CN109889059A - 一种用于时钟不同步mmc的输出电压分析方法 - Google Patents

一种用于时钟不同步mmc的输出电压分析方法 Download PDF

Info

Publication number
CN109889059A
CN109889059A CN201910249120.8A CN201910249120A CN109889059A CN 109889059 A CN109889059 A CN 109889059A CN 201910249120 A CN201910249120 A CN 201910249120A CN 109889059 A CN109889059 A CN 109889059A
Authority
CN
China
Prior art keywords
bridge arm
output
function
clock
asynchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910249120.8A
Other languages
English (en)
Other versions
CN109889059B (zh
Inventor
杨顺风
王海宇
陈海宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201910249120.8A priority Critical patent/CN109889059B/zh
Publication of CN109889059A publication Critical patent/CN109889059A/zh
Application granted granted Critical
Publication of CN109889059B publication Critical patent/CN109889059B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明公开了一种用于时钟不同步MMC的输出电压分析方法,根据模块化多电平变流器同步时钟信号下的开关函数,引入时钟偏差量,构建所述模块化多电平变流器,时钟不同步时上、下桥臂电压的输出函数;对上、下桥臂电压的输出函数进行数学分析,计算得到时钟不同步信号对不同频率谐波的影响;根据得到的上、下桥臂输出波形,分析得到模块化多电平变流器单相输出电压的函数表示,进而得到时钟不同步信号对模块化多电平变流器输出电压的影响。

