CN109890035A - 一种中继无人机航迹规划和用户接入联合优化方法 - Google Patents
一种中继无人机航迹规划和用户接入联合优化方法 Download PDFInfo
- Publication number
- CN109890035A CN109890035A CN201910083058.XA CN201910083058A CN109890035A CN 109890035 A CN109890035 A CN 109890035A CN 201910083058 A CN201910083058 A CN 201910083058A CN 109890035 A CN109890035 A CN 109890035A
- Authority
- CN
- China
- Prior art keywords
- aerial vehicle
- unmanned aerial
- user access
- flight path
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000011159 matrix material Substances 0.000 claims abstract description 28
- 230000009977 dual effect Effects 0.000 claims description 6
- 238000005562 fading Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 16
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
Landscapes
- Radio Relay Systems (AREA)
- Traffic Control Systems (AREA)
Abstract
一种中继无人机航迹规划和用户接入联合优化方法,引入具有存储功能的无人机作为移动中继无人机,联合优化多小区网络中的中继无人机航迹和小区边缘用户的接入策略,从而最大化小区边缘用户的信息传输速率。按如下步骤进行:首先,构建边缘用户和速率最大化问题并固定用户接入矩阵,通过放缩求取上、下界的方法将航迹规划子问题转化为凸问题并求解得到最优无人机航迹;然后,固定无人机航迹,通过求解拉格朗日对偶函数获得最优用户接入矩阵;最后,迭代以上步骤交替优化无人机航迹和用户接入矩阵,直到迭代算法收敛。本发明方法综合考虑多小区中继网络中无人机航迹和用户接入的优化,有效提升了无线通信网络中多小区边缘用户的信息传输速率。
Description
技术领域
本发明涉及一种高效的中继无人机航迹规划和用户接入联合优化方法,属于多小区无人机中继通信技术。
背景技术
无人机通信是一种新型的通信场景。由于其高速移动性和灵活性,无人机辅助通信将在提升网络性能方面具有广阔的应用前景。一方面,无人机较高的飞行高度提高了无人机与地面设备之间建立视线(LoS)链路的概率,这将进一步带来更高的通信速率、更低的时延等性能提升;另一方面,无人机的移动性便于其根据动态网络的变化进行快速部署,以获得网络性能的最优化。目前已经有很多关于无人机应用场景的研究:无人机可以作为空中移动基站,为地面用户设备建立可靠的上下行通信链路;无人机作为移动中继,可以改善用户通信质量、扩大小区覆盖范围;无人机也可以作为空中移动用户,接入蜂窝网络进行通信。尽管无人机具有许多优势使其成为未来通信网络中不可或缺的一部分,但是无人机的应用仍面临着很多挑战。
无人机的三维部署和航迹规划是值得考虑的问题,因为这会影响到无人机的能耗,能耗是在无人机通信中需要重点考虑的指标。无人机由于自身尺寸和重量的限制,电池容量非常有限,导致续航时间短,合理规划无人机航迹可以节省无人机能量从而延长其工作时间。此外,无人机航迹会影响到无人机对其他用户设备产生的干扰,进而影响到网络的整体性能。
在多小区网络的共同边缘覆盖区内,小区边缘用户由于距离基站较远并且受到障碍物阻挡,其通信质量难以得到保障,信道质量差,通信失败率高。为保障边缘用户的通信质量、提高吞吐量,采用中继技术,基站先将数据发送给中继,再由中继存储、处理后转发给边缘用户。传统的中继设备具有固定的位置,不便于动态部署,从而带来的性能增益有限。而采用无人机作为移动中继带来了空间自由度,能够很好的弥补传统中继的缺点。在多小区网络中,利用无人机作为移动中继,通过合理规划无人机航迹和设计用户接入无人机策略,可以最大化共同边缘覆盖区用户的信息传输速率。因此,考虑无人机作为移动中继时的航迹规划和用户接入对于提升小区边缘用户通信质量具有重要意义。
发明内容
技术问题:为了解决多小区共同边缘覆盖区用户通信质量优化问题,本发明提出一种高效的中继无人机航迹规划和用户接入联合优化方法,通过放缩求取上、下界的方法,联合优化无人机航迹和用户接入,在满足信息因果性的前提下实现高效的通信。
技术方案:为了实现上述目标,本发明提出一种高效的中继无人机航迹规划和用户接入联合优化方法,包括以下步骤:
1)构建以最大化边缘用户和速率为目标的中继无人机航迹规划及用户接入的数学优化问题;
2)固定用户接入矩阵,将最大化边缘用户和速率的中继无人机航迹规划及用户接入数学优化问题简化为中继无人机航迹规划的子问题;然后通过放缩求取上、下界的方法,将无人机航迹规划的子问题转化为一个凸优化问题;采用经典的凸优化问题求解方法,求解无人机航迹规划子问题,得到固定用户接入方案下的无人机最优航迹;
3)将无人机航迹固定为步骤2)中获得的无人机航迹,将1)中得到的数学优化问题简化为用户接入优化子问题,进一步采用拉格朗日对偶方法求解该子问题,得到固定无人机航迹条件下最优的用户接入矩阵;
4)更新用户接入矩阵为3)中得到的用户接入矩阵,迭代执行步骤2)至3),直到优化边缘用户和速率的无人机航迹规划及用户接入数学问题目标函数收敛,得到最优的无人机航迹和用户接入矩阵。
进一步地,所述步骤1)中,优化边缘用户和速率的无人机航迹规划及用户接入的数学优化问题具体为:
其中:U={u[n],n=1,...,N}表示无人机航迹;表示用户接入矩阵,其元素ρk,n指示用户是否接入无人机,若在n时刻用户k接入无人机,则ρk,n=1,否则ρk,n=0;K表示所有边缘用户的集合;R0为边缘用户的最小速率要求,RE[k]表示边缘用户 k在一个周期内的平均速率,由下面式(2)计算:
其中,N表示一个周期内的时隙数;PU是无人机发射功率;是n时刻无人机到用户k之间的信道增益;α0是参考距离为1米时的信道功率;duk[n]表示n时刻无人机到用户k的距离;σ2为噪声功率;为无人机在n时刻发送给用户的数据速率,为无人机在n时刻从基站接收到的数据速率,分别由下面式(3)和(4)计算:
其中,NB是基站数;PB是基站发射功率;是n时刻基站到无人机的信道增益,其中dmu[n]表示n时刻基站m到无人机的距离,表示基站m到无人机的小尺度信道衰落,L表示基站配置的天线数,表示基站m的波束赋形向量;Vmax表示无人机的最大飞行速度;T表示一个周期时间。
进一步地,所述步骤2)中,无人机航迹优化的子问题具体如下:
进一步地,所述步骤2)中,条件放缩后的凸优化问题具体如下:
其中,是的下界,并且是关于u[n]是凹函数,由下面式(7)给出:
其中
u[n]=(x[n],y[n])表示无人机在n时刻的位置坐标,u(l)[n]表示第l次迭代时无人机的位置坐标, bm=(xm,ym)表示基站m的位置坐标;
是的下界,并且是关于u[n]的凹函数,由下面式(8) 给出:
其中
ek=(xk,yk)表示边缘用户k的位置坐标;
是的上界,并且是关于u[n]的凸函数,由下面式(9)给出:
其中是的上界,并且是关于u[n]的凸函数,由下面式(10)给出:
针对子问题(6),采用经典的凸优化问题求解方法,求解无人机航迹规划问题,得到固定用户接入方案下无人机最优航迹;
进一步地,所述步骤3)中,优化用户接入矩阵的子问题具体如下:
将整数接入指示变量ρk,n放缩为连续型约束ρk,n∈[0,1],子问题(11)成为线性规划问题。
进一步地,所述步骤3)中,将采用拉格朗日对偶函数和经典次梯度方法迭代求解用户接入矩阵,该迭代算法的具体步骤为:
步骤1:令迭代次数变量t=1,初始化参数λn和ηk,通常可取其中是保证优化用户接入的凸优化问题中条件(11c)成立而引入的拉格朗日乘子,是保证条件(11b)成立而引入的拉格朗日乘子,所有符号上标(1)表示迭代次数变量t=1,即迭代开始时拉格朗日乘子的初始值;
步骤2:根据下面式(12)计算第t次迭代过程中的用户接入参数式中上标(t)表示第t次迭代;
步骤3:更新迭代次数变量t=t+1,将步骤2计算得到的代入下面式(13)和式(14),分别更新第t+1次迭代过程中的参数和
步骤4:重复步骤2和3直到收敛,得到最优的用户接入矩阵P*。
式(12)至式(14)中下标k和n分别表示边缘用户k和时刻n,上标(t)表示迭代次数变量,表示使最大的q的取值,是为了简化表达式引入的参数,和分别是第t次迭代过程中保证最优接入的凸优化问题中约束条件(11c)和(11b)成立而引入的拉格朗日乘子,δ(t)是迭代步长值,通常可取最大迭代次数的倒数,[·]+表示投影到非负实数域,具体地,若m为任意实数,则
进一步地,所述步骤2)中经典的凸优化问题求解方法为内点法。
有益效果:本发明采用如上技术方案,具有以下优点:
1)本发明方法联合考虑无人机航迹和用户接入的优化,与其他方法相比可实现更高效的传输,实现更高的边缘用户和速率。
2)本发明方法考虑多小区网络中的无人机中继技术,比现有研究的点到点中继传输方法更有实际应用价值。
3)本发明方法考虑无人机具有存储功能并且考虑信息因果性约束,更符合实际情况。
4)本发明方法提出的优化算法,通过放缩求取上、下界的方法将原优化问题转化为凸优化子问题求解,还采用了求解拉格朗日对偶的分析方法,交替迭代可以得到近似最优解,降低了计算复杂度。
附图说明
图1是本发明的方法步骤流程图;
图2是不同最大飞行速度下的无人机航迹图;
图3是不同无人机发射功率和飞行高度下,边缘用户和速率对比结果图;
图4是不同航迹下,边缘用户和速率对比结果图;
具体实施方式
下面结合具体实施例进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等效变换均落于本申请所附权利要求所限定的范围。
以最大化边缘用户和速率为目标,联合优化中继无人机航迹和用户接入,具体包括以下步骤:
1)构建以最大化边缘用户和速率为目标的中继无人机航迹规划及用户接入的数学优化问题,具体如下:
其中:U={u[n],n=1,...,N}表示无人机航迹;表示用户接入矩阵,其元素ρk,n指示用户是否接入无人机,若在n时刻用户k接入无人机,则ρk,n=1,否则ρk,n=0;K表示所有边缘用户的集合;R0为边缘用户的最小速率要求,RE[k]表示边缘用户 k在一个周期内的平均速率,由下面式(2)计算:
其中,N表示一个周期内的时隙数;PU是无人机发射功率;是n时刻无人机到用户k之间的信道增益;α0是参考距离为1米时的信道功率;duk[n]表示n时刻无人机到用户k的距离;σ2为噪声功率;为无人机在n时刻发送给用户的数据速率,为无人机在n时刻从基站接收到的数据速率,分别由下面式(3)和(4)计算:
其中,NB是基站数;PB是基站发射功率;是n时刻基站到无人机的信道增益,其中dmu[n]表示n时刻基站m到无人机的距离,表示基站m到无人机的小尺度信道衰落,L表示基站配置的天线数,表示基站m的波束赋形向量;Vmax表示无人机的最大飞行速度;T表示一个周期时间。
2)优化边缘用户和速率的无人机航迹规划及用户接入数学优化问题是非凸问题,采用交替迭代的方法求解。首先随机产生初始用户接入矩阵P,最大化边缘用户和速率的无人机航迹规划及用户接入数学优化问题简化为中继无人机航迹规划的子问题,具体如下:
条件放缩后的凸优化问题具体如下:
其中,是的下界,并且是关于u[n]是凹函数,由下面式(7)给出:
其中
u[n]=(x[n],y[n])表示无人机在n时刻的位置坐标,u(l)[n]表示第l次迭代时无人机的位置坐标, bm=(xm,ym)表示基站m的位置坐标;
是的下界,并且是关于u[n]的凹函数,由下面式(8)出:
其中
ek=(xk,yk)表示边缘用户k的位置坐标;
是的上界,并且是关于u[n]的凸函数,由下面式(9)给出:
其中是的上界,并且是关于u[n]的凸函数,由下面式(10)给出:
针对子问题(6),采用经典的凸优化问题求解方法,求解无人机航迹规划问题,得到固定用户接入方案下的无人机最优航迹;
3)固定无人机航迹,最大化边缘用户和速率的无人机航迹规划及用户接入数学优化问题简化为用户接入的子问题,具体如下:
将整数接入指示变量ρk,n放缩为连续型约束ρk,n∈[0,1],子问题(11)成为线性规划问题。
采用拉格朗日对偶函数和经典次梯度方法迭代求解用户接入矩阵,该迭代算法的具体步骤为:
步骤1:令迭代次数变量t=1,初始化参数λn和ηk,通常可取其中是保证优化用户接入的凸优化问题中条件(11c)成立而引入的拉格朗日乘子,是保证条件(11b)成立而引入的拉格朗日乘子,所有符号上标(1)表示迭代次数变量t=1,即迭代开始时拉格朗日乘子的初始值;
步骤2:根据下面式(12)计算第t次迭代过程中的用户接入参数式中上标(t)表示第t次迭代;
步骤3:更新迭代次数变量t=t+1,将步骤2计算得到的代入下面式(13)和式(14),分别更新第t+1次迭代过程中的参数和
步骤4:重复步骤2和3直到收敛,得到最优的用户接入矩阵P*。
式(12)至式(14)中下标k和n分别表示边缘用户k和时刻n,上标(t)表示迭代次数变量,表示使最大的q的取值,是为了简化表达式引入的参数,和分别是第t次迭代过程中保证最优接入的凸优化问题中约束条件(11c)和(11b)成立而引入的拉格朗日乘子,δ(t)是迭代步长值,通常可取最大迭代次数的倒数,[·]+表示投影到非负实数域,具体地,若m为任意实数,则
进一步地,所述步骤2)中经典的凸优化问题求解方法为内点法。
4)更新用户接入矩阵为3)中得到的接入矩阵,迭代执行步骤2)至3),直到优化边缘用户和速率的无人机航迹规划及用户接入数学问题目标函数收敛。
Claims (7)
1.一种中继无人机航迹规划和用户接入联合优化方法,其特征在于,包括以下步骤:
1)构建以最大化边缘用户和速率为目标的中继无人机航迹规划及用户接入的数学优化问题;
2)固定用户接入矩阵,将最大化边缘用户和速率的中继无人机航迹规划及用户接入数学优化问题简化为中继无人机航迹规划的子问题;然后通过放缩求取上、下界的方法,将无人机航迹规划的子问题转化为一个凸优化问题;采用经典的凸优化问题求解方法,求解无人机航迹规划子问题,得到固定用户接入方案下的无人机最优航迹;
3)将无人机航迹固定为步骤2)中获得的无人机航迹,将1)中得到的数学优化问题简化为用户接入优化子问题,进一步采用拉格朗日对偶方法求解该子问题,得到固定无人机航迹条件下最优的用户接入矩阵;
4)更新用户接入矩阵为3)中得到的用户接入矩阵,迭代执行步骤2)至3),直到优化边缘用户和速率的无人机航迹规划及用户接入数学问题目标函数收敛,得到最优的无人机航迹和用户接入矩阵。
2.根据权力要求1所述的中继无人机航迹规划和用户接入联合优化方法,其特征在于,所述步骤1)中,优化边缘用户和速率的无人机航迹规划及用户接入的数学优化问题具体为:
其中:U={u[n],n=1,...,N}表示无人机航迹;表示用户接入矩阵,其元素ρk,n指示用户是否接入无人机,若在n时刻用户k接入无人机,则ρk,n=1,否则ρk,n=0;K表示所有边缘用户的集合;R0为边缘用户的最小速率要求,RE[k]表示边缘用户k在一个周期内的平均速率,由下面式(2)计算:
其中,N表示一个周期内的时隙数;PU是无人机发射功率;是n时刻无人机到用户k之间的信道增益;α0是参考距离为1米时的信道功率;duk[n]表示n时刻无人机到用户k的距离;σ2为噪声功率;为无人机在n时刻发送给用户的数据速率,为无人机在n时刻从基站接收到的数据速率,分别由下面式(3)和(4)计算:
其中,NB是基站数;PB是基站发射功率;是n时刻基站到无人机的信道增益,其中dmu[n]表示n时刻基站m到无人机的距离,表示基站m到无人机的小尺度信道衰落,L表示基站配置的天线数,表示基站m的波束赋形向量;Vmax表示无人机的最大飞行速度;T表示一个周期时间。
3.根据权力要求1所述的中继无人机航迹规划和用户接入联合优化方法,其特征在于,所述步骤2)中,给定用户接入矩阵,无人机航迹优化的子问题具体如下:
4.根据权力要求1所述的中继无人机航迹规划和用户接入联合优化方法,其特征在于,所述步骤2)中将子问题通过放缩后得到的凸优化问题具体如下:
其中,是的下界,并且是关于u[n]是凹函数,由下面式(7)给出:
其中
u[n]=(x[n],y[n])表示无人机在n时刻的位置坐标,u(l)[n]表示第l次迭代时无人机的位置坐标,bm=(xm,ym)表示基站m的位置坐标;
是的下界,并且是关于u[n]的凹函数,由下面式(8)给出:
其中
ek=(xk,yk)表示边缘用户k的位置坐标;
是的上界,并且是关于u[n]的凸函数,由下面式(9)给出:
其中是的上界,并且是关于u[n]的凸函数,由下面式(10)给出:
针对子问题(6),采用经典的凸优化问题求解方法,求解无人机航迹规划问题,得到固定用户接入方案下的无人机最优航迹。
5.根据权力要求1所述的中继无人机航迹规划和用户接入联合优化方法,其特征在于,所述步骤3)中,将无人机航迹固定为步骤2)中获得的无人机航迹,优化用户接入矩阵的子问题具体如下:
将整数接入指示变量ρk,n放缩为连续型约束ρk,n∈[0,1],子问题(11)成为线性规划问题。
6.根据权力要求1所述的中继无人机航迹规划和用户接入联合优化方法,其特征在于,所述步骤3)中,将采用拉格朗日对偶函数和经典次梯度方法迭代求解用户接入矩阵,该迭代算法的具体步骤为:
步骤1:令迭代次数变量t=1,初始化参数λn和ηk,通常可取其中是保证优化用户接入的凸优化问题中条件(11c)成立而引入的拉格朗日乘子,是保证条件(11b)成立而引入的拉格朗日乘子,所有符号上标(1)表示迭代次数变量t=1,即迭代开始时拉格朗日乘子的初始值;
步骤2:根据下面式(12)计算第t次迭代过程中的用户接入参数式中上标(t)表示第t次迭代;
步骤3:更新迭代次数变量t=t+1,将步骤2计算得到的代入下面式(13)和式(14),分别更新第t+1次迭代过程中的参数和
步骤4:重复步骤2和3直到收敛,得到最优的用户接入矩阵P*;
式(12)至式(14)中下标k和n分别表示边缘用户k和时刻n,上标(t)表示迭代次数变量,表示使最大的q的取值,是为了简化表达式引入的参数,和分别是第t次迭代过程中保证最优接入的凸优化问题中约束条件(11c)和(11b)成立而引入的拉格朗日乘子,δ(t)是迭代步长值,通常可取最大迭代次数的倒数,[·]+表示投影到非负实数域,具体地,若m为任意实数,则
7.权力要求1所述的中继无人机航迹规划和用户接入联合优化方法,其特征在于,所述步骤2)中经典的凸优化问题求解方法为内点法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910083058.XA CN109890035B (zh) | 2019-01-28 | 2019-01-28 | 一种中继无人机航迹规划和用户接入联合优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910083058.XA CN109890035B (zh) | 2019-01-28 | 2019-01-28 | 一种中继无人机航迹规划和用户接入联合优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109890035A true CN109890035A (zh) | 2019-06-14 |
CN109890035B CN109890035B (zh) | 2022-02-22 |
Family
ID=66927211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910083058.XA Active CN109890035B (zh) | 2019-01-28 | 2019-01-28 | 一种中继无人机航迹规划和用户接入联合优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109890035B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110749325A (zh) * | 2019-11-29 | 2020-02-04 | 北京京东乾石科技有限公司 | 航迹规划方法和装置 |
CN111830192A (zh) * | 2020-06-02 | 2020-10-27 | 合肥通用机械研究院有限公司 | 一种混空燃气燃烧性能测试系统及其测试方法 |
CN112738767A (zh) * | 2020-11-30 | 2021-04-30 | 中南大学 | 一种基于信任的移动边缘用户任务调度方法 |
CN113188544A (zh) * | 2021-04-29 | 2021-07-30 | 福建师范大学 | 一种基于缓存的无人机基站路径规划方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107040982A (zh) * | 2017-03-31 | 2017-08-11 | 南京邮电大学 | 一种面向无人机中继网络的用户调度与功率分配联合优化方法 |
US20180039287A1 (en) * | 2015-07-27 | 2018-02-08 | Genghiscomm Holdings, LLC | Airborne Relays in Cooperative-MIMO Systems |
CN108566670A (zh) * | 2018-04-19 | 2018-09-21 | 郑州航空工业管理学院 | 无人机辅助无线传感网及其节点调度与路径规划功率分配设计方法 |
CN108667504A (zh) * | 2018-03-22 | 2018-10-16 | 佛山市顺德区中山大学研究院 | 一种基于交替方向乘子法的无人飞行器中继系统分布式资源优化方法 |
US20180319495A1 (en) * | 2017-05-05 | 2018-11-08 | Pinnacle Vista, LLC | Relay drone method |
-
2019
- 2019-01-28 CN CN201910083058.XA patent/CN109890035B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180039287A1 (en) * | 2015-07-27 | 2018-02-08 | Genghiscomm Holdings, LLC | Airborne Relays in Cooperative-MIMO Systems |
CN107040982A (zh) * | 2017-03-31 | 2017-08-11 | 南京邮电大学 | 一种面向无人机中继网络的用户调度与功率分配联合优化方法 |
US20180319495A1 (en) * | 2017-05-05 | 2018-11-08 | Pinnacle Vista, LLC | Relay drone method |
CN108667504A (zh) * | 2018-03-22 | 2018-10-16 | 佛山市顺德区中山大学研究院 | 一种基于交替方向乘子法的无人飞行器中继系统分布式资源优化方法 |
CN108566670A (zh) * | 2018-04-19 | 2018-09-21 | 郑州航空工业管理学院 | 无人机辅助无线传感网及其节点调度与路径规划功率分配设计方法 |
Non-Patent Citations (2)
Title |
---|
FEN CHENG ET AL.: ""UAV Trajectory Optimization for Data Offloading at the Edge of Multiple Cells"", 《IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY》 * |
GUANGCHI ZHANG ET AL.: ""Trajectory_Optimization_and_Power_Allocation_for_Multi-Hop_UAV_Relaying_Communications"", 《IEEE ACCESS》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110749325A (zh) * | 2019-11-29 | 2020-02-04 | 北京京东乾石科技有限公司 | 航迹规划方法和装置 |
CN110749325B (zh) * | 2019-11-29 | 2021-11-02 | 北京京东乾石科技有限公司 | 航迹规划方法和装置 |
CN111830192A (zh) * | 2020-06-02 | 2020-10-27 | 合肥通用机械研究院有限公司 | 一种混空燃气燃烧性能测试系统及其测试方法 |
CN111830192B (zh) * | 2020-06-02 | 2022-05-31 | 合肥通用机械研究院有限公司 | 一种混空燃气燃烧性能测试系统及其测试方法 |
CN112738767A (zh) * | 2020-11-30 | 2021-04-30 | 中南大学 | 一种基于信任的移动边缘用户任务调度方法 |
CN113188544A (zh) * | 2021-04-29 | 2021-07-30 | 福建师范大学 | 一种基于缓存的无人机基站路径规划方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109890035B (zh) | 2022-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113645635B (zh) | 智能反射面辅助的高能效无人机通信系统的设计方法 | |
CN109890035B (zh) | 一种中继无人机航迹规划和用户接入联合优化方法 | |
Na et al. | UAV-supported clustered NOMA for 6G-enabled Internet of Things: Trajectory planning and resource allocation | |
Wu et al. | Cooperative UAV cluster-assisted terrestrial cellular networks for ubiquitous coverage | |
Alsharoa et al. | Improvement of the global connectivity using integrated satellite-airborne-terrestrial networks with resource optimization | |
Sun et al. | Resource allocation for solar powered UAV communication systems | |
CN112543050B (zh) | 一种面向吞吐量提升的无人机协作和轨迹优化方法 | |
CN111970709B (zh) | 一种基于粒子群优化算法的无人机中继部署方法及系统 | |
CN108880662A (zh) | 一种基于无人机的无线信息和能量传输的优化方法 | |
Fotouhi et al. | Service on demand: Drone base stations cruising in the cellular network | |
Guan et al. | User association and power allocation for UAV-assisted networks: A distributed reinforcement learning approach | |
Li et al. | A UAV real-time trajectory optimized strategy for moving users | |
CN113258989A (zh) | 一种使用强化学习获得无人机中继轨迹的方法 | |
Becvar et al. | Positioning of flying base stations to optimize throughput and energy consumption of mobile devices | |
Zhao et al. | MADRL-based 3D deployment and user association of cooperative mmWave aerial base stations for capacity enhancement | |
CN114665949A (zh) | 一种基于物理层安全的能量收集型无人机通信方法 | |
Fu et al. | Joint speed and bandwidth optimized strategy of UAV-assisted data collection in post-disaster areas | |
Gupta et al. | Trajectory and resource allocation for UAV replacement to provide uninterrupted service | |
Wang et al. | Uplink data transmission based on collaborative beamforming in UAV-assisted MWSNs | |
CN116634443A (zh) | 面向空天地物联网的权衡能效和谱效的多目标优化方法 | |
Lee et al. | MUSK-DQN: Multi-UBS selective-K deep Q-network for maximizing energy-efficiency | |
Sheng et al. | Enabling Integrated Access and Backhaul in Dynamic Aerial-Terrestrial Networks for Coverage Enhancement | |
Catté et al. | Cost-efficient and QoS-aware user association and 3D placement of 6G aerial mobile access points | |
CN103905097A (zh) | 一种结合自适应天线选择的分布式天线系统资源调度方法 | |
CN114665947A (zh) | 一种无人机支持的中继通信系统联合功率控制及位置规划的优化设计方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |