以部分高能粒子捕获模块中的场效应晶体管为NMOS管,剩余部分高能粒子捕获模块中的场效应晶体管为PMOS管。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种单个高能粒子离化电荷测试电路,其特征在于,包括M个高能粒子捕获模块和M个信号探测模块,所述M个高能粒子捕获模块和所述M个信号探测模块一一对应,M为不小于2的正整数;
所述高能粒子捕获模块包括N个并联的场效应晶体管,所述场效应晶体管用于捕获高能粒子,并在捕获到高能粒子时产生流过自身的瞬态电流信号,N为正整数;
所述信号探测模块用于探测对应的高能粒子捕获模块产生的瞬态电流信号,并在探测到所述瞬态电流信号时输出测试信号。
2.根据权利要求1所述的单个高能粒子离化电荷测试电路,其特征在于,所述场效应晶体管为NMOS管;
每个NMOS管的栅极和每个NMOS管的源极接地,每个NMOS管的漏极相连并作为所述高能粒子捕获模块的输出端。
3.根据权利要求1所述的单个高能粒子离化电荷测试电路,其特征在于,所述场效应晶体管为PMOS管;
每个PMOS管的栅极和每个PMOS管的源极连接电源端并作为所述高能粒子捕获模块的输出端,每个PMOS管的漏极接地。
4.根据权利要求2或3所述的单个高能粒子离化电荷测试电路,其特征在于,所述信号探测模块包括T型偏置器;
所述T型偏置器的直流输入端连接电源端,所述T型偏置器的射频输入端连接对应的高能粒子捕获模块的输出端,所述T型偏置器的输出端用于输出所述测试信号。
5.根据权利要求4所述的单个高能粒子离化电荷测试电路,其特征在于,还包括M个滤波电路;
每个T型偏置器的直流输入端通过一个滤波电路连接所述电源端。
6.根据权利要求1所述的单个高能粒子离化电荷测试电路,其特征在于,所述场效应晶体管为采用绝缘体上硅工艺制备获得的场效应晶体管。
7.根据权利要求1所述的单个高能粒子离化电荷测试电路,其特征在于,所述场效应晶体管为采用体硅工艺制备获得的场效应晶体管。
8.根据权利要求1所述的单个高能粒子离化电荷测试电路,其特征在于,还包括M个ESD保护电路;
每个信号探测模块通过一个ESD保护电路连接对应的高能粒子捕获模块。
9.根据权利要求8所述的单个高能粒子离化电荷测试电路,其特征在于,所述ESD保护电路包括第一放电二极管和第二放电二极管;
所述第一放电二极管的阴极连接电源端,所述第一放电二极管的阳极和所述第二放电二极管的阴极连接对应的高能粒子捕获模块的输出端,所述第二放电二极管的阳极接地。
10.根据权利要求1所述的单个高能粒子离化电荷测试电路,其特征在于,所有场效应晶体管呈阵列排布,且每两个相邻场效应晶体管之间的距离均相等。
CN201910071020.0A 2019-01-25 2019-01-25 单个高能粒子离化电荷测试电路 Active CN109917269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910071020.0A CN109917269B (zh) 2019-01-25 2019-01-25 单个高能粒子离化电荷测试电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910071020.0A CN109917269B (zh) 2019-01-25 2019-01-25 单个高能粒子离化电荷测试电路

Publications (2)

Publication Number Publication Date
CN109917269A true CN109917269A (zh) 2019-06-21
CN109917269B CN109917269B (zh) 2021-10-01

Family

ID=66960829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910071020.0A Active CN109917269B (zh) 2019-01-25 2019-01-25 单个高能粒子离化电荷测试电路

Country Status (1)

Country Link
CN (1) CN109917269B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985240A (zh) * 2021-10-28 2022-01-28 中国科学院国家空间科学中心 用于半导体器件瞬态辐射感生电荷的测量方法、系统及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169762A (ja) * 1992-05-15 1995-07-04 Masatoshi Utaka 絶縁膜の製造方法及びこの絶縁膜を使用する半導体装置の製造方法
CN102117797A (zh) * 2009-12-30 2011-07-06 中国科学院微电子研究所 一种cmos集成电路抗单粒子辐照加固电路
CN103645430A (zh) * 2013-12-23 2014-03-19 中国科学院新疆理化技术研究所 基于仿真的锗硅异质结双极晶体管单粒子效应检测方法
CN104700889A (zh) * 2015-03-27 2015-06-10 中国科学院自动化研究所 基于dice结构的静态随机访问存储器的存储单元
CN104851450A (zh) * 2015-03-27 2015-08-19 中国科学院自动化研究所 基于阻容加固的静态随机访问存储器的存储单元
CN107592378A (zh) * 2016-07-07 2018-01-16 中兴通讯股份有限公司 有源天线系统、移动终端及天线系统的配置方法
CN108267679A (zh) * 2017-12-01 2018-07-10 西安电子科技大学 基于重离子微束辐照的锗硅异质结晶体管单粒子效应测试方法
CN108287302A (zh) * 2018-01-29 2018-07-17 北京卫星环境工程研究所 面向空间辐射环境的单粒子效应探测电路结构
CN108508351A (zh) * 2018-03-30 2018-09-07 西北核技术研究所 一种基于双-双指数电流源的单粒子故障注入仿真方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169762A (ja) * 1992-05-15 1995-07-04 Masatoshi Utaka 絶縁膜の製造方法及びこの絶縁膜を使用する半導体装置の製造方法
CN102117797A (zh) * 2009-12-30 2011-07-06 中国科学院微电子研究所 一种cmos集成电路抗单粒子辐照加固电路
CN103645430A (zh) * 2013-12-23 2014-03-19 中国科学院新疆理化技术研究所 基于仿真的锗硅异质结双极晶体管单粒子效应检测方法
CN104700889A (zh) * 2015-03-27 2015-06-10 中国科学院自动化研究所 基于dice结构的静态随机访问存储器的存储单元
CN104851450A (zh) * 2015-03-27 2015-08-19 中国科学院自动化研究所 基于阻容加固的静态随机访问存储器的存储单元
CN107592378A (zh) * 2016-07-07 2018-01-16 中兴通讯股份有限公司 有源天线系统、移动终端及天线系统的配置方法
CN108267679A (zh) * 2017-12-01 2018-07-10 西安电子科技大学 基于重离子微束辐照的锗硅异质结晶体管单粒子效应测试方法
CN108287302A (zh) * 2018-01-29 2018-07-17 北京卫星环境工程研究所 面向空间辐射环境的单粒子效应探测电路结构
CN108508351A (zh) * 2018-03-30 2018-09-07 西北核技术研究所 一种基于双-双指数电流源的单粒子故障注入仿真方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. ROTH: "Ion-neutral chemical reactions between ultracold localized ions and neutral molecules with single-particle resolution", 《PHYSICAL REVIEW》 *
刘哲凯: "单粒子效应在轨翻转率预计研究", 《中国优秀硕士论文全文数据库》 *
毕津顺: "单粒子软错误的数值仿真技术", 《现代应用物理》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985240A (zh) * 2021-10-28 2022-01-28 中国科学院国家空间科学中心 用于半导体器件瞬态辐射感生电荷的测量方法、系统及装置

Also Published As

Publication number Publication date
CN109917269B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN103001206A (zh) 在混合电压芯片中使用低电压晶体管来钳住高电压电源的esd电源钳位
WO2021018040A1 (zh) 一种电源钳位esd保护电路及集成电路结构
CN104269399A (zh) 一种防静电保护电路
Champeix et al. Experimental validation of a Bulk Built-In Current Sensor for detecting laser-induced currents
CN109917269A (zh) 单个高能粒子离化电荷测试电路
CN1601292A (zh) 自动传输线脉冲系统
CN108287302A (zh) 面向空间辐射环境的单粒子效应探测电路结构
Ker Lateral SCR devices with low-voltage high-current triggering characteristics for output ESD protection in submicron CMOS technology
US20110141636A1 (en) Non-aligned antenna effect protection circuit with single event transient hardness
CN101859766A (zh) 从电源vdd到io管脚之间的一种新型nmos箝位及其应用方法
CN109884414A (zh) 高灵敏度高能粒子离化电荷测试电路
CN101494376B (zh) 静电放电防护电路
CN103515944A (zh) 采用双通道技术的用于电源和地之间ESD保护的Power Clamp
Smedes et al. Relations between system level ESD and (vf-) TLP
CN100444377C (zh) 用于提供半导体电路的静电放电防护电路以及方法
CN1180479C (zh) 静电放电防护电路
CN207124614U (zh) 一种抗辐射加固的主从触发器及计数器链
CN101834182B (zh) 一种动态栅极电阻调制的栅极耦合nmos管
CN101047180A (zh) 一种分散静电泄放电流的静电放电防护器件
Vera et al. Dose rate upset investigations on the Xilinx Virtex IV field programmable gate arrays
Nguyen et al. Radiation tests on 2Gb NAND flash memories
CN103944155B (zh) 静电放电防护电路与电子装置
CN101859768A (zh) 一种适合亚深毫微米工艺中耐高压的静电放电保护器件及其应用
CN107481763A (zh) 一种存储器及其探测方法、以及芯片
CN109830478B (zh) 一种超低漏电流的芯片输入引脚esd保护电路架构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant