CN109850953B - 一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法 - Google Patents

一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法 Download PDF

Info

Publication number
CN109850953B
CN109850953B CN201910213311.9A CN201910213311A CN109850953B CN 109850953 B CN109850953 B CN 109850953B CN 201910213311 A CN201910213311 A CN 201910213311A CN 109850953 B CN109850953 B CN 109850953B
Authority
CN
China
Prior art keywords
ferroferric oxide
ethanol
radial
preparation
oxide nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910213311.9A
Other languages
English (en)
Other versions
CN109850953A (zh
Inventor
胡军
蒋晨星
黄亮
汪晶
金洁宁
李大权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910213311.9A priority Critical patent/CN109850953B/zh
Publication of CN109850953A publication Critical patent/CN109850953A/zh
Application granted granted Critical
Publication of CN109850953B publication Critical patent/CN109850953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Silicon Compounds (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明涉及磁性纳米材料技术领域,为解决现有磁性复合微球表层负载磁性物质含量少、磁响应性低,尺寸过大,制备工艺复杂、成本高的问题,提供了一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,包括以下步骤:(1)制备四氧化三铁纳米颗粒的氯仿溶液;(2)制备巯基化放射状硅球模板;(3)制备放射状硅球/四氧化三铁纳米颗粒/二氧化硅微球。本发明利用载体放射状硅球的超大孔道和高度可及的内表面,实现四氧化三铁纳米颗粒的超高负载量从而达到单模板内信号最大化,兼具较好的反应动力学与较好的磁响应性。同时模板大小均一,最终得到的磁性微球粒径均一,重复性好,适用于分析检测领域。

Description

一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球 的制备方法
技术领域
本发明涉及磁性纳米材料技术领域,尤其涉及一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法。
背景技术
磁性复合微球不仅具有在复合微球合成、制备方面的表面功能化、微观结构可控化,同时具有在磁场在的快速磁响应性,可以实现自动化操控,因而在生物医学等方面的需求与日俱增,常常被应用于免疫诊断、核酸提取、细胞分选等领域,大大提高了实际检测效率和检测灵敏度。
针对不同的需求,对磁性复合微球粒径的均一性、表面功能基团、磁响应性与微观结构的要求均有较大差异。作为免疫诊断中化学发光平台检测所用的磁性复合微球,其要求具有极好的单分散性、大小均一性、高悬浮性、高磁响应性能。传统的制备方法如:共沉淀法、热分解法等方法所制备的磁性复合微球,大小不均一,悬浮性能差,无法满足实际检测需要。因此,目前市场上化学发光用磁性复合微球多采用模板法制备。
目前,国际市场上化学发光用磁性复合微球生产商主要有Thermo Fisher、Roche、JSR等公司,其中Thermo Fisher和Roche主要利用聚合物多孔模板,磁性物质填充密度中等。JSR以聚合微球为模板,只在聚合物微球表层负载磁性物质,磁含量少,而且微球尺寸过大(3~10 μm)导致比表面积低,因而降低了吸附效率,同时工艺复杂导致成本高昂。
中国专利文献上公开了“一种制备四氧化三铁-高分子磁性复合微球的方法”,其公告号为CN 104072656A,该发明以四氧化三铁粒子和苯乙烯-丙烯酸丁酯共聚物组成高分子磁性复合微球,通过改变四氧化三铁与单体添加量的比例在一定范围内调控微球的磁含量,容易获得高磁含量的磁性微球。但是,该方法可控性差,难以控制每个球内的磁含量,造成不同磁分离速度有较大差异,甚至可能存在磁性极弱或者不含有磁性的微球。而且该方法合成的磁性微球尺寸过大,在溶液中悬浮稳定性差,易发生沉降。因此不适合应用在化学发光平台。
发明内容
本发明为了克服现有磁性复合微球表层负载磁性物质含量少、磁响应性低,尺寸过大且均一性差等问题,提供了一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,该方法基于油溶性四氧化三铁纳米颗粒与放射状硅球模板制备磁性复合微球,采用该方法制得的磁性复合微球尺寸均一、四氧化三铁纳米颗粒负载均匀且致密、性能稳定、易于功能化。
为了实现上述目的,本发明采用以下技术方案:
一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,包括以下步骤:
(1)氩气气氛下,将油胺,N-甲基-2-吡咯烷酮和乙酰丙酮铁混合,于200~350℃搅拌反应8~15min后,将温度降至50~60℃,加入乙醇,离心收集沉淀并溶于氯仿中,得到四氧化三铁纳米颗粒的氯仿溶液;
(2)配置十六烷基三甲基溴化铵(CTAB)水溶液,加入乙醚,乙醇和氨水(25~28wt%)室温搅拌15~30min,接着注入正硅酸乙酯(TEOS)和(3-巯基丙基)三甲氧基硅烷(MPS),室温搅拌4~6h,离心收集沉淀并萃取残余的有机模板,离心收集固体物质重复萃取一次,得到放射状硅球,将其分散在乙醇中,加入25~28wt%氨水、(3-巯基丙基)三甲氧基硅烷,室温搅拌8~16h,离心收集沉淀,再分散在乙醇中,得到巯基化放射状硅球模板的乙醇溶液;
(3)取步骤(2)所得的巯基化放射状硅球模板的乙醇溶液,离心去除上清液,加入步骤(1)所得的四氧化三铁纳米颗粒的氯仿溶液,超声混匀,离心收集沉淀,得到放射状硅球/四氧化三铁纳米颗粒复合物;利用巯基-金属亲和作用,在有机相中对四氧化三铁纳米颗粒直接组装,无需对四氧化三铁纳米颗粒进行任何表面改性及修饰,从而保证四氧化三铁纳米颗粒在模板上均匀致密的负载;
在放射状硅球/四氧化三铁纳米颗粒复合物中加入辛基三甲氧基硅烷(OTMS),超声溶解,加入甲醇和氨水混合液,超声、离心收集沉淀,得到硅烷化的放射状硅球/四氧化三铁纳米颗粒复合物;
将硅烷化的放射状硅球/四氧化三铁纳米颗粒复合物分散在水中,搅拌12~18h,离心收集沉淀,将沉淀分散在乙醇/水/氨水混合液中,分批加入正硅酸乙酯(TEOS),之后离心收集沉淀,溶于乙醇,得到放射状硅球/四氧化三铁纳米颗粒/二氧化硅微球(SIS)的乙醇溶液。经过有机硅烷水解缩合以及Stöber二氧化硅生长可获得水溶性及胶体稳定性优良的复合物,将其进一步功能化,可应用于生物医学研究。
本发明以放射状介孔硅为模板,利用载体放射状硅球的超大孔道和高度可及的内表面,实现四氧化三铁纳米颗粒的超高负载量从而达到单模板内信号最大化,采用中心-放射状介孔孔道的填充工艺,充分利用模板,实现从内到外完全填充。首先在有机相中利用巯基-金属亲和作用制备了高负载的放射状硅球/四氧化三铁纳米颗粒组装体;以正辛基三甲氧基硅烷/甲醇/氨水为水解体系,实现了该疏水组装体的硅烷化修饰,并确保修饰过程中放射状硅球载体对四氧化三铁纳米颗粒的超高负载量。通过有机硅烷水解缩合、Stöber生长过程制备了性质稳定、性能优越的微球。采用本发明的方法得到的磁性复合微球比于传统的三明治结构,磁负载量提高10倍,大大提高了磁含量,兼具较好的反应动力学与较好的磁响应性。同时模板大小均一,最终得到的磁性复合微球粒径均一,重复性好,尺寸达到纳米级,比表面积高,具有较好的磁响应性、悬浮性,很好的解决了磁响应与反应动力学的矛盾,适用于分析检测领域。
作为优选,步骤(2)中,所述萃取的方法为:将所得沉淀分散在盐酸甲醇混合液中,于50~60℃搅拌3~6h。
作为优选,盐酸甲醇混合液由36~38wt%盐酸水溶液与甲醇按照体积比1:1配制而成;所述盐酸甲醇混合液的体积用量以十六烷基三甲基溴化铵的质量计为0.2mL/mg。
作为优选,步骤(1)中,所述油胺与N-甲基-2-吡咯烷酮的体积用量比为9:1;所述乙酰丙酮铁的用量为0.5~1mmol。
作为优选,步骤(2)中,所述十六烷基三甲基溴化铵水溶液的浓度为6-8g/L;所述水,乙醚,乙醇和氨水的体积用量比为14:2~3:1:0.16~0.2;
萃取前,所述正硅酸乙酯和(3-巯基丙基)三甲氧基硅烷的体积用量以十六烷基三甲基溴化铵的质量计分别为5~8mL/g和80uL/g。
作为优选,步骤(2)中,萃取后,所述25~28wt%氨水的体积用量以十六烷基三甲基溴化铵的质量计为5mL/g;所述(3-巯基丙基)三甲氧基硅烷的体积用量以十六烷基三甲基溴化铵的质量计为2mL/g。
作为优选,步骤(3)中,所述巯基化放射状硅球模板与四氧化三铁纳米颗粒的质量比为1:(0.6~0.7);所述辛基三甲氧基硅烷的体积用量以巯基化放射状硅球模板的质量计为22~33mL/g。
作为优选,步骤(3)中,所述甲醇和氨水混合液中甲醇与氨水的体积比为1:0.025;所述甲醇和氨水混合液的体积用量以巯基化放射状硅球模板的质量计为1.7~1.8mL/mg。
作为优选,步骤(3)中,所述乙醇/水/氨水混合液中乙醇、水、氨水的体积比为1:0.25:0.03125,所述乙醇/水/氨水混合液的体积用量以巯基化放射状硅球模板的质量计为2.8~2.9mL/mg。
作为优选,步骤(3)中,所述正硅酸乙酯的体积用量以乙醇、水、氨水混合液的体积计为1μL/mL。
因此,本发明具有如下有益效果:
(1)利用载体放射状硅球的超大孔道和高度可及的内表面,实现四氧化三铁纳米颗粒的超高负载量从而达到单模板内信号最大化,兼具较好的反应动力学与较好的磁响应性。同时模板大小均一,最终得到的磁性微球粒径均一,重复性好,适用于分析检测领域;
(2)利用巯基-金属亲和作用,在有机相中对四氧化三铁纳米颗粒直接组装,无需对四氧化三铁纳米颗粒进行任何表面改性及修饰,从而保证四氧化三铁纳米颗粒在模板上均匀致密的负载;
(3)经过有机硅烷水解缩合以及Stöber二氧化硅生长可获得水溶性及胶体稳定性优良的复合物,将其进一步功能化,可应用于生物医学研究。
附图说明
图1是实施例1制得的四氧化三铁纳米颗粒的TEM图。
图2是实施例1制得的巯基化放射状硅球模板的SEM图。
图3是实施例1制得的放射状硅球/四氧化三铁纳米颗粒复合物的SEM图。
图4是实施例1制得的放射状硅球/四氧化三铁纳米颗粒复合物的TEM图。
图5是实施例1制得的放射状硅球/四氧化三铁纳米颗粒/二氧化硅微球的TEM图。
具体实施方式
下面通过具体实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
实施例1:
(1)四氧化三铁纳米颗粒的合成:
首先,将15mL油胺在圆底烧瓶中缓慢加热至300℃并搅拌30分钟。进行脱气处理后保持瓶内始终充满氩气,然后将含有3mL油胺,2mL N-甲基-2-吡咯烷酮和0.5mmol 乙酰丙酮铁的混合溶液注入到烧瓶中,在300℃下保持10min后将溶液缓慢冷却至60℃。然后将30mL乙醇溶液加入到反应混合物中,得到黑色沉淀。通过离心收集产物并用乙醇洗涤,最后分散在20mL氯仿中,得到四氧化三铁纳米颗粒的氯仿溶液;该步骤中制得的四氧化三铁纳米颗粒的TEM如图1所示,粒径约为5~10nm,分散性好;
(2)巯基化放射状硅球模板的合成:
首先,将0.5 g CTAB溶解到70 mL去离子水中,再加入15 mL乙醚,5 mL乙醇以及0.8 mL氨水,室温下磁力搅拌30 min;然后,慢慢加入2.5 mL TEOS和40uL MPS,室温下继续搅拌4 h。将产物离心并用乙醇洗涤3次,最后分散在50mL盐酸和50mL甲醇的混合溶液中,于60℃下搅拌6小时。重复萃取一次,最后将放射状硅球分散在200mL乙醇中。在上述放射状硅球乙醇溶液中加入2.5mL氨水和1mLMPS,然后在室温下剧烈搅拌12小时。通过离心收集最终产物,用乙醇洗涤3次后分散在50mL乙醇中,得到巯基化放射状硅球模板的乙醇溶液;该步骤中制得的巯基化放射状硅球模板的SEM图如图2所示,巯基化放射状硅球模板尺寸均一,分散性好,具有丰富的孔道结构,完全适合用来填充纳米粒子;
(3)SIS(放射状硅球/四氧化三铁纳米颗粒/二氧化硅)微球的制备:
取0.5mL上述巯基化放射状硅球的乙醇溶液,离心去除上清,然后加入1mL上述四氧化三铁纳米颗粒的氯仿溶液并超声7分钟,得到均一的溶液。通过离心收集放射状硅球/四氧化三铁纳米颗粒复合物并用氯仿洗涤一次以除去过量的四氧化三铁纳米颗粒;该步骤得到的放射状硅球/四氧化三铁纳米颗粒复合物的SEM图和TEM图如图3和图4所示,所得复合物的孔道内已经填满致密的四氧化三铁纳米颗粒,四氧化三铁纳米颗粒的负载量相当高;
将该沉淀物在空气中稍干燥,加入150μL OTMS,超声溶解。然后将该溶液与7.5mL甲醇和187.5μL氨水的混合液混合,超声30分钟。通过离心收集复合物并用甲醇洗涤以除去过量的OTMS;
将硅烷化的放射状硅球/四氧化三铁纳米颗粒复合物分散在16.5mL水中,搅拌18小时以形成有机二氧化硅层。为了通过Stöber法生长二氧化硅壳,将上述复合物离心并分散在10mL乙醇,2.5mL水,312.5μL氨水的混合物中,每1h加入一次TEOS,共加入7次,正硅酸乙酯的体积用量以乙醇、水、氨水的混合液的体积计为1μL/mL。反应结束后,将产物离心并用乙醇洗涤3次,然后溶于20mL乙醇中,得到SIS的乙醇溶液。本实施例最终制得的放射状硅球/四氧化三铁纳米颗粒/二氧化硅微球(SIS)的TEM图如图5所示,从图中可以看出该微球尺寸均一,约为300nm,复合微球分散性好,磁性纳米粒子填充密度高。
实施例2:
(1)四氧化三铁纳米颗粒的合成:
首先,将15mL油胺在圆底烧瓶中缓慢加热至300℃并搅拌30分钟。进行脱气处理后保持瓶内始终充满氩气,然后将含有3mL油胺,2mL N-甲基-2-吡咯烷酮和1mmol 乙酰丙酮铁的混合溶液注入到烧瓶中,在300℃下保持10min后将溶液缓慢冷却至60℃。然后将30mL乙醇溶液加入到反应混合物中,得到黑色沉淀。通过离心收集产物并用乙醇洗涤,最后分散在20mL氯仿中,得到四氧化三铁纳米颗粒的氯仿溶液;
(2)巯基化放射状硅球模板的合成:
首先,将0.5 g CTAB 溶解到70 mL去离子水中,再加入10 mL乙醚,5 mL乙醇以及1mL氨水,室温下磁力搅拌30 min;然后,慢慢加入4mL TEOS和40uL MPS,室温下继续搅拌6h。将产物离心并用乙醇洗涤3次,最后分散在50mL盐酸和50mL甲醇的混合溶液中,于60℃下搅拌6小时。重复萃取一次,最后将放射状硅球分散在200mL乙醇中。在上述放射状硅球乙醇溶液中加入2.5mL氨水和1mLMPS,然后在室温下剧烈搅拌12小时。通过离心收集最终产物,用乙醇洗涤3次后分散在50mL乙醇中,得到巯基化放射状硅球模板的乙醇溶液;
(3)SIS(放射状硅球/四氧化三铁纳米颗粒/二氧化硅)微球的制备:
取0.5mL上述巯基化放射状硅球的乙醇溶液,离心去除上清,然后加入1mL上述四氧化三铁纳米颗粒的氯仿溶液并超声5分钟,得到均一的溶液。通过离心收集放射状硅球/四氧化三铁纳米颗粒复合物并用氯仿洗涤一次以除去过量的四氧化三铁纳米颗粒。将该沉淀物在空气中稍干燥,加入100μL OTMS,超声溶解。然后将该溶液与7.5mL甲醇和187.5μL氨水的混合液混合,超声30分钟。通过离心收集复合物并用甲醇洗涤以除去过量的OTMS。将硅烷化的放射状硅球/四氧化三铁纳米颗粒复合物分散在16.5mL水中,搅拌18小时以形成有机二氧化硅层。为了通过Stöber法生长二氧化硅壳,将上述复合物离心并分散在10mL乙醇,2.5mL水,312.5μL氨水的混合物中,每1h加入一次TEOS,共加入9次,正硅酸乙酯的体积用量以乙醇、水、氨水的混合液的体积计为1μL/mL。反应结束后,将产物离心并用乙醇洗涤3次,然后溶于20mL乙醇中,得到放射状硅球/四氧化三铁纳米颗粒/二氧化硅微球SIS的乙醇溶液。
实施例3:
(1)四氧化三铁纳米颗粒的合成:
首先,将30mL油胺在圆底烧瓶中缓慢加热至300℃并搅拌30分钟。进行脱气处理后保持瓶内始终充满氩气,然后将含有6mL油胺,4mL N-甲基-2-吡咯烷酮和0.5mmol 乙酰丙酮铁的混合溶液注入到烧瓶中,在300℃下保持10min后将溶液缓慢冷却至60℃。然后将60mL乙醇溶液加入到反应混合物中,得到黑色沉淀。通过离心收集产物并用乙醇洗涤,最后分散在40mL氯仿中,得到四氧化三铁纳米颗粒的氯仿溶液;
(2)巯基化放射状硅球模板的合成:
首先,将1 g CTAB 溶解到140 mL去离子水中,再加入30 mL乙醚,10 mL乙醇以及1.6 mL氨水,室温下磁力搅拌30 min;然后,慢慢加入5.0 mL TEOS和80uL MPS,室温下继续搅拌4 h。将产物离心并用乙醇洗涤3次,最后分散在100mL盐酸和100mL甲醇的混合溶液中,于60℃下搅拌6小时。重复萃取一次,最后将放射状硅球分散在400mL乙醇中。在上述放射状硅球乙醇溶液中加入5mL氨水和2mLMPS,然后在室温下剧烈搅拌12小时。通过离心收集最终产物,用乙醇洗涤3次后分散在100mL乙醇中,得到巯基化放射状硅球模板的乙醇溶液;
(3)SIS(放射状硅球/四氧化三铁纳米颗粒/二氧化硅)微球的制备:
取1mL上述巯基化放射状硅球的乙醇溶液,离心去除上清,然后加入2mL上述四氧化三铁纳米颗粒的氯仿溶液并超声7分钟,得到均一的溶液。通过离心收集放射状硅球/四氧化三铁纳米颗粒复合物并用氯仿洗涤一次以除去过量的四氧化三铁纳米颗粒。将该沉淀物在空气中稍干燥,加入300μL OTMS,超声溶解。然后将该溶液与15mL甲醇和375μL氨水的混合液混合,超声30分钟。通过离心收集复合物并用甲醇洗涤以除去过量的OTMS。将硅烷化的放射状硅球/四氧化三铁纳米颗粒复合物分散在33mL水中,搅拌18小时以形成有机二氧化硅层。为了通过Stöber法生长二氧化硅壳,将上述复合物离心并分散在20mL乙醇,5mL水,625μL氨水的混合物中,每1h加入一次TEOS,共加入7次,正硅酸乙酯的体积用量以乙醇、水、氨水的混合液的体积计为1μL/mL。反应结束后,将产物离心并用乙醇洗涤3次,然后溶于40mL乙醇中,得到放射状硅球/四氧化三铁纳米颗粒/二氧化硅微球SIS的乙醇溶液。
实施例4:
(1)四氧化三铁纳米颗粒的合成:
首先,将30mL油胺在圆底烧瓶中缓慢加热至300℃并搅拌30分钟。进行脱气处理后保持瓶内始终充满氩气,然后将含有6mL油胺,4mL N-甲基-2-吡咯烷酮和1mmol 乙酰丙酮铁的混合溶液注入到烧瓶中,在300℃下保持10min后将溶液缓慢冷却至60℃。然后将60mL乙醇溶液加入到反应混合物中,得到黑色沉淀。通过离心收集产物并用乙醇洗涤,最后分散在40mL氯仿中,得到四氧化三铁纳米颗粒的氯仿溶液;
(2)巯基化放射状硅球模板的合成:
首先,将1 g CTAB 溶解到140mL去离子水中,再加入20 mL乙醚,10mL乙醇以及2mL氨水,室温下磁力搅拌30 min;然后,慢慢加入8mL TEOS和80uL MPS,室温下继续搅拌6h。将产物离心并用乙醇洗涤3次,最后分散在100mL盐酸和100mL甲醇的混合溶液中,于60℃下搅拌6小时。重复萃取一次,最后将放射状硅球分散在400mL乙醇中。在上述放射状硅球乙醇溶液中加入5mL氨水和2mLMPS,然后在室温下剧烈搅拌12小时。通过离心收集最终产物,用乙醇洗涤3次后分散在100mL乙醇中,得到巯基化放射状硅球模板的乙醇溶液;
(3)SIS(放射状硅球/四氧化三铁纳米颗粒/二氧化硅)微球的制备:
取1mL上述巯基化放射状硅球的乙醇溶液,离心去除上清,然后加入2mL上述四氧化三铁纳米颗粒的氯仿溶液并超声5分钟,得到均一的溶液。通过离心收集放射状硅球/四氧化三铁纳米颗粒复合物并用氯仿洗涤一次以除去过量的四氧化三铁纳米颗粒;将该沉淀物在空气中稍干燥,加入200μL OTMS,超声溶解。然后将该溶液与15mL甲醇和375μL氨水的混合液混合,超声30分钟。通过离心收集复合物并用甲醇洗涤以除去过量的OTMS。将硅烷化的放射状硅球/四氧化三铁纳米颗粒复合物分散在33mL水中,搅拌18小时以形成有机二氧化硅层。为了通过Stöber法生长二氧化硅壳,将上述复合物离心并分散在20mL乙醇,5mL水,625μL氨水的混合物中,每1h加入一次TEOS,共加入9次,正硅酸乙酯的体积用量以乙醇、水、氨水的混合液的体积计为1μL/mL。反应结束后,将产物离心并用乙醇洗涤3次,然后溶于40mL乙醇中,得到放射状硅球/四氧化三铁纳米颗粒/二氧化硅微球SIS的乙醇溶液。
以上所述仅为本发明的较佳实施例,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (10)

1.一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,其特征在于,包括以下步骤:
(1)氩气气氛下,将油胺,N-甲基-2-吡咯烷酮和乙酰丙酮铁混合,于200~350℃搅拌反应8~15min后,将温度降至25~60℃,加入乙醇,离心收集沉淀并溶于氯仿中,得到四氧化三铁纳米颗粒的氯仿溶液;
(2)配置十六烷基三甲基溴化铵水溶液,加入乙醚,乙醇和氨水室温搅拌15~30min,接着注入正硅酸乙酯和(3-巯基丙基)三甲氧基硅烷,室温搅拌4~6h,离心收集沉淀并萃取残余的有机模板,离心收集固体物质重复萃取一次,得到放射状硅球,将其分散在乙醇中,加入25~28wt%氨水、(3-巯基丙基)三甲氧基硅烷,室温搅拌6~16h,离心收集沉淀,再分散在乙醇中,得到巯基化放射状硅球模板的乙醇溶液;
(3)取步骤(2)所得的巯基化放射状硅球模板的乙醇溶液,离心去除上清液,加入步骤(1)所得的四氧化三铁纳米颗粒的氯仿溶液,超声混匀,离心收集沉淀,得到放射状硅球/四氧化三铁纳米颗粒复合物;
在放射状硅球/四氧化三铁纳米颗粒复合物中加入辛基三甲氧基硅烷,超声溶解,加入甲醇和氨水混合液,超声、离心收集沉淀,得到硅烷化的放射状硅球/四氧化三铁纳米颗粒复合物;
将硅烷化的放射状硅球/四氧化三铁纳米颗粒复合物分散在水中,搅拌12~18h,离心收集沉淀,将沉淀分散在乙醇/水/氨水混合液中,分批加入正硅酸乙酯,之后离心收集沉淀,溶于乙醇,得到放射状硅球/四氧化三铁纳米颗粒/二氧化硅微球的乙醇溶液。
2.根据权利要求1所述的一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,其特征在于,步骤(2)中,所述萃取的方法为:将所得沉淀分散在盐酸甲醇混合液中,于50~60℃搅拌3~6h。
3.根据权利要求2所述的一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,其特征在于,盐酸甲醇混合液由36~38wt%盐酸水溶液与甲醇按照体积比1:1配制而成;所述盐酸甲醇混合液的体积用量以十六烷基三甲基溴化铵的质量计为0.2mL/mg。
4.根据权利要求1所述的一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,其特征在于,步骤(1)中,所述油胺与N-甲基-2-吡咯烷酮的体积用量比为9:1;所述乙酰丙酮铁的用量为0.5~1mmol。
5.根据权利要求1所述的一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,其特征在于,步骤(2)中,
所述十六烷基三甲基溴化铵水溶液的浓度为6~8g/L;
所述水,乙醚,乙醇和氨水的体积用量比为14:2~3:1:0.16~0.2;
萃取前,所述正硅酸乙酯和(3-巯基丙基)三甲氧基硅烷的体积用量以十六烷基三甲基溴化铵的质量计分别为5~8mL/g和80uL/g。
6.根据权利要求1所述的一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,其特征在于,步骤(2)中,萃取后,所述25~28wt%氨水的体积用量以十六烷基三甲基溴化铵的质量计为5mL/g;所述(3-巯基丙基)三甲氧基硅烷的体积用量以十六烷基三甲基溴化铵的质量计为2mL/g。
7.根据权利要求1所述的一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,其特征在于,步骤(3)中,所述巯基化放射状硅球模板与四氧化三铁纳米颗粒的质量比为1:(0.6~0.7);所述辛基三甲氧基硅烷的体积用量以巯基化放射状硅球模板的质量计为22~33mL/g。
8.根据权利要求1所述的一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,其特征在于,步骤(3)中,所述甲醇和氨水混合液中甲醇与氨水的体积比为1:0.025;所述甲醇和氨水混合液的体积用量以巯基化放射状硅球模板的质量计为1.7~1.8mL/mg。
9.根据权利要求1所述的一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,其特征在于,步骤(3)中,所述乙醇/水/氨水混合液中乙醇、水、氨水的体积比为1:0.25:0.03125,所述乙醇/水/氨水混合液的体积用量以巯基化放射状硅球模板的质量计为2.8~2.9mL/mg。
10.根据权利要求1所述的一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法,其特征在于,步骤(3)中,所述正硅酸乙酯的体积用量以乙醇/水/氨水混合液的体积计为1μL/mL。
CN201910213311.9A 2019-03-20 2019-03-20 一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法 Active CN109850953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910213311.9A CN109850953B (zh) 2019-03-20 2019-03-20 一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910213311.9A CN109850953B (zh) 2019-03-20 2019-03-20 一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法

Publications (2)

Publication Number Publication Date
CN109850953A CN109850953A (zh) 2019-06-07
CN109850953B true CN109850953B (zh) 2021-04-20

Family

ID=66901369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910213311.9A Active CN109850953B (zh) 2019-03-20 2019-03-20 一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法

Country Status (1)

Country Link
CN (1) CN109850953B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575267B (zh) * 2020-05-06 2024-05-14 吕梁学院 一种人造微纳米机器人及其制备方法
CN111790324B (zh) * 2020-06-18 2022-05-03 浙江工业大学 一种多层级可控组装型荧光-磁性双功能微球及其制备方法、应用
CN113718944A (zh) * 2021-07-05 2021-11-30 田定华 一种环保建筑防腐材料及其制备方法
CN114214058A (zh) * 2021-10-10 2022-03-22 深圳市人民医院 一种近红外量子点组装结构的制备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101955231B (zh) * 2010-10-20 2012-07-04 华东师范大学 表面修饰树枝状高分子的超顺磁性四氧化三铁纳米粒子的制备方法
CN102895679B (zh) * 2012-09-26 2014-01-08 东华大学 一种核壳结构纳米材料及其制备方法
CN103521753B (zh) * 2013-09-27 2016-02-24 中国科学院化学研究所 一种核壳结构材料及其制备方法与应用
CN104072656B (zh) * 2014-05-19 2016-08-24 河北科技大学 一种制备四氧化三铁-高分子磁性复合微球的方法
CN104530110A (zh) * 2014-12-18 2015-04-22 中国科学院上海硅酸盐研究所 一种超大孔径中空介孔有机硅纳米颗粒的制备方法
CN104692399B (zh) * 2015-02-09 2017-02-01 齐鲁工业大学 一种高度有序放射状球形具皱介孔二氧化硅材料及其制备方法
CN104876280A (zh) * 2015-04-17 2015-09-02 济南大学 一种两相溶剂热法制备四氧化三铁微米球的方法
CN104910917B (zh) * 2015-04-30 2017-03-01 浙江工业大学 一种包埋双色荧光量子点的比率探针及其制备方法
CN105903013A (zh) * 2016-04-26 2016-08-31 东北师范大学 一种Fe3O4纳米粒子聚集体及其制备方法
CN106310257B (zh) * 2016-08-26 2019-05-07 上海交通大学 一种单分散荧光磁性纳米探针及制备和应用

Also Published As

Publication number Publication date
CN109850953A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN109850953B (zh) 一种基于四氧化三铁纳米颗粒高效组装结构的磁性复合微球的制备方法
CN111790324B (zh) 一种多层级可控组装型荧光-磁性双功能微球及其制备方法、应用
WO2013012268A9 (ko) 균일한 크기의 실리카 나노입자 대량 제조 방법
US20180065859A1 (en) Silica nanostructures, large-scale fabrication methods, and applications thereof
CN111849478A (zh) 一种新型磁性荧光双功能纳米材料的制备方法
Sun et al. Magnetic separation of polymer hybrid iron oxide nanoparticles triggered by temperature
CN111423880A (zh) 一种磁性荧光介孔二氧化硅复合纳米材料及其制备方法
CN108236932B (zh) 一种超顺磁-等离子体复合微球及其制备方法
Hu et al. Magnetic nanoparticle sorbents
CN110776915A (zh) 一种基于多层级组装结构的荧光/比色双功能微球及其制备方法
CN109351335B (zh) 一种磁性三叠烯-三嗪共价骨架固相萃取剂及其制备方法和应用
CN114591726B (zh) 一种制备稳定单分散交联聚苯乙烯磁性微球的方法
CN109530718B (zh) 一种花状金纳米线复合纳米粒子的制备方法
CN102623125A (zh) 一种含多磁性内核的Fe3O4/SiO2纳米粒的制备方法
Park et al. Microwave enhanced silica encapsulation of magnetic nanoparticles
CN103723773A (zh) 一种四氧化三铁纳米颗粒的水溶胶及其制备方法和应用
CN110665465A (zh) 用于糖肽富集的磁性共价有机框架材料及其制备方法与应用
Huang et al. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow–mesoporous magnetic nanoreactors
CN109453393B (zh) 制备超小荧光二氧化硅纳米颗粒的方法
CN107275023A (zh) 金壳磁珠及其制备方法和应用
CN103730226B (zh) 一种空心磁性高分子复合微球及其制备方法与应用
JP2000040608A (ja) 磁性シリカ粒子及びその製造方法
CN104923157A (zh) 磁性碳纳米复合材料的制备方法
CN113979466A (zh) ZnO@SiO2纳米胶囊的制备方法
CN112892497B (zh) 一种覆盆子型中空多孔聚合物微球的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant