CN109833053A - Ct形状过滤器缺陷的双能矫正方法 - Google Patents

Ct形状过滤器缺陷的双能矫正方法 Download PDF

Info

Publication number
CN109833053A
CN109833053A CN201910155023.2A CN201910155023A CN109833053A CN 109833053 A CN109833053 A CN 109833053A CN 201910155023 A CN201910155023 A CN 201910155023A CN 109833053 A CN109833053 A CN 109833053A
Authority
CN
China
Prior art keywords
ray source
detector unit
ray
shape filter
bulb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910155023.2A
Other languages
English (en)
Other versions
CN109833053B (zh
Inventor
杨溢
刘金磊
刘静
邹宇
施大新
张启林
郑石磊
张祥林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Kaiying Medical Co ltd
Original Assignee
Shenyang Top Medical Imaging Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Top Medical Imaging Technology Co Ltd filed Critical Shenyang Top Medical Imaging Technology Co Ltd
Priority to CN201910155023.2A priority Critical patent/CN109833053B/zh
Publication of CN109833053A publication Critical patent/CN109833053A/zh
Application granted granted Critical
Publication of CN109833053B publication Critical patent/CN109833053B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及一种CT形状过滤器缺陷的双能矫正方法,其以同一CT机,在安装好形状过滤器状态下,在X射线源球管电压分别取两个不同值的两种状态下分别进行空气扫描,依据探测器单元在所述两种状态下获得的测量数据,推算出达到该探测器单元的X射线在形状过滤器中所穿行的路径长度,所述空气扫描优选为等视角间距的360度扫描。本发明能够对CT机形状过滤器的缺陷进行矫正,大幅度降低了形状过滤器的加工难度和制备成本,方便了使用,降低了维护费用,并且相关计算方式和计算过程也较为简便。

Description

CT形状过滤器缺陷的双能矫正方法
技术领域
本发明涉及一种CT形状过滤器缺陷的双能矫正方法,主要可用于人体计算机断层扫描的医用CT机中的形状过滤器缺陷的矫正。
背景技术
形状过滤器(例如,bowtie filter)是医用CT机中的核心部件之一,用于X射线射束硬化校正以获得良好、稳定的图像质量,为了获得形状过滤器几何尺寸的精确数据,或更准确地讲,为了获得X射线在从源达到各探测器单元之前在形状过滤器中所穿行的路径长度或总路径长度,一种直截了当的方法是使用高品质材料和精加工工艺使得实际的形状过滤器与设计的形状过滤器高度一致,但这样做无疑会提高产品成本,并且能够达到的精度还受到加工技术的限制;另一种方式是通过后续复杂的矫正技术并配合额外的模体在投影数据中进行补偿,这同样在很大程度上导致最终用户成本的增加以及后期维护的难度。
发明内容
为了克服现有技术的上述缺陷,本发明提供了一种CT形状过滤器缺陷的双能矫正方法,利用这种方法可以方便地计算获得形状过滤器的实际几何尺寸或相关数据,以便在数据处理中对形状过滤器缺陷进行矫正,进而减小用户成本和维护难度。
本发明所采用的技术方案:一种CT形状过滤器缺陷的双能矫正方法,其以同一CT机,在安装好形状过滤器状态下,在X射线源球管电压分别取两个不同值的两种状态下分别进行空气扫描,依据探测器单元在所述两种状态下获得的测量数据,推算出达到该探测器单元的X射线在形状过滤器中所穿行的路径长度。
可以采用下列公式计算到达探测器单元n的X射线在形状过滤器中所穿行的路径长度lb(n):
其中,
in(kV1)为在X射线源球管电压为kV1的状态下扫描,探测器单元n被X射线照射后产生的光电流测量值;
in(kV2)为在X射线源球管电压为kV2的状态下扫描,探测器单元n被X射线照射后产生的光电流测量值;
itube,1为在X射线源球管电压为kV1的状态下扫描所用的X射线源球管电流;
itube,2为在X射线源球管电压为kV2的状态下扫描所用的X射线源球管电流;
tview,1为在X射线源球管电压为kV1的状态下扫描一个视角所需要的时间;
tview,2为在X射线源球管电压为kV2的状态下扫描一个视角所需要的时间;
E为X射线源球管产生的光子的能量;
为到达探测器单元n的光子能量为E的X射线在传播过程中因形状过滤器之外的其他所有材料导致的衰减率;
NkV(E)为X射线源球管电压为kV时X射线源球管的光子数能谱,NkV(E)dE代表每个打在X射线源球管阳极上的电子能产生的能量在E到E+dE范围内的光子数,kV=kV1,kV2
μb(E)为形状过滤器的材料的线性衰减系数;
ηD(E)为探测器或探测器单元的能量探测效率;
n为探测器单元编号,编号为n的探测器单元称为探测器单元n。
可以采用下列公式计算到达探测器单元n的X射线在形状过滤器中所穿行的路径长度lb(n):
其中,
in(kV1)为在X射线源球管电压为kV1的状态下扫描,探测器单元n被X射线照射后产生的光电流测量值;
in(kV2)为在X射线源球管电压为kV2的状态下扫描,探测器单元n被X射线照射后产生的光电流测量值;
E为X射线源球管产生的光子的能量;
为到达探测器单元n的光子能量为E的X射线在传播过程中因形状过滤器之外的其他所有材料导致的衰减率;
是X射线源球管电压为kV时归一化的光子数能谱,NkV(E)为X射线源球管电压为kV时X射线源球管的光子数能谱,NkV(E)dE代表每个打在X射线源球管阳极上的电子能产生的能量在E到E+dE范围内的光子数,kV=kV1,kV2
μb(E)为形状过滤器的材料的线性衰减系数;
ηD(E)为探测器或探测器单元的能量探测效率;
iref(kV1)为在X射线源球管电压为kV1的状态下扫描,参考探测器单元被X射线照射后产生的光电流测量值;
iref(kV2)为在X射线源球管电压为kV2的状态下扫描,参考探测器单元被X射线照射后产生的光电流测量值;
为到达参考探测器单元的光子能量为E的X射线在传播过程中因形状过滤器之外的其他所有材料导致的衰减率;
ηref(E)为参考探测器单元的能量探测效率;
lb(nref)为已知的到达参考探测器单元的X射线在形状过滤器中所穿行的路径长度;
n为探测器单元编号,编号为n的探测器单元称为探测器单元n。
本发明的有益效果:能够方便地实现对形状过滤器的矫正,在不改变现有工艺、材料品质以及设备附件、也不需要拆卸形状过滤器的前提下,只需要在不同X射线源球管电压的两个状态下进行空气扫描,由于两种状态下测量数据的差异部分源于形状过滤器的设置,由此通过两种状态下的测量数据之间的比对,就能够揭示出形状过滤器对测量数据的影响,计算出X射线在形状过滤器中所穿行的路径长度,进而获得有效的形状过滤器的几何尺寸数据或将相应的路径长度数据用于其他相关数据的运算,实现对形状过滤器缺陷的双能矫正,相应路径长度数据的计算可以依据X射线的传播规律以及实际中的各影响因素,采用任意适宜的现有技术或其他可能的技术实现,由此无需要求将形状过滤器加工得与设计完全一致,省略了现有技术下矫正补偿模体的相关设计、加工及使用和维护,由此大幅度降低了形状过滤器的加工难度和制备成本,方便了使用,降低了维护费用,并且计算方式和计算过程也较为简便。另外,能够实现的补偿精度与CT机的测量精度相关,不受形状过滤器加工技术和加工精度的限制。
附图说明
图1给出了在已知光子数能谱的情形下,计算得到的一种形状过滤器的计算路径长度曲线;为了比较,图中也给出了形状过滤器在整个探测器范围的实际路径长度曲线和理论设计路径长度曲线;在该图的显示分辨率下,计算路径长度曲线和实际路径长度曲线几乎完全重叠;
图2是与图1对应的形状过滤器在探测器中心区域范围的计算路径长度曲线、实际路径长度曲线和理论设计路径长度曲线,在该图的显示分辨率下,计算路径长度曲线和实际路径长度曲线基本重叠;
图3给出了在已知沿边缘探测器单元(参考探测器单元)光路上穿过的各种材料的厚度的情形下,计算得到的一种形状过滤器的计算路径长度曲线;为了比较,图中也给出了形状过滤器在整个探测器范围的实际路径长度曲线和理论设计路径长度曲线;在该图的显示分辨率下,计算路径长度曲线和实际路径长度曲线几乎完全重叠;
图4是与图3对应的形状过滤器在探测器中心区域范围的计算路径长度曲线、实际路径长度曲线和理论设计路径长度曲线,在该图的显示分辨率下,计算路径长度曲线和实际路径长度曲线基本重叠;
图5给出了归一化的X射线源球管电压为80kVp和140kVp的实验光谱和模型光谱。
具体实施方式
本发明用于计算X射线在形状过滤器中所穿行的路径长度lb(n)的公式可以通过下列方式推导出:
根据探测器单元n被X射线照射后光电流的产生机理,可知:
其中αn是公式推导过程中引入的只与探测器性质有关的比例系数,单位可为纳安·千电子伏-1
AD为相应探测器单元在垂直于X射线入射方向的投影面积;
dSD为X射线源球管到相应探测器单元的距离。
在已知光子数能谱的前提下,依据公式(1)和(2)可得
如果已知到达某个特定探测器单元的X射线在形状过滤器中所穿行的路径长度,或者已知沿某个特定探测器单元光路上穿过的各种材料的厚度进而可以计算获得到达该特定探测器单元的X射线在形状过滤器中所穿行的路径长度,可以以该特定探测器单元作为参考探测器单元,根据参考探测器单元被X射线照射后光电流的产生机理,可知:
其中αref是公式推导过程中引入的只与参考探测器单元性质有关的比例系数,单位可为纳安·千电子伏-1
Aref为参考探测器单元在垂直于X射线入射方向的投影面积;
dref为X射线源球管到参考探测器单元的距离。
依据公式(1)-(2)和(4)-(5)可得
公式(3)和(6)中积分的范围为实际中有效的光子能量E的范围,可以依据具体的计算精度要求通过试验或理论分析确定。利用公式(3)或(6)求解获得路径长度lb(n),即可用于涉及形状过滤器各种计算,实现对其缺陷的矫正。
进行空气扫描时,优选以等视角间距进行360度扫描。
在此情形下,可以各视角下的光电流测量值的平均值用作计算路径长度lb(n)。
具体地,在已知光子数能谱的情形下计算路径长度lb(n)时,所述空气扫描通常可优选为等视角间隔的360度扫描,在此扫描下,分别获得各视角下探测器单元n被X射线照射后产生的光电流测量值,并以各状态下探测器单元n在各视角的光电流测量值的平均值作为相应状态下的光电流测量值in(kV1)或in(kV2)。
具体可以采用下列步骤:
1)在X射线源球管电压为kV1的状态下进行一次空气扫描,获得检测数据in(kV1);
2)用同一CT机在X射线源球管电压为kV2的状态下进行一次空气扫描,获得检测in(kV2);
3)利用X射线源球管的已知相关参数,计算
4)利用CT机的已知相关参数,分别计算和ηD(E);
将上述in(kV1)、in(kV2)、ηD(E)、itube,1、itube,2、tview,1、tview,2以及形状过滤器材料的线性衰减系数μb(E)代入相应方程,求解出达到探测器单元n的X射线在形状过滤器中穿行的路径长度lb(n)。
在已知X光在达到参考探测器单元之前在形状过滤器中所穿行的路径长度为lb(nref)的情形下计算路径长度lb(n)时,所述空气扫描通常可优选为等视角间隔的360度扫描,在此扫描下,分别获得各视角下探测器单元n被X射线照射后产生的光电流测量值,并以各状态下探测器单元n在各视角的光电流测量值的平均值作为相应状态下的光电流测量值in(kV1)和in(kV2);分别获得各视角下参考探测器单元被X射线照射后产生的光电流测量值,并以各状态下参考探测器单元在各视角的光电流测量值的平均值作为相应状态下的光电流测量值iref(kV1)和iref(kV2)。
具体可以采用下列步骤:
1)在X射线源球管电压为kV1的状态下进行一次空气扫描,获得检测数据in(kV1)和iref(kV1);
2)用同一CT机在X射线源球管电压为kV2的状态下进行一次空气扫描,获得检测in(kV2)和iref(kV2);
3)利用X射线源球管的已知相关参数,计算X射线源球管的归一化光子数能谱
4)利用CT机的已知相关参数,分别计算以及ηD(E)和ηref(E);
5)将上述in(kV1)、iref(kV1)、in(kV2)、iref(kV2)、 ηD(E)、ηref(E)、lb(nref)和形状过滤器材料的线性衰减系数μb(E)代入相应方程,求解出达到探测器单元n的X射线在形状过滤器中穿行的路径长度lb(n)。
图1、图2、图3和图4显示了在相应情形下(所用X射线源球管电压为80kVp和140kVp,X射线源球管电流均为50mA),依据本发明计算出的计算路径长度曲线与实际路径长度曲线和理论设计路径长度曲线之间的对比。计算时假设了,如图5所示,模型光谱与X射线源球管电压为80kVp和140kVp的实验光谱只有2%的相对误差。结果表明,用本发明的方法,依据方程(3)计算得出的X射线在形状过滤器中的路径长度与真实路径长度的平均误差为0.0125mm,最大误差为0.0214mm;依据方程(6)计算得出的X射线在形状过滤器中的路径长度与真实路径长度的平均误差为0.0095mm,最大误差为0.0188mm。由此可以看出,本发明能够准确地计算出达到各探测器单元的X射线在形状过滤器中的路径长度。
关于本发明计算公式涉及的部分参数的进一步说明:
lb(n)为X光在从X射线源球管达到探测器单元n之前在形状过滤器中所穿行的路径长度,为本发明所要计算的路径长度,在CT检测的相关数据处理中,这些数据作为到达相应的各检测器单元的X光经过形状过滤器的实际路径长度或者对设计路径长度进行补偿,能够有效地消除因形状过滤器实际路径长度与设计路径长度不一致导致的误差;
in(kV1)和in(kV2)分别为在X射线源球管电压为kV1和kV2的状态下进行空气扫描,探测器单元n被X射线照射后产生的光电流测量值。当采用多个不同视角进行空气扫描时,可以以各视角下的光电流测量值的平均值(通常可以为算术平均)作为光电流测量值。探测器单元n被X射线照射后产生的光电流可依据探测器单元n上的读数,单位可采用纳安(10-9安培);
iref(kV1)和iref(kV2)分别为在X射线源球管电压为kV1和kV2的状态下进行空气扫描,参考探测器单元被X射线照射后产生的光电流测量值。当采用多个不同视角进行空气扫描时,可以以各视角下的光电流测量值的平均值(通常可以为算术平均)作为光电流测量值。参考探测器单元被X射线照射后产生的光电流可依据参考探测器单元上的读数,单位可采用纳安(10-9安培);
itube,1和itube,2分别为在X射线源球管电压为kV1和kV2的状态下扫描所用的X射线源球管电流,单位可采用毫安;
tview,1和tview,2分别为在X射线源球管电压为kV1和kV2的状态下扫描一个视角所需要的时间;
E代表X射线源球管产生的光子的能量,单位可为千电子伏;
分别为代表到达探测器单元n和参考探测器单元的X射线在传播过程中在除形状过滤器外的其他材料中经历的衰减率(以E为自变量的函数),这些函数是CT机或CT系统的已知函数,由CT机除形状过滤器外的系统特性确定,依赖于变量E,这些函数也可以依据理论分析和/或实验数据确定;
NkV(E)为光子数能谱,NkV(E)dE代表每个打在X射线源球管阳极上的电子能产生的能量在E到E+dE范围内的光子数;
为归一化的光子数能谱,依据前面所述的公式计算;
μb(E)为形状过滤器的材料的线性衰减系数,可通过理论计算和/或实验获得;
ηD(E)和ηref(E)分别为探测器单元n和参考探测器单元的能量探测效率,可通过理论计算和/或实验获得;
lb(nref)为X光在从X射线源球管达到参考探测器单元之前在形状过滤器中所穿行的路径长度;
kV1和kV2的是进行空气扫描时使用的两个不同的X射线源球管电压;
n为探测器单元编号,编号为n的探测器单元称为探测器单元n,可以顺序编号,也可以采用其他编号方式。
本发明涉及X射线的路径或路径长度均指相应X射线的实际路径(光路)或路径长度。
本发明所称X射线源球管泛指CT机所用的用于产生X射线的任意形式的X射线源,可以采用常见的球管形式,也可以采用其他形式。
本发明公开的各优选和可选的技术手段,除特别说明外及一个优选或可选技术手段为另一技术手段的进一步限定外,均可以任意组合,形成若干不同的技术方案。

Claims (7)

1.一种CT形状过滤器缺陷的双能矫正方法,其以同一CT机,在安装好形状过滤器状态下,在X射线源球管电压分别取两个不同值的两种状态下分别进行空气扫描,依据探测器单元在所述两种状态下获得的测量数据,推算出达到该探测器单元的X射线在形状过滤器中所穿行的路径长度。
2.如权利要求1所述的方法,其特征在于采用下列公式计算到达探测器单元n的X射线在形状过滤器中所穿行的路径长度lb(n):
其中,
in(kV1)为在X射线源球管电压为kV1的状态下扫描,探测器单元n被X射线照射后产生的光电流测量值;
in(kV2)为在X射线源球管电压为kV2的状态下扫描,探测器单元n被X射线照射后产生的光电流测量值;
itube,1为在X射线源球管电压为kV1的状态下扫描所用的X射线源球管电流;
itube,2为在X射线源球管电压为kV2的状态下扫描所用的X射线源球管电流:
tview,1为在X射线源球管电压为kV1的状态下扫描一个视角所需要的时间;
tview,2为在X射线源球管电压为kV2的状态下扫描一个视角所需要的时间;
E为X射线源球管产生的光子的能量;
为到达探测器单元n的光子能量为E的X射线在传播过程中因形状过滤器之外的其他所有材料导致的衰减率;
NkV(E)为X射线源球管电压为kV时X射线源球管的光子数能谱,NkV(E)dE代表每个打在X射线源球管阳极上的电子能产生的能量在E到E+dE范围内的光子数,kV=kV1,kV2
μb(E)为形状过滤器的材料的线性衰减系数;
ηD(E)为探测器或探测器单元的能量探测效率;
n为探测器单元编号,编号为n的探测器单元称为探测器单元n。
3.如权利要求2所述的方法,其特征在于所述空气扫描为等视角间隔的360度扫描,分别获得各视角下探测器单元n被X射线照射后产生的光电流测量值,并以各状态下探测器单元n在各视角的光电流测量值的平均值作为相应状态下的光电流测量值in(kV1)或in(kV2)。
4.如权利要求2或3所述的方法,其特征在于具体采用下列步骤:
1)在X射线源球管电压为kV1的状态下进行一次空气扫描,获得检测数据in(kV1);
2)用同一CT机在X射线源球管电压为kV2的状态下进行一次空气扫描,获得检测in(kV2);
3)利用X射线源球管的已知相关参数,计算
4)利用CT机的已知相关参数,分别计算和ηD(E);
5)将上述in(kV1)、in(kV2)、ηD(E)、itube,1、itube,2、tview,1、tview,2以及形状过滤器材料的线性衰减系数μb(E)代入相应方程,求解出达到探测器单元n的X射线在形状过滤器中穿行的路径长度lb(n)。
5.如权利要求1所述的方法,其特征在于采用下列公式计算到达探测器单元n的X射线在形状过滤器中所穿行的路径长度lb(n):
其中,
in(kV1)为在X射线源球管电压为kV1的状态下扫描,探测器单元n被X射线照射后产生的光电流测量值;
in(kV2)为在X射线源球管电压为kV2的状态下扫描,探测器单元n被X射线照射后产生的光电流测量值;
E为X射线源球管产生的光子的能量;
为到达探测器单元n的光子能量为E的X射线在传播过程中因形状过滤器之外的其他所有材料导致的衰减率;
是X射线源球管电压为kV时归一化的光子数能谱,NkV(E)为X射线源球管电压为kV时X射线源球管的光子数能谱,NkV(E)dE代表每个打在X射线源球管阳极上的电子能产生的能量在E到E+dE范围内的光子数,kV=kV1,kV2
μb(E)为形状过滤器的材料的线性衰减系数;
ηD(E)为探测器或探测器单元的能量探测效率;
iref(kV1)为在X射线源球管电压为kV1的状态下扫描,参考探测器单元被X射线照射后产生的光电流测量值;
iref(kV2)为在X射线源球管电压为kV2的状态下扫描,参考探测器单元被X射线照射后产生的光电流测量值;
为到达参考探测器单元的光子能量为E的X射线在传播过程中因形状过滤器之外的其他所有材料导致的衰减率;
ηref(E)为参考探测器单元的能量探测效率;
lb(nref)为已知的到达参考探测器单元的X射线在形状过滤器中所穿行的路径长度;
n为探测器单元编号,编号为n的探测器单元称为探测器单元n。
6.如权利要求5所述的方法,其特征在于所述空气扫描为等视角间隔的360度扫描,
分别获得各视角下探测器单元n被X射线照射后产生的光电流测量值,并以各状态下探测器单元n在各视角的光电流测量值的平均值作为相应状态下的光电流测量值in(kV1)和in(kV2),
分别获得各视角下参考探测器单元被X射线照射后产生的光电流测量值,并以各状态下参考探测器单元在各视角的光电流测量值的平均值作为相应状态下的光电流测量值iref(kV1)和iref(kV2)。
7.如权利要求5或6所述的方法,其特征在于具体采用下列步骤:
1)在X射线源球管电压为kV1的状态下进行一次空气扫描,获得检测数据in(kV1)和iref(kV1);
2)用同一CT机在X射线源球管电压为kV2的状态下进行一次空气扫描,获得检测in(kV2)和iref(kV2);
3)利用X射线源球管的已知相关参数,计算X射线源球管的归一化光子数能谱
4)利用CT机的已知相关参数,分别计算以及ηD(E)和ηref(E);
5)将上述in(kV1)、iref(kV1)、in(kV2)、iref(kV2)、 ηD(E)、ηref(E)、lb(nref)和形状过滤器材料的线性衰减系数μb(E)代入相应方程,求解出达到探测器单元n的X射线在形状过滤器中穿行的路径长度lb(n)。
CN201910155023.2A 2019-02-28 2019-02-28 Ct形状过滤器缺陷的双能矫正方法 Active CN109833053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910155023.2A CN109833053B (zh) 2019-02-28 2019-02-28 Ct形状过滤器缺陷的双能矫正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910155023.2A CN109833053B (zh) 2019-02-28 2019-02-28 Ct形状过滤器缺陷的双能矫正方法

Publications (2)

Publication Number Publication Date
CN109833053A true CN109833053A (zh) 2019-06-04
CN109833053B CN109833053B (zh) 2023-01-13

Family

ID=66885323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910155023.2A Active CN109833053B (zh) 2019-02-28 2019-02-28 Ct形状过滤器缺陷的双能矫正方法

Country Status (1)

Country Link
CN (1) CN109833053B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955118A (zh) * 2017-04-11 2017-07-18 沈阳开普医疗影像技术有限公司 Ct形状过滤器缺陷的单能矫正方法
CN110353716A (zh) * 2019-07-25 2019-10-22 沈阳开普医疗影像技术有限公司 双能ct短程扫描协议中的数字域分解方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483383A (zh) * 2003-07-16 2004-03-24 沈阳东软数字医疗系统股份有限公司 一种ct机射束硬化的校正方法
CN1817306A (zh) * 2002-03-20 2006-08-16 株式会社日立制作所 放射成象装置、放射成象方法和放射成象支持方法
US20140151563A1 (en) * 2004-11-09 2014-06-05 Biosensors International Group, Ltd. System and method for radioactive emission measurement
CN106955118A (zh) * 2017-04-11 2017-07-18 沈阳开普医疗影像技术有限公司 Ct形状过滤器缺陷的单能矫正方法
CN108158597A (zh) * 2016-12-07 2018-06-15 北京东软医疗设备有限公司 确定原始x射线能量数据的方法、装置及ct设备
CN207532397U (zh) * 2017-04-12 2018-06-26 沈阳开普医疗影像技术有限公司 适于单能矫正形状过滤器缺陷的ct机
CN108472004A (zh) * 2016-01-22 2018-08-31 株式会社日立制作所 光子计数ct装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1817306A (zh) * 2002-03-20 2006-08-16 株式会社日立制作所 放射成象装置、放射成象方法和放射成象支持方法
CN1483383A (zh) * 2003-07-16 2004-03-24 沈阳东软数字医疗系统股份有限公司 一种ct机射束硬化的校正方法
US20140151563A1 (en) * 2004-11-09 2014-06-05 Biosensors International Group, Ltd. System and method for radioactive emission measurement
CN108472004A (zh) * 2016-01-22 2018-08-31 株式会社日立制作所 光子计数ct装置
CN108158597A (zh) * 2016-12-07 2018-06-15 北京东软医疗设备有限公司 确定原始x射线能量数据的方法、装置及ct设备
CN106955118A (zh) * 2017-04-11 2017-07-18 沈阳开普医疗影像技术有限公司 Ct形状过滤器缺陷的单能矫正方法
CN207532397U (zh) * 2017-04-12 2018-06-26 沈阳开普医疗影像技术有限公司 适于单能矫正形状过滤器缺陷的ct机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955118A (zh) * 2017-04-11 2017-07-18 沈阳开普医疗影像技术有限公司 Ct形状过滤器缺陷的单能矫正方法
CN106955118B (zh) * 2017-04-11 2020-04-17 沈阳开普医疗影像技术有限公司 Ct形状过滤器缺陷的单能矫正方法
CN110353716A (zh) * 2019-07-25 2019-10-22 沈阳开普医疗影像技术有限公司 双能ct短程扫描协议中的数字域分解方法
CN110353716B (zh) * 2019-07-25 2023-06-27 沈阳开普医疗影像技术有限公司 双能ct短程扫描协议中的数字域分解方法

Also Published As

Publication number Publication date
CN109833053B (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
CN101416073B (zh) 用于重建图像的双能量衰减数据的信噪比的动态优化
JP6133231B2 (ja) X線エネルギースペクトル測定方法およびx線エネルギースペクトル測定装置およびx線ct装置
Battista et al. Compton scatter imaging of transverse sections: an overall appraisal and evaluation for radiotherapy planning
Maltz et al. Algorithm for X-ray scatter, beam-hardening, and beam profile correction in diagnostic (kilovoltage) and treatment (megavoltage) cone beam CT
Meertens et al. A liquid ionisation detector for digital radiography of therapeutic megavoltage photon beams
CN106725567B (zh) 电子计算机x射线断层扫描仪
US20120014618A1 (en) System and method for measuring x-ray beam profile using an area detector
CN102652674A (zh) 一种消除ct图像中的几何伪影的方法和系统
CN1934590A (zh) 用于相干散射ct的射束硬化和衰减校正
Sterpin et al. Analytical computation of prompt gamma ray emission and detection for proton range verification
US9125286B2 (en) X-ray dose estimation technique
CN109833053B (zh) Ct形状过滤器缺陷的双能矫正方法
CN109363703B (zh) Ct系统能谱不一致性的校正方法
CN102481129B (zh) 放射线摄影装置以及图像获取方法
Dong et al. Relationship between x‐ray illumination field size and flat field intensity and its impacts on x‐ray imaging
JPH08510090A (ja) 診断用x線管に印加される電圧の間接測定
CN202049120U (zh) 一种消除ct图像中的几何伪影的系统
CN106955118B (zh) Ct形状过滤器缺陷的单能矫正方法
US9763640B2 (en) 3D image generation method and device for G-arm X-ray machine and G-arm X-ray machine
JP2019126581A (ja) 骨密度測定装置および骨密度撮影方法
US10497153B2 (en) Heel effect correction in computed tomography
JP2022145494A (ja) 画像処理装置、補正方法及びプログラム
CN108065950B (zh) 一种放射成像方法及其系统
US11896410B2 (en) Photon counting CT apparatus and method of correcting material decomposition map
EP0608237B1 (en) Method and apparatus for computing tomographic and panoramic scans

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 117004 Building 18-8, Shennong Street, Economic and Technological Development Zone, Benxi City, Liaoning Province

Patentee after: Liaoning Kaiying Medical Co.,Ltd.

Address before: No. 18 Shennong Street, High-tech Industrial Development Zone, Benxi, Liaoning, 117000

Patentee before: SHENYANG KAMPO MEDICAL IMAGING TECHNOLOGY CO.,LTD.

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Dual energy correction method for CT shape filter defects

Granted publication date: 20230113

Pledgee: Benxi Bank Co.,Ltd. Beidi Branch

Pledgor: Liaoning Kaiying Medical Co.,Ltd.

Registration number: Y2024980020519