Description

一种用于时钟不同步MMC的输出电压分析方法
技术领域
本发明涉及模块化多电平变流器技术领域,具体为一种用于时钟不同步MMC的输出电压分析方法。
背景技术
随着电力电子技术在柔性直流输电等领域的应用,高压大功率电力电子设备正受到广泛关注,出现了3.3kV、6.5kV等高压电力电子开关器件,但目前半导体功率器件的耐压和电流容量仍不能满足许多应用的需求。由于对开关管容量和耐压能力的较高要求,传统的两电平拓扑在高压大功率场合已经不再适用。模块化多电平变流器以其:模块化程度高、电平数多、输出谐波低和开关频率低等特点,被成功应用于高压柔性直流输电领域,受到越来越多关注。
早期模块化多电平变流器的控制系统普遍采用集中式控制,由于集中式控制将所有控制任务放在主控制器中,在子模块数目较多时,主控制器计算任务繁重,导致每个控制环处理时间不充分;且当子模块数目较多时,主控制缺乏足够的控制信号输出端口,导致集中式控制无法实现。此时就需要引入分布式控制的策略,以降低控制器的计算负荷,改善控制效果。
分布式控制系统采用:一个主控制器与多个从控制器互联的控制策略,将控制量分散到不同控制器中,减轻了控制器的计算负担,体现了MMC模块化的特点。但由于分布式控制系统使用多个从控制器,此时不同控制器的晶振误差,将会导致从控制器的系统时钟不同步现象,进而引起MMC系统的不稳定运行。
发明内容
针对上述问题,本发明的目的在于提供一种时钟信号不同步情况下,模块化多电平变流器的输出电压分析算法,来分析现有的子控制器时钟不同步时,模块化多电平变流器输出不稳定问题。技术方案如下:
一种用于时钟不同步MMC的输出电压分析方法,包括以下步骤;
S1:根据模块化多电平变流器中控制器晶振的偏差,将不同步偏差量的分布等效为正态分布,则偏差所满足的正态分布概率密度方程为:
其中,xi为不同控制器晶振频率偏差的标幺值,σ为正态分布标准差,且2σ=ferr,ferr为晶振的标称误差;
S2:根据模块化多电平变流器-同步时钟信号下的开关函数,引入不同步时钟偏差量,构建时钟不同步时,上、下桥臂电压的输出函数:
其中,su、sl分别为上、下桥臂电压的调制函数,N为单个桥臂子模块个数,uo *为输出参考电压的标幺值,k为载波次谐波,n为边带谐波,Jn为贝塞尔函数,xui、xli分别为上、下桥臂晶振频率偏差值,ωc为载波频率,ωo为调制波频率,t为同步时间;α为调制波与载波的相位偏差,β为上、下桥臂载波的相位偏差;m为电压调制比;i表示第i个子模块;
S3:将得到的桥臂输出函数进行化简,对式(2)中右边的三角函数部分单独分析,化简为:
其中,φu=(kωc+nωo)t+nπ+kα+kβ;将cos(xuict)与sin(xuict)进行近似等效处理,得到:
仅考虑对输出影响较大的主要为低次谐波成分,kxuiωct<<2;故根据(3)式中k/N的关系,进行化简得:
其中
考虑的最大取值情况为在正半周或负半周时有值:
所以有:
S4:对开关函数中包含的谐波进行讨论:
低次谐波成分:
高次谐波成分:
将所述上、下桥臂电压的输出函数进行化简;以上桥臂为例,包含谐波成分的上桥臂调制函数为:
S5:由输出相电压公式得到时钟信号不同步情况下,模块化多电平变流器的输出电压函数表达式:
其中,so为单相输出电压调制信号;k/N不是整数时,表示低频谐波成分;k/N为整数时,表示输出波形中的高频谐波成分,N+表示正整数。
本发明的有益效果是:
本发明通过分析模块化多电平变流器运行时的时钟不平衡现象,将不同时钟偏差值的分布等效为正态分布;根据信号同步时,载波移相调制的MMC输出电压函数,引入偏差量,得到不同步系统的桥臂输出函数;通过数学推导,分析桥臂输出,根据影响输出的主要谐波成分,分离出表达式中的低次谐波成分,进行分析;根据分析得到的上、下桥臂电压输出函数表示,得出输出电压的函数表示so;根据公式分析得,影响不同步系统偏差程度的参数主要有:载波次谐波k,载波频率ωc,同步时间t,晶振偏差值σ与桥臂子模块个数N。
本发明对不同步偏差量进行假设,得到了时钟不同步MMC系统的桥臂输出函数表达式;并通过MMC电路关系,得到不同步系统输出电压的函数表达式;从理论上推导验证了:不同步MMC系统输出电压的低次谐波随时间增加而增加;不同步系统的偏差程度主要受到载波次谐波k,载波频率ωc,同步时间t,晶振偏差值σ与桥臂子模块个数N的影响。
附图说明
图1为单相模块化多电平变流器的拓扑结构图。
图2为时钟不平衡偏差量的概率分布图(正态分布)。
图3为时钟不同步MMC系统,输出电压分析算法的允许时间限度判断图。
图4为时钟信号不同步时,单相模块化多电平变流器-上桥臂输出低频谐波-实验结果与理论计算结果比较图
图5为时钟信号不同步时,单相模块化多电平变流器-上桥臂输出高频谐波-实验结果与理论计算结果比较图
图6为时钟信号不同步时,单相模块化多电平变流器-输出低频谐波-实验结果与理论计算结果比较图。
图7为时钟信号不同步时,单相模块化多电平变流器-输出高频谐波-实验结果与理论计算结果比较图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细说明。如图1和图2所示,本方案分析的时钟信号不同步情况下,模块化多电平变流器的输出电压分析算法,包括对不同步时钟信号引起的偏差,进行合理的数学假设,将不同步偏差量的分布等效为正态分布。
参考图2,偏差所满足的正态分布概率密度方程为:
其中均值μ=0,标准差σ=ferr/2,ferr代表控制器晶振的标称误差,选取σ=ferr/2的原因为:
正态分布在平均值左右两个标准差范围内,覆盖率为95.45%,可近似认为包括了所有的偏差量取值,所以选取±2σ=±ferr
根据载波移相调制的桥臂输出调制波信号,引入不同步偏差成分,得到不同步系统上下桥臂的调制信号:
其中,su、sl分别为上、下桥臂电压的调制函数,N为单个桥臂子模块个数,uo *为输出参考电压的标幺值,k为载波倍谐波的次数,n为边带谐波,Jn为贝塞尔函数,xui、xli分别为上、下桥臂晶振频率偏差值,ωc为载波频率,ωo为调制波频率,α为调制波与载波的相位偏差,β为上、下桥臂载波的相位偏差,m为电压调制比;i表示第i个子模块;
将得到的桥臂输出函数进行化简,为了分离出输出函数中的偏差成分,对式(2)右边的三角函数部分单独分析,化简为:
其中,A=(kωc+nωo)t+nπ+kα+kβ
为了提取出三角函数中的xui,将cos(xuict)与sin(xuict)进行近似等效处理,得到:
分析(4)式,在ωc、xui、k确定的情况下,需要通过限定不同步系统运行时间t,使假设有效。
如图3所示,由于设计系统时,xui,ωc已经为定值,所以可以由谐波次数k来确定有效运行时间t。图中x轴为载波次谐波次数k,y轴为有效运行时间t,z轴为假设误差范围。操作时可以通过待分析的谐波次数与误差范围,从关系图上确定假设有效运行时间t。
由于对输出影响较大的主要为低次谐波成分,故根据(3)式中k/N的关系,进行化简(由于只考虑低次成分,故kxuiωct<<2):
其中
S7:考虑的最大取值情况为在正半周或负半周时有值:
所以有:
S8:对开关函数中包含的谐波进行讨论:
低次成分:
另外,可类似对高频部分进行讨论,有:
高次成分:
参考图4,即为桥臂输出电压的低次谐波分析,左图为实验波形,右图为根据理论推导得到的计算结果。实验时分别取t=2s、t=3s时的FFT波形进行对比观察,中分别取从图中可以看出,在k=1和k=2时(即图中x轴为10、20时,x值为谐波频率与基波频率之比)),理论分析结论与实验结果基本匹配,证明了所得到桥臂输出谐波在低频部分的正确性。
参考图5,为桥臂输出电压高次谐波分析,左图为实验波形,右图为理论推导结果。实验时分别取t=1s、t=2s进行分析,可以观察到,理论分析结论与实验结果基本匹配,证明了所提出的桥臂输出函数在高频部分的正确性。
结合式(8)(9)两式得到的桥臂输出电压函数,根据MMC输出电压的公式:
进一步推导得到MMC输出电压的公式:
通过(11)式右边三角函数中,可以根据n取值的奇偶性,分别进行讨论,最终得出MMC输出电压谐波在低频和高频部分的表达式:
其中,so表示不同步MMC系统输出电压信号,式(11)中k/N不是整数时,表示了低频谐波成分,k/N为整数时,表示了输出波形中的高频谐波成分。
参考图6,即为单相MMC输出电压的低次谐波分析,左图为实验波形,右图为根据理论推导得到的计算结果。实验时分别取t=2s、t=3s时的FFT波形进行对比观察,中分别取从图中可以看出,在k=1和k=2时(即图中x轴为10、20时,x值为谐波频率与基波频率之比)),理论分析结论与实验结果基本匹配,证明了所得到桥臂输出函数在低频部分的正确性。
参考图7,为单相MMC-输出电压高次谐波分析,左图为实验波形,右图为理论推导结果。实验时分别取t=1s、t=2s进行分析,可以观察到,理论分析结论与实验结果基本匹配,证明了所得到桥臂输出函数在高频部分的正确性。
最终,综合以上所有,得到时钟信号不同步情况下,模块化多电平变流器的输出电压函数表达式:
将偏差成分引入输出信号函数中,进行适当的等效与假设,分离出了影响偏差程度的因素,主要有:
载波谐波次数,载波频率,同步时间,晶振偏差值与桥臂子模块个数。
本发明对时钟信号不同步情况下,单相模块化多电平变流器的系统运行情况进行分析。通过引入不同步偏差量,导出上、下桥臂输出电压表达式,进一步导出单相MMC输出电压表达式,通过导出的不同步情况下,模块化多电平变流器输出表达式,对输出电压的低频与高频谐波成分实现了定量的分析;另外还分离出了载波频率、同步时间、晶振偏差值与桥臂子模块个数等影响偏差程度的主要因素。文中列写出的理论分析结果均通过实验,验证了其正确性。本文提出的算法,将为后续对时钟不同步情况的分析提供重要的理论依据。

Claims (1)

1.一种用于时钟不同步MMC的输出电压分析方法,其特征在于,包括以下步骤;
S1:根据模块化多电平变流器中控制器晶振的偏差,将不同步偏差量的分布等效为正态分布,则偏差所满足的正态分布概率密度方程为:
其中,xi为不同控制器晶振频率偏差的标幺值,σ为正态分布标准差,且2σ=ferr,ferr为晶振的标称误差;
S2:根据模块化多电平变流器-同步时钟信号下的开关函数,引入不同步时钟偏差量,构建时钟不同步时,上、下桥臂电压的输出函数:
其中,su、sl分别为上、下桥臂电压的调制函数,N为单个桥臂子模块个数,uo *为输出参考电压的标幺值,k为载波次谐波,n为边带谐波,Jn为贝塞尔函数,xui、xli分别为上、下桥臂晶振频率偏差值,ωc为载波频率,ωo为调制波频率,t为同步时间;α为调制波与载波的相位偏差,β为上、下桥臂载波的相位偏差;m为电压调制比;i表示第i个子模块;
S3:将得到的桥臂输出函数进行化简,对式(2)中右边的三角函数部分单独分析,化简为:
其中,φu=(kωc+nωo)t+nπ+kα+kβ;将cos(xuict)与sin(xuict)进行近似等效处理,得到:
仅考虑对输出影响较大的主要为低次谐波成分,kxuiωct<<2;故根据(3)式中k/N的关系,进行化简得:
其中
考虑的最大取值情况为在正半周或负半周时有值:
所以有:
S4:对开关函数中包含的谐波进行讨论:
低次谐波成分:
高次谐波成分:
将所述上、下桥臂电压的输出函数进行化简;以上桥臂为例,包含谐波成分的上桥臂调制函数为:
S5:由输出相电压公式得到时钟信号不同步情况下,模块化多电平变流器的输出电压函数表达式:
其中,so为单相输出电压调制信号;k/N不是整数时,表示低频谐波成分;k/N为整数时,表示输出波形中的高频谐波成分,N+表示正整数。
CN201910249120.8A 2019-03-29 2019-03-29 一种用于时钟不同步mmc的输出电压分析方法 Active CN109889059B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910249120.8A CN109889059B (zh) 2019-03-29 2019-03-29 一种用于时钟不同步mmc的输出电压分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910249120.8A CN109889059B (zh) 2019-03-29 2019-03-29 一种用于时钟不同步mmc的输出电压分析方法

Publications (2)

Publication Number Publication Date
CN109889059A true CN109889059A (zh) 2019-06-14
CN109889059B CN109889059B (zh) 2020-08-07

Family

ID=66935176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910249120.8A Active CN109889059B (zh) 2019-03-29 2019-03-29 一种用于时钟不同步mmc的输出电压分析方法

Country Status (1)

Country Link
CN (1) CN109889059B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531720A (zh) * 2019-09-05 2019-12-03 西南交通大学 一种mmc分布式控制系统中最优同步时间确定方法
CN110611460A (zh) * 2019-09-10 2019-12-24 东南大学 基于模块化多电平换流器的大功率电机驱动系统
CN113225805A (zh) * 2021-05-18 2021-08-06 中移(上海)信息通信科技有限公司 定位基站同步偏离的确定方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066878A (zh) * 2013-01-27 2013-04-24 中国科学院电工研究所 模块化多电平变流器的控制方法
CN103427609A (zh) * 2013-07-30 2013-12-04 浙江大学 一种mmc的谐波特性解析方法
US20170294853A1 (en) * 2016-04-08 2017-10-12 American Superconductor Corporation Switching scheme for static synchronous compensators using cascaded h-bridge converters
CN107633112A (zh) * 2017-08-17 2018-01-26 全球能源互联网研究院有限公司 一种mmc可靠性分析方法及装置
CN109149623A (zh) * 2017-06-18 2019-01-04 南京理工大学 一种基于模块化多电平柔性直流输电风电场并网的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066878A (zh) * 2013-01-27 2013-04-24 中国科学院电工研究所 模块化多电平变流器的控制方法
CN103427609A (zh) * 2013-07-30 2013-12-04 浙江大学 一种mmc的谐波特性解析方法
US20170294853A1 (en) * 2016-04-08 2017-10-12 American Superconductor Corporation Switching scheme for static synchronous compensators using cascaded h-bridge converters
CN109149623A (zh) * 2017-06-18 2019-01-04 南京理工大学 一种基于模块化多电平柔性直流输电风电场并网的控制方法
CN107633112A (zh) * 2017-08-17 2018-01-26 全球能源互联网研究院有限公司 一种mmc可靠性分析方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BINBIN LI等: "Analysis of the Phase-Shifted Carrier Modulation for Modular Multilevel Converters", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
KALLE ILVES 等: "Analysis and Operation of Modular Multilevel Converters With Phase-Shifted Carrier PWM", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531720A (zh) * 2019-09-05 2019-12-03 西南交通大学 一种mmc分布式控制系统中最优同步时间确定方法
CN110611460A (zh) * 2019-09-10 2019-12-24 东南大学 基于模块化多电平换流器的大功率电机驱动系统
CN113225805A (zh) * 2021-05-18 2021-08-06 中移(上海)信息通信科技有限公司 定位基站同步偏离的确定方法及装置

Also Published As

Publication number Publication date
CN109889059B (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
Matas et al. An adaptive prefiltering method to improve the speed/accuracy tradeoff of voltage sequence detection methods under adverse grid conditions
CN109889059A (zh) 一种用于时钟不同步mmc的输出电压分析方法
US9490724B2 (en) Methods for controlling electrical inverters and electrical inverters and systems using the same
Gao et al. Phase-locked loop for AC systems: Analyses and comparisons
CN106849135B (zh) 微网逆变器与有源滤波器的功率/电流质量协同方法
CN108023352A (zh) 抑制分布式发电谐振的电网高频阻抗重塑装置及方法
He et al. A DC-link voltage control scheme for single-phase grid-connected PV inverters
CN105610182B (zh) 一种孤岛运行的串联型微网结构及其功率控制方法
CN107276117A (zh) 带锁频的lcl型三相并网逆变器双环控制方法
CN104716668A (zh) 提高lcl型并网逆变器对电网适应性的前馈控制方法
CN103472282A (zh) 一种基于自适应原理的改进型fbd谐波电流检测方法
Vasquez-Plaza et al. Formal design methodology for discrete proportional-resonant (PR) controllers based on Sisotool/MATLAB tool
CN110380633A (zh) 一种基于单周期控制的针对非理想电网下的电流修正方法
CN109901392A (zh) 一种基于dq谐波检测算法的电力弹簧控制方法
Wang et al. A novel topology and its control of single-phase electric springs
CN103368438B (zh) 光伏并网逆变器的逆变控制方法
Ghanizadeh et al. Control of inverter-interfaced distributed generation units for voltage and current harmonics compensation in grid-connected microgrids
Hadjidemetriou et al. Power quality improvement of single-phase photovoltaic systems through a robust synchronization method
CN114050605A (zh) 一种基于本地电网相位的变频脉宽调制同步系统及方法
Pichan et al. Simple and efficient design and control of the single phase PWM rectifier for UPS applications
CN111313458A (zh) 一种适用于lcl型并网逆变器的组合滤波前馈控制方法
Misra et al. Modified second order adaptive filter for grid synchronization and reference signal generation
Li et al. The influence of phase-locked loop on the impedance of single phase voltage source converter
Govind et al. Modernistic Synchronization Technique during Adverse Grid Conditions using Shunt Active Power Filter
Quan et al. Multi-resonant based sliding mode control of grid-connected converter under distorted grid conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant