液控比例与负载敏感融合变量泵及液控智能流量分配系统
技术领域
本发明涉及液压控制技术领域,具体涉及一种液控比例与负载敏感融合变量泵及液控智能流量分配系统。
背景技术
随着装备制造技术的发展,对液压系统在轻量化、能量利用效率、多执行元件复合操作等方面的要求越来越高。在现有的液压系统中,变量泵容积控制系统和负载敏感节流控制系统由于各自的优势均得到了广泛的应用。
典型的变量泵容积控制系统中,电比例排量泵将油箱中液压油通过电磁换向阀供给液压缸。其中电磁换向阀受控制器的控制进行开关动作。液压缸不需要动作时,控制器将电磁换向阀关闭,同时将电比例排量泵的排量变为零。液压缸需要动作时,控制器将电磁换向阀打开,同时按系统需要将电比例排量泵的排量调整至合适大小。电比例排量泵的排量变化就控制了液压缸的速度大小。因电磁换向阀仅起到控制运动与否和方向,而没有节流作用,所以,容积控制系统中从泵的出口到执行元件的压力损失较小,系统的能量利用效率较高。但是,变量泵容积控制系统存在着一个缺点,在任一时刻,一个液压泵只能对应一个工作的执行元件,换言之,对于多个执行元件复合动作,每一个执行元件都需要一个单独的液压泵进行控制。这样,在系统中存在多个执行元件时,需要配置多个液压泵,增加了设计和制造成本。
典型的负载敏感节流控制系统中,负载敏感泵将油箱中液压油分别送给多个负载敏感阀。每个负载敏感阀单独控制一个液压缸。多个液压缸之间通过梭阀来对最大负载压力信号进行比较,并将较大的一个信号反馈给负载敏感泵。控制器用于根据系统需要控制负载敏感阀的开度和方向。每个负载敏感泵内置有流量控制阀,流量控制阀可以调节负载敏感泵的压力仅比负载高出一个设定好的恒定值。由此,相对常规定量泵溢流阀回路而言,负载敏感系统可以减少能量浪费。负载敏感系统中使用的负载敏感阀,可以像常规的比例阀一样根据控制器的电信号控制油液方向和阀口的开度。同时,负载敏感阀内部集成了用于使对应的阀口前后压差恒定的压力补偿阀。此恒定的压差用于保证阀口的通流量只和阀口通流面积成正比,且此压差要小于负载敏感泵内部的流量控制阀设定的压差。这样,负载敏感系统就具备了各个执行元件的动作不受各自不同负载大小的影响。
事实上,液压系统并不是一直工作在多个执行机构同时工作的工况下。很多时候,液压系统中仅有一个执行机构在工作。当系统中只有一个执行机构运动时,就不存在多个执行元件相互影响速度的问题。然而,此时负载敏感阀内的压力补偿阀仍然起作用,以保持换向阀前后的压差为一恒定值。这时,负载敏感泵内置的流量控制阀也使泵出口的压力和负载保持一个恒定值。在这种情况下,负载敏感阀内置的压力补偿阀和负载敏感泵内置的流量控制阀就构成了双重补偿,这导致了严重的节流损失,换言之,压力补偿阀成了多余的浪费能量的元件。
发明内容
针对上述现有技术存在的问题,本发明提供一种液控比例与负载敏感融合变量泵,该变量泵既能为容积控制液压系统进行供能,又能为负载敏感控制液压系统进行供能,其能在负载敏感控制液压系统中使用时避免单执行元件动作情况下内置的流量控制阀所引起的节流损失问题,从而提高系统能量利用效率;同时,该变量泵具有超压保护功能,能提高使用过程中的安全系数。
为了实现上述目的,本发明提供了一种液控比例与负载敏感融合变量泵,包括壳体,所述壳体内安装有泵本体、流量控制阀、液控切换阀、液控比例阀、变量控制油缸、恒压控制阀、安装在壳体内部的恒压控制油缸和固定设置在壳体内部的缸体;所述壳体上设有通过油路连接到泵本体的出油口的B口、通过油路连接到泵本体进油口的S口、通过油路连接到流量控制阀弹簧腔的X口和用于导出泄漏油液的L口;
所述变量控制油缸包括活塞腔A、活塞A、活塞杆A、第一复位弹簧;活塞腔A左右方向延伸地开设在缸体下部的内侧,活塞腔A的左端通过横向开设在缸体左端的连通腔A与缸体的左部外侧连通,活塞A滑动密封配合地装配在活塞腔A中,并将活塞腔A分隔为左侧的有杆腔A和右侧的无杆腔A,有杆腔A和无杆腔A分别通过开设在缸体上的油道a和油道b连通至缸体的外部,活塞杆A滑动密封配合地穿设在连通腔A中,且其右端伸入到有杆腔A中并与活塞A的左端中心固定连接,其左端延伸到缸体的左侧外部并通过连杆与泵本体内的斜盘的一个端部铰接,还与反馈杆的一端固定连接;第一复位弹簧位于有杆腔A内部,且套设在活塞杆A的外部;所述反馈杆的另一端与所述液控比例阀的阀套连接,以驱动液控比例阀阀套相对于其阀芯的横向移动;
所述恒压控制油缸包括活塞腔B、活塞B、活塞杆B、第二复位弹簧;活塞腔B左右方向延伸地开设在缸体上部的内侧,活塞腔B与活塞腔A相平行地设置,活塞腔B的左端通过横向开设在缸体内部的连通腔B与缸体的左部外侧连通,活塞B滑动密封配合地装配在活塞腔B中,并将活塞腔B分隔为左侧的有杆腔B和右侧的无杆腔B,有杆腔B和无杆腔B分别通过开设在缸体上的油道d和油道c连通至缸体的外部,活塞杆B滑动密封配合地穿设在连通腔B中,且其右端伸入到有杆腔B中并与活塞B的左端中心固定连接,其左端延伸到缸体的左侧外部,在活塞杆B伸出过程中,活塞杆B的左端与斜盘抵接配合以将斜盘推到中间位置;第二复位弹簧位于有杆腔B内部,且套设在活塞杆B的外部;
流量控制阀的P口、液控切换阀的P口、恒压控制阀的P口和油道a均通过油路连接至泵本体的出油口;
流量控制阀的左位控制口通过油路连接至自身的P口,其A口与液控切换阀的T口连接,其T口直接泄漏至壳体内;
液控切换阀的A口与液控比例阀的P口连接,其B口与液控比例阀的A口连通后与油道b连通;
液控比例阀的T口直接泄漏至壳体内;
恒压控制阀的左位控制口通过油路连接至自身的P口,其T口直接泄漏至壳体内,其A口通过油路与油道c连通;
所述壳体上设有通过油路连接到液控切换阀的左位控制口的Y口、通过油路连接到液控比例阀的左位控制口的H口。
作为一种优选,液控切换阀为两位四通液控换向阀,其左位控制口有控制压力时,工作在左位,其P口与A口之间的油路断开,其T口和B口之间的油路连通;其左侧控制口没有压力时,工作在右位,其P口与A口之间的油路连通,其T口和B口之间的油路断开。
作为一种优选,液控比例阀为两位三通液控比例换向阀,当左侧控制口的压力大于等于最大设定值时,其工作在左位,其P口封闭,A口与T口之间的油路连通;当左侧控制口的压力小于等于最小设定值时,其工作在右位,其P口与A口之间的油路连通,其T口封闭;当左侧控制口的压力大于最小设定值且小于最大设定值时,其P口同时与T口和A口连通。
进一步,为了便于限定活塞B的位置,所述活塞腔B的右端通过横向开设在缸体右端的连通腔C与缸体的右部外侧连接,连通腔C内设置有内螺纹,并通过螺纹配合装配有限位螺钉,限位螺钉与连通腔C之间密封配合。
在该技术方案中,该变量泵在应用于具有多个执行元件的液压系统中时,能根据执行元件为单个或多个而自动地切换于容积控制模式和负载敏感控制模式,从而可以使液压系统的效率更高,也更加节能。当其应用于具有多个执行元件的液压系统中时,能保证多个执行机构之间的动作互不干扰,而且还能在负载敏感控制模式下实现节能的目的。恒压控制油缸能在超压后通过活塞杆B推动斜盘的方式,减少泵本体的排油量,以达到超压保护的目的,从而能提高使用过程中的安全系数。
本发明还提供一种液控智能流量分配系统,该系统能在液压系统中仅有一个执行元件时具有更高的效率,能更有效地节省能耗,还能在负载敏感控制模式时,保证多个执行元件的相互不干扰,同时,该系统为液控系统,无需电信号参与控制,能适用于防爆等特殊需求场所的使用。
为了实现上述目的,本发明还提供了一种液控智能流量分配系统,包括变量泵、辅助动力源、至少两个控制手柄、至少两个负载执行单元、至少四个梭阀、至少四个辅助换向阀和至少三个液控换向阀;两个控制手柄分别为第一控制手柄和第二控制手柄,第一控制手柄和第二控制手柄的进油口P均与辅助动力源连接,第一控制手柄和第二控制手柄的出油口T均与油箱连接,两个负载执行单元分别为第一负载执行单元和第二负载执行单元,第一负载执行单元由第一负载敏感阀和与其出油口连接的第一液压执行元件组成,第二负载执行单元由第二负载敏感阀和与其出油口连接的第二液压执行元件组成;
四个梭阀分别为第一梭阀、第二梭阀、第三梭阀和第四梭阀;
四个辅助换向阀分别为第一辅助换向阀、第二辅助换向阀、第三辅助换向阀和第四辅助换向阀;
三个液控换向阀分别为第一液控换向阀、第二液控换向阀和第三液控换向阀;
第一控制手柄的输出控制口A、B分别与第三梭阀输入口A、B连接,第一控制手柄的输出控制口A、B还分别与第一辅助换向阀的A口、第二辅助换向阀的A口连接;第一辅助换向阀的A口还连接至其左位控制口,第二辅助换向阀的A口还连接至其左位控制口;第二辅助换向阀的输出口C、第一辅助换向阀的输出口C分别与第一负载敏感阀的左位控制口、右位控制口连接;
第二控制手柄的输出控制口A、B分别与第四梭阀输入口A、B连接,第二控制手柄的输出控制口A、B还分别与第三辅助换向阀的A口、第四辅助换向阀的A口连接;第三辅助换向阀的A口还连接至其左位控制口,第四辅助换向阀的A口还连接至其左位控制口;第三辅助换向阀的输出口C、第四辅助换向阀的输出口C分别与第二负载敏感阀的左位控制口、右位控制口连接;
第三梭阀的输出口C和第四梭阀的输出口C分别与第一液控换向阀的左位控制口和第二液控换向阀的左位控制口连接;第三梭阀的输出口C和第四梭阀的输出口C还分别与第二梭阀输入口A、B连接;第二梭阀的输出口C与第三液控换向阀的P口连接;第三液控换向阀的A口与变量泵的H口连接;第三液控换向阀的T口与油箱连接;
第一辅助换向阀的B口、第二辅助换向阀的B口、第三辅助换向阀的B口、第四辅助换向阀的B口均与辅助动力源连接;
第一液控换向阀的P口、A口分别与辅助动力源连接、第二液控换向阀的P口连接,第二液控换向阀的A口分别与第三液控换向阀的控制口X、第一辅助换向阀的右位控制口、第二辅助换向阀的右位控制口、第三辅助换向阀的右位控制口、第四辅助换向阀的右位控制口和变量泵的Y口连接;
变量泵的B口分别与第一负载敏感阀的进油口P和第二负载敏感阀的进油口P连接,第一负载敏感阀的负载信号口和第二负载敏感阀的负载信号口分别与第一梭阀输入口A、B连接,第一梭阀的输出口与变量泵的X口连接;变量泵的S口和L口均与油箱连接。
所述辅助动力源由辅助液压泵和溢流阀组成,辅助液压泵的进油口与油箱连接,辅助液压泵的出油口通过溢流阀与油箱连接。
第一辅助换向阀、第二辅助换向阀、第三辅助换向阀和第四辅助换向阀均为三位三通液控换向阀,当其左侧控制口和右侧控制口均没有控制压力时,工作在中位,且其三个油口A、B、C均互不导通;当左侧控制口的压力大于右侧控制口的压力时,其工作在左位,且其A口封闭,其B口和C口导通;当左侧控制口的压力小于右侧控制口的压力时,其工作在右位,且其B口封闭,其A口和C口导通。
第一液控换向阀和第二液控换向阀均为两位两通液控换向阀,当其左侧控制口没有压力时,其工作在右位,且其P口和A口封闭;当其左侧控制口有压力时,其工作在左位,且其P口和A口导通。
所述第三液控换向阀为两位三通液控换向阀;当其上方控制口没有压力时,其工作在下位,且其P口和A口导通,其T口封闭;当其上方控制口有压力时,其工作在上位,且其P口封闭,其A口和T口导通。
作为一种优选,液控比例阀为两位三通液控比例换向阀,当电磁铁的电流大于等于最大设定值时,其工作在左位,其P口封闭,A口与T口之间的油路连通;当电磁铁的电流小于等于最小设定值时,其工作在右位,其P口与A口之间的油路连通,其T口封闭;电磁铁的电流大于最小设定值且小于最大设定值时,其P口同时与T口和A口连通。
在该技术方案中,能在系统只有一个执行元件工作时,使变量泵自动切换于容积控制模式下,将负载敏感阀开至最大开口,即能通过液控比例阀来控制泵的排量,从而控制系统的流量,避免了流量控制阀调节过程中的节流损失问题,使工作过程中的能量利用效率更高,执行元件的反应更灵敏,工作速度更快。当系统中有多个执行元件同时工作时,能使变量泵自动切换于负载敏感控制模式,以利用负载反馈的压力信号来进行泵排量的自动调节,能按照系统的需要提供相应的流量,保证多个执行机构之间的动作互不干扰。同时,该系统工作在容积控制模式和负载敏感控制模式是自动进行的。因此,该液压系统无论工作在容积控制模式,还是工作在负载敏感控制模式下,均能使系统的效率更高,更节能。
附图说明
图1是本发明中变量泵的液压原理图;
图2是本发明中的基于变量泵的液控智能流量分配系统的液压原理图;
图3为本发明中的液控比例阀在平衡位置时的详细原理图;
图4为本发明中的液控比例阀的阀口通流面积变化示意图;
图5为本发明中的液控智能流量分配系统工作在容积控制模式下处于平衡位置时的液压原理图;
图6为本发明中的液控智能流量分配系统工作在容积控制模式下泵本体排量变大的液压原理图;
图7为本发明中的液控智能流量分配系统工作在容积控制模式下泵本体排量变小的液压原理图;
图8为本发明中的液控智能流量分配系统工作在负载敏感控制模式下处于平衡位置时的液压原理图;
图9为本发明中的液控智能流量分配系统工作在负载敏感控制模式下泵本体排量变大的液压原理图;
图10为本发明中的液控智能流量分配系统工作在负载敏感控制模式下泵本体排量变小的液压原理图;
图11为本发明中的液控智能流量分配系统工作在任意控制模式下,系统压力超过恒压控制阀设定压力时的液压原理图;
图12为本发明中的变量控制油缸、恒压控制油缸和斜盘的一种布置示意图;
图13为图12的右视图;
图14为本发明中的变量控制油缸、恒压控制油缸和斜盘的另一种装配示意图。
图中:1、泵本体,2、斜盘,21、溢流阀,22、辅助液压泵,31、第一复位弹簧,32、第二复位弹簧,41、变量控制油缸,41a、有杆腔A,41b、无杆腔A,41c、活塞腔A,41d、活塞杆A,41e、活塞A,41f、连通腔A,41g,连杆,42、恒压控制油缸,42a、有杆腔B,42b、无杆腔B,42c、活塞腔B,42d、活塞杆B,42e、活塞B,42f、连通腔B,5、反馈杆,6、液控比例阀,7、液控切换阀,8、流量控制阀,9、壳体,10、恒压控制阀,11、第一液压执行元件,12、第一负载敏感阀,13、第二负载敏感阀,14、第二液压执行元件,15、变量泵,16、缸体,17、连通腔C,100、第一控制手柄,101、第二控制手柄,131、第一梭阀,132、第二梭阀,133、第三梭阀,134、第四梭阀,191、第一液控换向阀,192、第二液控换向阀,193、第三液控换向阀,201、油道a,202、油道b,203、油道c,204、油道d,210、限位螺钉,301、第一辅助阀,302、第二辅助阀,303、第三辅助阀。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,本发明提供了一种液控比例与负载敏感融合变量泵,包括壳体9,所述壳体9内安装有泵本体1、流量控制阀8、液控切换阀7、液控比例阀6、变量控制油缸41、恒压控制阀10、安装在壳体9内部的恒压控制油缸42和固定设置在壳体9内部的缸体16;
所述壳体9上设有通过油路连接到泵本体1的出油口的B口、通过油路连接到泵本体1进油口的S口、通过油路连接到流量控制阀8弹簧腔的X口和用于导出泄漏油液的L口;
作为一种实施方案,变量控制油缸41和恒压控制油缸42纵向间隔地布置,且恒压控制油缸42位于变量控制油缸41的上方,具体如图12至图13所示,这样有利于快速响应。当然,变量控制油缸41可以位于恒压控制油缸42的上方,以增加可控行程,有利于提高控制的精度。
所述变量控制油缸41包括活塞腔A41c、活塞A41e、活塞杆A41d、第一复位弹簧31;活塞腔A41c左右方向延伸地开设在缸体16下部的内侧,活塞腔A41c的左端通过横向开设在缸体16左端的连通腔A41f与缸体16的左部外侧连通,活塞A41e滑动密封配合地装配在活塞腔A41c中,并将活塞腔A41c分隔为左侧的有杆腔A41a和右侧的无杆腔A41b,有杆腔A41a和无杆腔A41b分别通过开设在缸体16上的油道a201和油道b202连通至缸体16的外部,活塞杆A41d滑动密封配合地穿设在连通腔A41f中,且其右端伸入到有杆腔A41a中并与活塞A41e的左端中心固定连接,其左端延伸到缸体16的左侧外部并通过连杆41g与泵本体1内的斜盘2的一个端部铰接,还与反馈杆5的一端固定连接;第一复位弹簧31位于有杆腔A41a内部,且套设在活塞杆A41d的外部;所述反馈杆5的另一端与所述液控比例阀6的阀套连接,以驱动液控比例阀6阀套相对于其阀芯的横向移动;
所述恒压控制油缸42包括活塞腔B42c、活塞B42e、活塞杆B42d、第二复位弹簧32;活塞腔B42c左右方向延伸地开设在缸体16上部的内侧,活塞腔B42c与活塞腔A41c相平行地设置,活塞腔B42c的左端通过横向开设在缸体16内部的连通腔B42f与缸体16的左部外侧连通,活塞B42e滑动密封配合地装配在活塞腔B42c中,并将活塞腔B42c分隔为左侧的有杆腔B42a和右侧的无杆腔B42b,有杆腔B42a和无杆腔B42b分别通过开设在缸体16上的油道d204和油道c203连通至缸体16的外部,活塞杆B42d滑动密封配合地穿设在连通腔B42f中,且其右端伸入到有杆腔B42a中并与活塞B42e的左端中心固定连接,其左端延伸到缸体16的左侧外部,在活塞杆B42d伸出过程中,活塞杆B42d的左端与斜盘2抵接配合以能将斜盘2推到竖直位置(零排量位置);第二复位弹簧32位于有杆腔B42a内部,且套设在活塞杆B42d的外部;
作为另一种实施方式,变量控制油缸41和恒压控制油缸42可以前后并排地设置,等高度地作用于斜盘2的一端,如图14所示。
流量控制阀8的P口、液控切换阀7的P口、恒压控制阀10的P口和油道a201均通过油路连接至泵本体1的出油口;
流量控制阀8的左位控制口通过油路连接至自身的P口,其A口与液控切换阀7的T口连接,其T口直接泄漏至壳体9内;
液控切换阀7的A口与液控比例阀6的P口连接,其B口与液控比例阀6的A口连通后与油道b202连通;
液控比例阀6的T口直接泄漏至壳体9内;
恒压控制阀10的左位控制口通过油路连接至自身的P口,其T口直接泄漏至壳体9内,其A口通过油路与油道c203连通;
所述壳体9上设有通过油路连接到液控切换阀7的左位控制口的Y口、通过油路连接到液控比例阀6的左位控制口的H口。
液控切换阀7为两位四通液控换向阀,其左位控制口有控制压力时,工作在左位,其P口与A口之间的油路断开,其T口和B口之间的油路连通;其左侧控制口没有压力时,工作在右位,其P口与A口之间的油路连通,其T口和B口之间的油路断开。
液控比例阀6为两位三通液控比例换向阀,当左侧控制口的压力大于等于最大设定值时,其工作在左位,其P口封闭,A口与T口之间的油路连通;当左侧控制口的压力小于等于最小设定值时,其工作在右位,其P口与A口之间的油路连通,其T口封闭;当左侧控制口的压力大于最小设定值且小于最大设定值时,其P口同时与T口和A口连通,如图3和图4所示。
所述活塞腔B42c的右端通过横向开设在缸体16右端的连通腔C17与缸体16的右部外侧连接,连通腔C17内设置有内螺纹,并通过螺纹配合装配有限位螺钉210,限位螺钉210与连通腔C17之间密封配合。
一种液控智能流量分配系统,包括变量泵15、辅助动力源、至少两个控制手柄、至少两个负载执行单元、至少四个梭阀、至少四个辅助换向阀和至少三个液控换向阀;控制手柄为液控手柄,并通过管路与辅助动力源和负载执行单元中的负载敏感阀连接。液控手柄与负载执行单元中负载敏感阀、液压执行元件均一一对应。每个控制手柄均内置有2个手动比例减压阀,可以根据手柄前后角度成比例地输出一路液压控制信号,通过控制负载敏感阀的换向,进而控制负载执行单元中的液压执行元件的正向和反向运动,输出压力信号的大小取决于手柄的角度。两个控制手柄分别为第一控制手柄100和第二控制手柄101,第一控制手柄100和第二控制手柄101的进油口P均与辅助动力源连接,第一控制手柄100和第二控制手柄101的出油口T均与油箱连接,两个负载执行单元分别为第一负载执行单元和第二负载执行单元,第一负载执行单元由第一负载敏感阀12和与其出油口连接的第一液压执行元件11组成,第二负载执行单元由第二负载敏感阀13和与其出油口连接的第二液压执行元件14组成;第一液压执行元件11和第二液压执行元件14均可以采用液压缸或液压马达。
第一负载敏感阀12和第二负载敏感阀13均为为液控比例负载敏感换向阀,可以根据外控压力信号的大小成比例地控制阀口的过流面积,同时内置有压力补偿器。
作为一种优选,所述辅助动力源由辅助液压泵22和溢流阀21组成,辅助液压泵22在发动机的驱动下为系统提供稳定的低压控制油源;辅助液压泵22的进油口与油箱连接,辅助液压泵22的出油口通过溢流阀21与油箱连接。
四个梭阀分别为第一梭阀131、第二梭阀132、第三梭阀133和第四梭阀134;四个梭阀分别用于比较不同的压力信号并取出其中的较高者。
四个辅助换向阀分别为第一辅助换向阀301、第二辅助换向阀302、第三辅助换向阀303和第四辅助换向阀304;
三个液控换向阀分别为第一液控换向阀191、第二液控换向阀192和第三液控换向阀193;三个液控换向阀用于根据控制手柄的信号进行逻辑判断并实现相关油路的切换。
第一控制手柄100的输出控制口A、B分别与第三梭阀133输入口A、B连接,第一控制手柄100的输出控制口A、B还分别与第一辅助换向阀301的A口、第二辅助换向阀302的A口连接;第一辅助换向阀301的A口还连接至其左位控制口,第二辅助换向阀302的A口还连接至其左位控制口;第二辅助换向阀302的输出口C、第一辅助换向阀301的输出口C分别与第一负载敏感阀12的左位控制口、右位控制口连接;
第二控制手柄101的输出控制口A、B分别与第四梭阀134输入口A、B连接,第二控制手柄101的输出控制口A、B还分别与第三辅助换向阀303的A口、第四辅助换向阀304的A口连接;第三辅助换向阀303的A口还连接至其左位控制口,第四辅助换向阀304的A口还连接至其左位控制口;第三辅助换向阀303的输出口C、第四辅助换向阀304的输出口C分别与第二负载敏感阀13的左位控制口、右位控制口连接;
第三梭阀133的输出口C和第四梭阀134的输出口C分别与第一液控换向阀191的左位控制口和第二液控换向阀192的左位控制口连接;第三梭阀133的输出口C和第四梭阀134的输出口C还分别与第二梭阀132输入口A、B连接;第二梭阀132的输出口C与第三液控换向阀193的P口连接;第三液控换向阀193的A口与变量泵15的H口连接;第三液控换向阀193的T口与油箱连接;
第一辅助换向阀301的B口、第二辅助换向阀302的B口、第三辅助换向阀303的B口、第四辅助换向阀304的B口均与辅助动力源连接;
第一液控换向阀191的P口、A口分别与辅助动力源连接、第二液控换向阀192的P口连接,第二液控换向阀192的A口分别与第三液控换向阀193的控制口X、第一辅助换向阀301的右位控制口、第二辅助换向阀302的右位控制口、第三辅助换向阀303的右位控制口、第四辅助换向阀304的右位控制口和变量泵15的Y口连接;
变量泵15的B口分别与第一负载敏感阀12的进油口P和第二负载敏感阀13的进油口P连接,第一负载敏感阀12的负载信号口和第二负载敏感阀13的负载信号口分别与第一梭阀131输入口A、B连接,第一梭阀131的输出口与变量泵15的X口连接;变量泵15的S口和L口均与油箱连接。
第一辅助换向阀301、第二辅助换向阀302、第三辅助换向阀303和第四辅助换向阀304均为三位三通液控换向阀,当其左侧控制口和右侧控制口均没有控制压力时,工作在中位,且其三个油口A、B、C均互不导通;当左侧控制口的压力大于右侧控制口的压力时,其工作在左位,且其A口封闭,其B口和C口导通;当左侧控制口的压力小于右侧控制口的压力时,其工作在右位,且其B口封闭,其A口和C口导通。
第一液控换向阀191和第二液控换向阀192均为两位两通液控换向阀,当其左侧控制口没有压力时,其工作在右位,且其P口和A口封闭;当其左侧控制口有压力时,其工作在左位,且其P口和A口导通。
所述第三液控换向阀193为两位三通液控换向阀;当其上方控制口没有压力时,其工作在下位,且其P口和A口导通,其T口封闭;当其上方控制口有压力时,其工作在上位,且其P口封闭,其A口和T口导通。
图2中的变量泵15内部结构为本实施例中的变量泵的结构,为了方便起见,将变量泵15的内部结构进行了省略。
下面结合附图对本发明的工作原理做进一步说明。
在系统压力达不到恒压控制阀10的设定压力时,恒压控制阀10在其右位弹簧的作用下工作在右位,其A口和T口处于接通状态,P口处于关断状态,活塞B42e在第二复位弹簧32的作用下位于无杆腔B42b的右端,活塞杆B42d的左端不接触斜盘2。此时,相当于只有变量控制油缸41存在。
当操作人员操作任意一个控制手柄时,相应的控制手柄会发出输出液压控制信号。例如,如果向前推动控制手柄时其A口输出压力信号,则向后拉动控制手柄时其B口将输出压力信号。A口或B口输出的压力信号的大小与控制手柄的操纵角度成比例。根据操作人员操纵控制手柄的数量不同,本发明涉及的液控智能流量分配系统将工作在容积控制模式或负载敏感控制模式。当仅有一个控制手柄动作时,系统工作在容积控制模式;当有多个控制手柄动作时,系统工作在负载敏感控制模式。
一、当系统工作在容积控制模式(比例控制模式)时,即系统中仅有一个执行机构工作时,泵本体1的排量大小与液控比例阀6的控制压力成正比。如图5所示,图中省略了其他没有动作的执行元件及相关回路部分,并对阀的动作在原理图上做了直接表示。下文以控制手柄B口输出压力信号(对应液压缸缩回动作)为例,讲解系统的工作原理。
第二控制手柄101的压力信号由B口输出后分成两路,一路进入第四辅助换向阀304,另一路进入第四梭阀134的输入口B。因为此时第二控制手柄101的A口没有压力信号输出,故其B口的压力信号经第四梭阀134的输出C口输出,将第二液控换向阀192换向,使其工作在左位,第二液控换向阀192的P口与A口连通;但又因为第一控制手柄100(图5中未画出)没有动作,故第一液控换向阀191工作在右位,其内部阀口关闭,A口到B口之间断开,所以,变量泵15的Y口没有压力控制信号,液控切换阀7不动作,第三液控换向阀193保持原位工作。第四梭阀134输出的信号还经第二梭阀192(图5-图7中省略)第三液控换向阀193的P口至A口,变量泵的H口至液控比例阀6的左位控制口。同样,第四辅助换向阀304右侧没有控制压力,第四辅助换向阀304在左侧压力的作用下工作在左位;辅助动力源的压力油液经第四辅助换向阀304的B口到C口输出至第一负载敏感阀12的右侧控制口,故第一负载敏感阀12的阀口全开。此时,第一负载敏感阀12内置的压力补偿阀亦全开,故整个第一负载敏感阀12仅起方向控制作用,对应第一液压执行元件(图中为液压缸)11的缩回动作,无节流作用,故压力损失很小。第一液压执行元件(液压缸)11的动作快慢仅取决于通过第一负载敏感阀12的流量,也就是泵本体1的输出流量,即泵本体1的排量大小。泵本体1的排量大小由变量泵15的H口给液控比例阀6的压力大小决定,也就是取决于控制手柄的角度大小。系统稳定工作时,液控比例阀6稳定工作在平衡位置下。具体变量过程如下:
1)排量变大的变化过程,如图4至图6所示。如果液控比例阀6得到控制压力逐渐变大,克服阀芯右侧弹簧的弹力将阀芯向右推动,液控比例阀6逐渐工作在左位,液控比例阀6的P口与A口的通流面积逐渐变小,T口与A口的通流面积变大。变量控制油缸41的无杆腔A41b中的部分油液通过液控比例阀6的A口和T口,流入泵的壳体9中,最后,经L口回油箱。变量控制油缸41在左侧的有杆腔41a内油液压力和第一复位弹簧31的联合作用下向右移动,泵本体1的排量逐渐变大。与此同时,反馈杆5在变量控制油缸41的带动下也向右移动,从而拖动液控比例阀6的阀套向右运动,故,液控比例阀6的A口到T口逐渐关小,直到变量控制油缸41稳定在一个固定位置,液控比例阀6达到新的平衡位置。此时,泵本体1的排量也就稳定在了与变量泵15的H口控制压力相对应的某个位置上。这就是泵本体1的排量随着控制压力变大而增大的过程。
2)排量变小的变化过程,如图4、图5和图7所示。当变量泵15的H口供给液控比例阀6的控制压力减小时,液控比例阀6的阀芯逐渐向左移,其工作接近右位,其P口与A口的通流面积逐渐变大,A口与T口的通流面积逐渐变小。来自泵本体1出口的控制油液经液控切换阀7的P口至A口,再经液控比例阀6的P口至A口,进入变量控制油缸41右侧的无杆腔A41b内。变量控制油缸41在右侧无杆腔A41b内油液压力作用下,克服左侧的有杆腔A41a内油液压力和第一复位弹簧31的作用而向左移动,泵本体1的排量逐渐减小。与此同时,反馈杆5在变量控制油缸41的带动下也向左移动,从而拖动液控比例阀6的阀套向左运动,故,液控比例阀6的P口到A口的通流面积又变小,直到变量控制油缸41稳定在一个固定位置,液控比例阀6达到新的平衡位置。此时,泵本体1的排量在此稳定在和变量泵的H口控制压力对应的某个位置上。这就是泵本体1的排量随着控制压力减小而减小的过程。
以上是以第一执行元件11为液压缸缩回的工况进行说明的。如果是液压缸的活塞杆伸出工况,原理与上述基本一致,仅部分阀的动作不同而已,故不再赘述。
二、负载敏感节流控制模式:当液压系统中有多个执行元件工作时,如图8所示,图8中仅画出了两个液压执行元件(液压缸)作为示意。当系统两个执行元件均动作时,需要两个控制手柄均有压力信号输出。此时,第三梭阀133和第四梭阀134的C口均有压力信号输出,故第一液控换向阀191和第二液控换向阀192均工作在左位,实现辅助液压泵22与变量泵15的Y口连通。辅助液压泵22的低压油液作用在变量泵的液控切换阀7的左侧控制口,使之工作在左位机能,故P口与A口断开连接,T口与B口连通。与此同时,辅助动力源提供的控制油液,还使第一辅助换向阀301、第二辅助换向阀302、第三辅助换向阀303和第四辅助换向阀304均工作在右位。因此,控制手柄的A口(或B口)输出的控制压力就可以直接作用在负载敏感阀相应的控制油口上,操作人员操纵控制手柄的角度就决定了负载敏感阀的通流面积大小。该模式下,负载的压力信号通过第一梭阀131比较并得出最高压力信号,并通过泵的壳体9上的X口反馈作用在流量控制阀8的右侧。系统稳定工作时,泵出口的压力与流量控制阀8右侧的最高负载压力和弹簧力相平衡,流量控制阀8稳定工作平衡在中间位置下,泵本体1的排量大小与系统中的负载敏感阀的开口总面积成正比。此时系统为负载敏感节流控制,具体的变量过程如下:
A、排量变大的变化过程,如图8和图9所示。当负载未发生变化,而系统中一个或多个负载敏感阀的控制信号变大时,例如操作人员想加快执行元件的速度时,通过控制手柄,使其输出更大的控制压力,使负载敏感阀的开口面积增大,此时需要泵提供更多的流量。此时,因为负载没有变化,系统经第一梭阀131反馈的压力不变,流量控制阀8右侧的作用力没有发生改变。阀的开口面积增大而泵的流量没有发生变化时,故其压力损失变小,故泵本体1出口的压力降低。流量控制阀8的阀芯在右侧合力(弹簧力和反馈的最高负载压力)的作用下向左运动,流量控制阀8逐渐工作在右位,其P口与A口逐渐关闭,A口与T口的通流面积逐渐变大。这样,变量控制油缸41右侧的无杆腔41b中的部分油液通过液控切换阀7的B到T口,再通过流量控制阀8的A到T口,流入泵的壳体9,最后,经L口回油箱。变量控制油缸41在左侧的有杆腔41a内油液压力和第一复位弹簧31的联合作用下向右移动,泵本体1的排量逐渐变大。故,泵本体1输出的流量增大,通过负载敏感阀的流量增大,其阀口的压力损失也增大,泵出口的压力逐渐升高。流量控制阀8的阀芯受力逐渐平衡,朝着平衡位置移动,其A到T口的通流面积逐渐关小,P口与A口的通流面积逐渐恢复,直到变量控制油缸41再次稳定在一个固定位置,同时流量控制阀8也达到平衡位置。此时,泵本体1的排量也就稳定了。这是泵本体1的排量随着控制信号增大而增大的过程。
B、排量变小的变化过程,如图8和图10所示。当系统中一个或多个负载敏感阀的控制信号变小时,例如操作人员向降低执行元件的速度时,通过控制手柄,使其输出较小的控制压力,使负载敏感阀其开口面积减小,需要泵减小流量(排量)。此时,因负载并未发生变化,故流量控制阀8右侧的作用力没有发生改变。负载敏感阀的开口面积减小而泵本体1的流量没有发生变化,故其压力损失增大,故泵本体1出口的压力升高。流量控制阀8的阀芯在左侧泵本体1的出口压力的作用下向右运动,流量控制阀8逐渐工作在左位,其A口与P口的通流面积逐渐变大,T口与A口趋于关闭。同时,来自泵本体1的高压油液通过流量控制阀8的P到A口流出,经过液控切换阀7的T口到B口,进入变量控制油缸41右侧的无杆腔A41b内。变量控制油缸41在右侧无杆腔A41b内油液压力作用下,克服左侧的有杆腔A41a内油液压力和第一复位弹簧31的作用而向左移动,泵本体1的排量逐渐减小。故,泵本体1输出的流量减小,通过负载敏感阀的流量减小,负载敏感阀的阀口压力损失也减小,泵本体1出口的压力逐渐降低。流量控制阀8的阀芯受力逐渐平衡,朝着平衡位置移动,直到变量控制油缸41在此稳定在一个固定位置,同时流量控制阀8达到新的平衡位置。此时,泵本体1的排量也就稳定了。这是泵本体1的排量随着控制信号减小而减小的过程。
在上述的任何控制模式下,当泵本体1出口的压力达到恒压控制阀10的设定压力时,恒压控制阀10能够控制泵减小自身排量,实现保护的作用。结合图11,当泵本体1出口压力达到恒压控制阀10的设定时,泵本体1出口的油液直接作用于恒压控制阀10的左位控制口,进而推动其阀芯克服右侧弹簧的弹力而工作在左位。这时,恒压控制阀10的P口与A口接通,A口与T口断开,泵出口的高压油经过经恒压控制阀10的P口和A口,进入恒压控制油缸42右侧的无杆腔B42b内,推动恒压控制油缸42中的活塞B42c向左移动,克服第二复位弹簧32的力,活塞杆B42d伸出进而推动斜盘2,使泵本体1的排量逐渐减小,防止压力继续升高。作为一种优选,活塞B42e的面积大于活塞A41e左侧环形的面积,以保证活塞B42e具有较强的推力,可以在任何情况下,均能通过活塞杆B42d推动活塞A41e。极端情况下,泵本体1的排量可以减小至接近零,泵本体1不排出油液,仅有少量油液用于变量控制和维持泄漏。
当压力降低至低于恒压控制阀10的设定压力时,恒压控制阀10复位,恒压控制油缸42在第二复位弹簧32的作用下也复位,系统恢复到上述的容积控制模式或负载敏感控制模式下。